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Extremal Properties of the First Eigenvalue of a Class
of Elliptic Eigenvalue Problems

HENRIK EGNELL

0. - Introduction

In this paper we will study the following

PROBLEM: Find

maximizing the first eigenvalue A1 1 of

where

(i) Q is an open, bounded and connected domain in 1.

(ii) Eu (M-convention)
is a symmetric uniformly elliptic operator with coefficients in L’(Q), that is

and there exists a v &#x3E; 0 such that

We will call v the ellipticity constant of E.
(iii) h E Loo, k is measurable, h &#x3E; 0 and k &#x3E; 0 a.e. in SZ.

(iv) and 0  A  oo.

Pervenuto alla redazione il 5 Settembre 1985 ed in forma definitiva il 29 Gennaio 1986
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REMARK: The case p = oo has been excluded, since it has the trivial
solution if we take BA = { f : A}.

This problem has its origin in a question posed by A. Ramm [RA]. His
formulation is a special case of our problem with

The problem has been solved in this special case by M. Essen [ES] and by G.
Talenti [TA]. E. Harrell [HA] has solved the problem when Q is a bounded
domain in Rn, however his proof is incorrect (cf. Example 5).

Essen obtained his solution using his earlier results (cf. [ES]). Harrell
used perturbation theory of self-adjoint operators. However, the approach of
this paper is closer to that of Talenti.

Let 
-

be the Rayleigh quotient, where

Then the problem can be rewritten as:
Find q and li such that q E BA, li = 0 on aS2 and

where the infimum and supremum are taken over the appropriate classes of
functions.

The solution q of this problem solves the original problem and u is the
first eigenfunction corresponding to q. We will say that is an extremal

couple.
Let us take h = k = 1 in the sequel for simplicity. The idea of Talenti is to

estimate the Rayleigh quotient from above by a functional which is independent
of q. To see this, we note that for any q E BA, H61der’s inequality gives

It will turn out that there exists a q E BA such that
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and both sides attain their minima for the same function u. Hence is an

extremal couple. It is remarkable that the minimizer u of Rq gives equality
in the Holder inequality (0.2), but that is the reason why this method works.
The equality (0.3) turns out to be useful when proving other properties of the
extremal couple.

The main results in this paper in the case k = h = 1 are collected in the

following two theorems.

THEOREM I: Let p E ( 1, oo) be given and assume that k = h = 1. Then

there exists an extremal couple (q, u) with the following properties:
(i) u is the unique non-negative minimizer of J.
(ii) u is the first eigenfunction of the eigenvalue problem

Furthermore, the first eigenvalue tt 1 is equal to both J(u) and the maximal

eigenvalue A 1 of

(iv) 4 is unique.

B n /

(vi) If C Loo(Q) then q and u are locally Hölder continuous. Furthermore,
if SZ has the exterior cone property then u and 4 are continuous in Q.

(vii) If C then all derivatives of order less than or equal to
m + 2 of u and q are locally Holder continuous in Q.

and if either

for some positive integer l, then U, q E Cm+2,,~(SZ) for some 0.
(ix) 4 and u have the same symmetries as S2 and E.

THEOREM II: Let p = 1. Assume that k = h = 1 and C Loo(Q). Then
there exists an extremal couple (q, u) with the following properties:
(i) u is the unique minimizer of J.
(ii) u &#x3E; 0 and = 1.
(iii) with equality in the interior of I = ~x E 0 : u(x) = 1 }. Here

A - J(u) is the maximal first eigenvalue of (0.1 ).

(v) q is unique.
(vi) q and u have the same symmetries as Q and E.

Results similar to those mentioned above hold in the general case where
k and h are non-constant (see Section 5).
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In Section 6 we give some examples and point out some generalizations.
In this section we also consider the problem of minimizing the first eigenvalue
of (o.1 ) over BA.

REMARK: After the completion of this manuscript I have received a preprint
from E. Harrell and M. Ashbaugh [AH]. They have studied the problem of
minimizing and maximizing the first eigenvalue of (0.1) over BA when p &#x3E; 1

and k = h = 1. Their paper also contains other related results.

1. - Some definitions and preliminary lemmas

In this section, we will construct a dense subspace of Hol(Q) on which
the bilinear form a(u, v) is well defined and we will show some lemmas about
functions in this subspace. These results will be used to prove some technical
lemmas that will be needed later.

We have to define what we mean by a solution of (0.1). If faijl c 
there is no problem with the following standard definition

However, if the coefficients are supposed to be in L 1 (Q) only, then
the bilinear form a(u, v) is not well-defined on the whole of Ho’(Q). In this case
we have to find an appropriate definition of a solution of (o.1 ).

The bilinear form a(u, v) is well-defined on and (a, HJ,oo(Q)) is
a pre-Hilbert space. The completion of this space is a Hilbert space (a, Ha(Q))
with the following properties:

(1.2) dense in Hence is also dense in 

(1.3) If u, v E then ii(u, v) = a(u, v) and ii(u, u) &#x3E; where v is
o

the ellipticity constant.

Using this we can define a map

as follows: .

Take u E Ha(Q) and { un } C converging to u in From

(1.3) above it follows that

We define j(u) = w.
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Clearly j is a well defined continuous linear map. Furthermore, j (Q) = Sp,
whenever p E 

REMARK: If follows that j is sequentially continuous w.r.t. the weak

topologies.

PROOF. Let j * : Ha(Q) be the Hilbert space adjoint of j defined
by the relation

From the assumptions, we get that for all w E Ho’(0),

Therefore (~~’(~))~. = (w, v)HO, for all w e Hence j (u) = v.

LEMMA 2: The map j is injective.

PROOF. Take u c H,,(Q) C such that j(u) = 0 and
in Since 0 in we can assume that ’9iUk ---+ 0 a.e. in

S2 for i = 1,..., n. From Fatou’s lemma, we see that

The right-hand side tends to zero as k - oo. Hence u = 0.

From Lemma 2, it follows that we can use j to imbed as a dense

subspace in Hol(K2) and the topology induced by j. From the
open mapping theorem we get

From now on we will always regard Ha(Q) as a subspace of Hol (92).
DEFINITION: If the operator E corresponds to the bilinear form a(.,.) we

will say that u is a solution of (0.1 ) if

REMARK: This definition is consistent with (1.1), since = 

whenever (aj) c We also see that the problem of finding the first
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eigenvalue of (o.1 ) is equivalent to the problem of minimizing the Rayleigh
quotient, provided q E 

The method used to construct above is closely related to the
standard procedure used to define a self-adjoint operator using bilinear forms.
Actually, it turns out that E can be represented as a self-adjoint operator with
domain D(E) dense in For further information, see [WE], Chapter 5.

For functions in we have the following well-known facts.

LEMMA 3: If u E H 1 (SZ), then u+ E and

If u E Ho’(Q) and is a sequence in Ho (SZ) converging to u, then
(i) min(u, n) E Ho (SZ) for n = 0, l, 2, ... and min(u, n) - u in Hol (92) as

A proof of the first statement in the lemma can be found in [GT], Chapter
7. The other statements follow easily from the first one.

LEMMA 4: If u E and n = 0, 1, 2,..., then
(i) min(u, n) E and min(u, n) -+ u in as n - oo.

(ii) If £ = u - min(u, n) then a(u, ~) = d(~, ~).
(iii) lul E and ii(lul, = a(u, u).

PROOF: Take C H§ ’"(Q) so that uj - u in Ha(Q) as j - oo. Then
min(uj, n) E Hol,’(E2) and Lemma 3 above gives

The right-hand side is bounded and we know that min(uj, n) - min(u, n) in
Ho’(Q). Hence a compactness argument and Lemma 1 yield

Furthermore,

since the weak limit must be in the convex set

The same argument as above gives
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Now (i) follows from the fact that the norm is lower semicontinuous w.r.t. the
weak topology.

To prove (ii) take as above and Then

a(uj, = and gj -~ ~ in Ha(Q) by (i). This proves (ii).
The last statement (iii) is proved using the same argument as above.

now on we will always write a(u, v) instead of it(u, v).

By the Rellich compactness theorem we know that the inclusion map

is compact. Hence the inclusion map

is also compact.

PROPOSITION 5: If q &#x3E; 0 then both Rq and J, as defined in Section 0,
attain their minima in Ha(Q). Furthermore, we can assume that the minimizers
are non-negative.

REMARK: The condition q &#x3E; 0 is always satisfied in the interesting cases,
since the function q maximizing the first eigenvalue of (0.1) can be assumed
to be non-negative.

PROOF. This proof is standard and we only prove the existence of a

minimizer of J. Let {un } c be, a minimizing sequence normalized so
that = 1. Then {un } is bounded in and in L2~’ (SZ). Therefore,

assuming a subsequence has been selected, we have unlli in and in

L2P’(Q). Furthermore, we have strong convergence in A semicontinuity
argument yields that lim J(un). Hence u E is a minimizer. Finally,

n-00

Lemma 4 shows that J(ii) = so the minimizer can be assumed to be

non-negative.
The following lemma will be useful later on.

LEMMA 6: Let u be a non-negative minimizer of J and put A = J(u).
Assume that there exists a non-negative function 4 E BA (k = 1) such that

Then inf Rq(u) = Rq(u) = A, and (q, u) is an extremal couple.
uEHa(Q)

REMARK: The existence of a function q with the properties in the lemma
will be proved later.
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PROOF. We can assume that ||u||2p = 1. Let v be a non-negative minimizer
of R4 and assume that = A’  A. Then we get

This shows that (A - A’) f uv = 0. Hence
u

From Lemma 4 we have H,,(92) which shows that A’ as

n - oo. We note that j vnu = 0 and that a(li, vn) = 0.
Q

if n is large enough. This is a contradiction and hence A = A‘ if p = 1.

If p &#x3E; 1, we argue in the following way. We choose n so large that

An  A and consider

where the last relation holds if ê is small enough.

REMARK: If C LOO(Q), then (1.4) gives us Ev = )/v &#x3E; 0. We can use
the strong maximum principle for weak solutions [GT] to conclude that v &#x3E; 0
a.e. in Q. In this case, the proof is less complicated.

Finally, we have the following approximation lemma.

, 

LEMMA 7: Let C where 1  p  oo. Then there exists
C cOO(Q) with the following properties:
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(i) They fulfil the uniform ellipticity condition with the same constant as

{aij}
(ii) Lq as ê --~ 0, where q = p if p  oo and q can be any number
in [1, oo) if p = oo.

PROOF. Extend to functions on Rn by letting if i = j and
if outside Q. Let pe be a smooth non-negative approximative

identity. Then aij = ai~ * pe has the desired properties.

2. - Solution of the problem when 1  p  oo and k = h = 1

Because the problem is easier to solve when p &#x3E; 1 we will deal with
this case first to demonstrate the use of the lemmas in Section 1. We believe,
however, that the problem is more interesting when p = 1.

If u E then J is Gateaux-differentiable at u and we have

with Q e 

Hence the non-negative minimizer u solves the equation

where

A direct calculation yields l|qllp = A and hence q E BA. Now, Lemma 6 shows
that (ii, u) is an extremal couple and a = J(u) is the maximal first eigenvalue.
Note that u is the first eigenfunction of the eigenvalue problem

and the first eigenvalue p 1 is equal to A 1.
Thus we have proved the following result.

THEOREM 8,: Let 1  p  oo. Then there exists an extremal couple (q, u)
which solves the problem and which has the following properties:
(i) u is a non-negative minimizer of J and the first eigenfunction of (2.1 )

with eigenvalue J(u).

(iii) Rq(u) = J(u) = a 1. Here Ai 1 is the maximal first eigenvalue.
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COROLLARY 9: We have the following estimates:

PROOF. We can assume that and
B n /

ç = u - min(u, c). Then £ e and ~ &#x3E; 0. Lemma 4 (ii) and Theorem 8

give

since the integrand is negative if ~ &#x3E; 0. Hence ~ = 0, that is u  c. The estimate

for q follows directly from the estimate of u and Theorem 8.
From Theorem 8 and Corollary 9 we see that Eu E Hence we

can apply the regularity theory for elliptic operators with bounded measurable
coefficients.

COROLLARY 10: If C L’(L2) then u and hence also 4 is locally
Holder continuous in Q. If the boundary a_SZ satisfies the (uniform) exterior

cone condition, then both u and 4 are in C(SZ) (C’(Q)).

For a proof of this regularity result see for example [GT], Chapter 8.

REMARK: Q is said to satisfy the exterior cone condition if for every
x E 9Q there exists a finite circular cone Vx with vertex x such that = x.

For the uniform exterior cone condition we also need that the cones Vz are all
congruent to some fix cone.

Higher regularity can now be deduced using the regularity theory for
P.D.E.’s with Holder continuous coefficients.

Write (2.1) as Eu = f(u) and assume that (aj) c LI(i2) and that u
is a non-negative solution normalized so = 1. Since 0 by
Corollary 9, the strong maximum principle shows that u does not have any
interior minima. Hence u &#x3E; 0 in Q. Using this fact, it is easy to verify that

E C-,-(92) is U E If we replace SZ by Q, we can still deduce the

following result.
if ii E and if either m  ~ or p = for some positive integer

f , then E C"2’~(s2) for some {3.
Now, we can apply the regularity theorems in [GT], Chapter 6.

COROLLARY 11: If are locally Holder continuous for  m+1 1

then and alij are locally Hölder continuous for all 11/  m + 2. If
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some integer l, then u, q E for some ,~.

REMARK: In the discussion above we saw that if la,jl C then both

u and q are strictly positive in S~.

3. - Solution of the problem when p = 1 and k = h = 1

Since J is not Gateaux-differentiable for p = 1, we have to use a method
different from the one given in Section 2. We shall transform the problem into
a variational inequality and use the regularity theory which is available here.

Define K = luc Ha(Q) : 1 } and

Then

If u is a minimizer of J normalized so that = 1, then u is also a minimizer
of T over K.

PROPOSITION 12: If u is a minimizer of J such 1, then u
solves the variational inequality

where K = ~u E Ha(Q): lul  1 }.
PROOF. Take v E K and t E (0, 1), then u + t(v - u) E K by convexity and

we get 
- -

The result follows.

REMARK: If we take u to be a non-negative minimizer then Proposition
12 holds with K = 1 } .

The operator in the variational inequality (3.1) is not monotone, but it is
still possible to apply the standard technique to obtain the following regularity
result.
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THEOREM 13: If
solution of (3.1 ), then

and u is a non-negative

The proof will be given in the Appendix.

Let us assume that the conditions in Theorem 13 hold and let u be a non-

negative minimizer of J normalized so that = 1. Define the coincidence
set as I = = 1 }, which is obviously closed. Since u E H2~S(S-2), a
variation outside I in the variational inequality (3.1) yields Eu = Ail pointwise
a.e. in S2 B I, where A = J(u). In the coincidence set I, we can apply Lemma
7.7 [GT] twice to obtain Eu = 0 pointwise a.e. in I. Hence Eu + = Ail
holds a.e. in SZ. If we multiply this equation with u and integrate we get

This shows that Am(I) = A. Thus it follows from Lemma 6 that ii) is

an extremal couple, with A XIII and maximal eigenvalue 
m(I) () 

*

However, the conditions on and 8Q can be relaxed.

First we will prove a result when then this result will be
extended to coefficients C 

THEOREM 14: If C then there exists an extremal couple (q, u)
which solves the problem and which has the following properties
(i) u is a minimizer of J.
(ii) and lliill = 1.

(iv) The maximal first eigenvalue A 

’ ’ 

m(I)
(v) holds pointwise a. e. in 92.

(vi) 

PROOF. According to Theorem 13 and the discussion above, the theorem
is true if we assume also that an C C2 and To remove these
restrictions, let be smooth open domains in 0. with the following properties

Such domains can easily be constructed with the aid of the regularized distance
[ST] and Sard’s Theorem [NI].
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Let (un, An, qn) be the solution of the problem with Q replaced by Qn, and
assume that 0 1. Here An is the corresponding maximal first
eigenvalue. Since aS2n E Coo and faijl we know that this solution
exists and that it has the properties given in the theorem. Furthermore, we can
extend Un and qn to functions in Hol(i2) and respectively, by letting them
be zero outside 

It is easy to see that An £ A as n --~ oo, is bounded in and
that is bounded. Hence we have, assuming a subsequence has been
chosen,

Using this we get

Now, take p E Co’(i2) and by (3.2b) we can choose n so that supp p C S2n.
Then

Letting n - oo we obtain

By continuity, this equation holds also for all p E If we = u

in (3.5) it is easy to establish the following equalities

Therefore, we conclude that u is a minimizer of J.
From (3.3) and (3.4) above we also get

showing that



14

Therefore q has its essential support in I = { x E Q : u(x) = 11. Hence Lemma 6
shows that (q, u) is an extremal couple, and a = A is the maximal eigenvalue.

Since Eu E and faijl C we find that u E [GT],
Chapter 8. Therefore Eu = 0 a.e. in I and by (3.5) Eu+qu = Au holds pointwise

a.e. in Q. Hence q = and by (3.4) a = A .m(I )
We can use an argument similar to the one given above to obtain the

following result.

THEOREM 15: C then there exists an extremal couple (q, u)
which solves the problem and which has the properties:
(i) u is a minimizer of J(u).
(ii) 0 and = l.

(iii) with equality in the interior of I = ~x E Q : u(x) = 1 }.
(iv) The maximal first eigenvalue A = J(u).

REMARK: Since Eu = Aiii - qii E is locally Holder continuous
in Q and hence the coincidence set I is relatively closed in Q. If SZ satisfies
the exterior cone condition, then u E C(Q) and I is compact in S2.

PROOF. C be the sequence approximating {aij}
constructed in Lemma 7 and let be the solution of the problem
with faijl replaced by As before, we assume ue to be non-negative and

= 1. A semicontinuity argument yields

For all ê &#x3E; 0, (ai) has the same ellipticity constant This shows
that (ue) is bounded in Choosing a subsequence and arguing as in the
proof of Theorem 14, we see that

This implies as before
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We conclude that q has its essential support in u(x) = 1 }. Hence
liull = 1. Combining this with (3.7), we obtain A = Rq(u) = J(u). It follows
from (3.6) that u is a minimizer of J. From Lemma 6, we see that (q, u) is an
extremal couple and A I = À is the extremal first eigenvalue.

4. - Uniqueness and other properties of the extremal couple (q, u)

In this section we will discuss some properties of the extremal couple
constructed in Section 2 and 3. Unless stated otherwise, we will always assume
that (4, ii) is one of the extremal couples constructed in Theorem 8, 14 or 15
respectively.

We recall that the following equalities hold for 

Using these relations we can give a simple proof of the following
uniqueness theorem.

THEOREM 16: The function 4 is a unique maximizer of the first eigenvalue
of (o.1 ).

PROOF. Suppose that q E BA is another maximizer, which can be assumed
to be non-negative. Then we have

But since Rq(u)  J(u) whenever q E BA, U is a minimizer of Rq. Hence u
solves the two equations

which shows that q = q a.e. on the essential support of u. But we know that
ess supp 4 C ess supp u = A. Hence q = q a.e. in Q.

An immediate consequence is

COROLLARY 17: If g : Rn is a linear transformation such that both
0. and E are invariant under g, that is

where g is represented by the matrix Then 4 is invariant under g, q = q o g.
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PROOF. A change of coordinates gives

Thus both q and q o g are maximizers, and the result follows from uniqueness.
We have a similar result for u.

PROPOSITION 18: Assume that either

or

Then u is the unique non-negative minimizer of J.

REMARK: Assume that {czij } c L- (12). Since 0, the strong maximum

principle shows that u &#x3E; 0 in Q. Hence u is a unique minimizer of J.

PROOF. If 1  p  oo the result follows from Theorem 8 and Theorem
16. We only need to prove the result for p = 1.

Suppose that v is another minimizer of J. We can assume that v &#x3E; 0 and
= 1. A direct calculation, using the properties of u and 4 yields

showing that But

Hence and ess supp Using
this we find that v) = A, that is li - v is a minimizer of But then
w = lu - vl is also a minimizer and w = 0 on the essential support of q since
both v and ii are equal to one on the same set.

We conclude that Ew = Àw in Q, w &#x3E; 0 and w = 0 on ess supp 4. But
the strong maximum principle [GT] then shows that w = 0. Hence u = v.

COROLLARY 19: Assume that g has the same properties as in Corollary
17 and that the assumptions in Proposition 18 hold. Then u = ii o g.

PROOF. This is an immediate consequence of the uniqueness and the fact
that = o g).
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We have seen that 0 and that Eu E If C L°°(Q) then
u is locally Holder continuous and the strong maximum principle yields the
following result.

PROPOSITION 20: If C then the level sets Q, = c } and
o.~ = {q &#x3E; c} have the properties that Rn B L2, and Rn B have no components
contained in K2.

Using spherical symmetrization we can obtain an estimate from below of
the maximal first eigenvalue.

If u is a measurable function defined on S2 then the spherical decreasing
symmetrization u* defined on Q* is given by
(i) S2* is a ball with center at the origin and with the same volume as Q.
(ii) u*(x) = sup{t &#x3E; 0 : ~(t) &#x3E; for x E Q*, where A(t) = m({x 

and wn is the volume of the unit ball in Rn.
The spherical increasing symmetrization u** defined on Q* is defined as

follows:

(i) If u E then u** = 

(ii) If u is measurable then u** = lim (min(n, 
n-+oo

We will use the following properties:
(4. la) lul, u* and u** are equimeasurable.

whenever u and v are measurable.

Note that the first inequality in (4.1c) follows easily from the second one.
For a proof of these statements see [HL].

Define A(Q, E) = inf J(u), where we have introduced the domain Q

and the operator E as parameters.

PROPOSITION 21: We have

where A is the Laplace operator and 6 is the ellipticity constant of E. If E .
has constant coefficients then 6 can be chosen as the geometric mean of the
eigenvalues of the matrix that is 6n are the

eigenvalues.

PROOF. This is an easy consequence of the properties of spherical
symmetrization given in (4.1 ). We have
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If E has constant coefficients, then we first make an orthogonal transformation so
that we can assume that aij we make the transformation

This gives us a linear map g such that

If we take 6 = ..... J-Ln) I In then the map g preserves volume, and we get

REMARK: (i) If (ij, u) is an extremal couple, then the corresponding
maximal eigenvalue Ai I is given by A(Q, E) and it can be estimated from
below by A(Q*, -6A) which is easier to calculate. Actually, the problem with
S2 = Q* and E = - b0 is a one-dimensional problem since we have rotational
symmetry. At the end of this section we discuss this problem for p = 1.

(ii) If E = -A then we see that among all domains Q with given fixed volume,
the ball minimizes the maximal first eigenvalue a 1 = a(S2).

When p &#x3E; 1 we have derived an explicit equation for the extremal couple
in Section 2. To conclude this section we will discuss the problem of

evaluating q when p = 1. 
_

Let us assume that (aj) and aS2 are smooth. Then u E and u
solves the following free boundary problem

where A, u and I are unknown. This problem is difficult. However, if we have
symmetry, we can use Corollaries 17 and 19 to simplify (4.2).

Let Q be a ball with radius R centered at the origin. Let Eu = -ai(faiu)
where f is smooth, invariant under rotations and f &#x3E; v &#x3E; 0 in Q. Since E and
SZ are invariant under rotations, we conclude that both q and u are spherically
symmetric. From Proposition 20 it follows that I = {~ : u(x) = 1 ~ is a ball with
center at the origin. Let p denote the radius of I. Thus, (4.2) can in this case
be rewritten as the following one-dimensional problem:
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where A, u and p are unknown.
If f (r) =- 6 then the solution u can be expressed in terms of Bessel

functions. In this case p and A can easily be evaluated numerically. This gives
us an estimate of a(S2*, -6A) in Proposition 21.

5. - Extensions to weighted LP-balls

In this section we will discuss the general problem where h and k are
non-constant. We will use the same technique as in Chapter 2, 3 and 4. There
are minor changes in many of the proofs and all details will not be given. We
will use the same numbering of the theorems, corollaries and lemmas as for
the special case k = h = 1 but with primes.

As mentioned in the introduction we will always assume that
(i) h and k are measurable and h E 

(ii) h &#x3E; 0 and k &#x3E; 0 a.e. in Q.

Instead of the estimate (0.2) of the Rayleigh quotient given in Section 0
we now have

whenever The estimate (5.1 ) is obtained

using H61der’s inequality. Since k might be zero we have to use the following
conventions 

-

to interpret (5.1 ) and we will do so in the rest of this section.
The Rayleigh quotient Rq is Gateaux-differentiable in the directions of

functions in Col(Q) only if q E Ltoe(Q). However, if we assume that

then H61der’s inequality gives BA c The integrability condition (5.2)
turns out to be natural as we will see later. At the end of this section we will

study this problem, when (5.2) does not hold.
The results in Section 1 hold with the following changes in Proposition

5 and Lemma 6.
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PROPOSITION 5’ : If q &#x3E; 0 and if there exists a u E Ha(Q) such that

J(u)  oo (Rq(u)  00), then there exists a minimizer of J (Rq). Furthermore,
the minimizer can be assumed to be non-negative.

REMARK: If (5.2) holds and q E BA then the conclusion of the theorem
holds.

LEMMA 6’: Let u be a non-negative minimizer of J and put A = J(u).
Assume that one of the following two conditions hold

If there exists a non-negative 4 E BA such that

then

that is (q, u) is an extremal couple.

PROOF. If condition (I) holds we can use the same argument as in the

proof of Lemma 6.
Under condition (II) we can argue as in the proof of Lemma 6 to obtain

(1.4). The result follows from the strong maximum principle (cf. the remark
after Lemma 6).

The case 1  p  oo

The same argument as in the proof of Theorem 8 can be used to obtain
the following result.

THEOREM 8’ : Let 1  p  oo and assume that one of the conditions (I)
and (II) in Lemma 6’ hold. Then there exists an extremal couple (q, u) which
solves the problem and which has the following properties:
(i) u is a minimizer of J and the maximal first eigenvalue a 1 = J(u).
(ii) u is the first eigenfunction of

with eigenvalue = À 1 .
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If 1  p  oo then the existence of a maximizer q e BA can also be
proved using the following standard argument.

Let A(q) = inf Rq(u) and let { qn ~ C BA be a maximizing sequence.

Since {qn } is bounded in LP(Q, k2dx) we can assume that
and by convexity q E BA.

Consider the functional on k2dx) given by

where u E This is continuous w.r.t. the weak topology if and only if

( k ~ 2 E The last condition holds for all u E if and only if

k-l E Ll ~~~(SZ). Hence if k-l E then the map BA 3 q - A(q) is upper
semicontinuous w.r.t. the weak topology and we find that q is a maximizer.

It is interesting to see that condition (5.2) turns up again.
To prove that u in Theorem 8’ is bounded we notice that Eu  AM and

Theorem A3 in the Appendix gives us

The same technique as in the proof of Corollary 9 can be used to obtain
a more precise estimate.

COROLLARY 9’: We have the following estimates

where D is a constant. Furthermore, U E 

To prove regularity results for u and q, we have to impose further

conditions on k and h. There are no problems to obtain these results so we
leave it to the reader.

The case p = 1

In this case we have a nice geometric interpretation. It will turn out that
the minimizer u solves a variational inequality with the weight function k as
an obstacle.
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PROPOSITION 12’: Assume that u is a minimizer of J, normalized so that
I

. Then

u solves the variational inequality

(iii) If u is non-negative, then u solves the variational inequality (5.3) with
K = ~ u E Ha(Q): u  and u satisfies Eu  Àhu. 

-

(iv) Assume that there exists a measurable function k such that k  k a.e. in
E2 and k = k a.e. E E2 : Let J be the functional J with
k replaced by k. Then u is a minimizer of J. Furthermore, (i) and (iii) hold
with k replaced by k.

PROOF. The proof of (i) is the same as before and will be omitted.

Put f = Àhu and assume that u is non-negative. Then u is the unique
solution of

where K is the convex set given in (i). The uniqueness follows since the

operator in (5.4) is strictly monotone.
It is easy to see that (5.4) is equivalent to the problem of finding the

minimizer of
I

Let ud be the unique solution of (5.4) with

Then ud also minimizes F over K8, and ud is non-negative since  

The family {ud } is bounded in Hence, for a subsequence we get
U6 - u- in and u6-u in and a.e. in Q. Thus, 0  u  k.

We have
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If we let 6 tend to zero in (5.5) and note that 2: a(u-,;U), we obtain
6-0

Hence u solves (5.4) and u = u by uniqueness,
To prove (iii), take ~p E such that

é &#x3E; 0 is small enough. Hence (5.5) gives

Letting 6 tend to zero yields Eu  AM.
Take v E such that v  k. We have the decomposition

where v+ E K and v- E Thus

This proves (iii).
If u is a minimizer of J, then is also a minimizer. Now (iii) gives

E(lul) :S Àhlul and Theorem A3 in the Appendix yields (ii).

If k is as in (iv) then it is clear that u is a minimizer of J since

J(u)  J(u) and J(u) = J(u). We can repeat the argument above to show that
(i) and (iii) hold with k replaced by k.

The following regularity result is proved in the Appendix.

THEOREM 13’: Assume that C 09Q E C2, k E H’(Q) and
that E(k) is a Radon measure such that E(k)- E for some s &#x3E; n. Let u
be a non-negative solution of the variational inequality (5.3). Then

Let us assume that the conditions in Theorem 13’ hold and that k is
continuous a.e. in Q. Define the coincidence set as I = { x = A
variation of (5.3) in S2 B I yields Eu = Àhu pointwise a.e. in Q B I, where
A = J(u). Thus

Eu + qu = A hii holds pointwise a.e. in Q,
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where . From Proposition 12’ it follows that q is non-
’B I

negative. If we multiply the equation by u and integrate, we find that

Thus

which shows that 4 E BA. Hence, if we also assume that E Lemma

6’ shows that (q, u) is an extremal couple.
At the end of this section we will discuss the problem when 

THEOREM 14’ : Let p = 1 and { ai j } C Assume that one of the
conditions (I) and (II) below hold.
(I) k E H1(Q), k is continuous a.e. in Q, k-l E Ll (Q) and E(k) is a Radon

measure such that

(II) There exists a sequence of such that for each n, kn  k

a.e. in Q, kn = k a.e. in n} and the assumptions in (I) holds
for each kn.

Then there exists an extremal couple which solves the problem and which has
the properties:

(i) u is a non-negative minimizer of J, normalized so that

Here I = {:r = l~} = J(u) is the maximal first eigenvalue.
(iv) holds pointwise a.e. in Q,
(v) = J(u).

PROOF: First we conclude the proof of the theorem under the extra

conditions that k satisfies condition (I), C and aSZ E C~.
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From the discussion preceding the theorem it is clear that (i), (ii), (iv)
and (v) hold. In (iii) the inequality

follows from Corollary A2 in the Appendix. The equality q =

follows since E(k) = E(u) a.e. on I if u and k E H2,1(o.), [GT], Chapter 7.
Under condition (II), the results follow easily from Proposition 12’ (iv).
To finish the proof, we have to remove the smoothness conditions on

aij I and aSZ. To do this, we use the same method as in Theorem 14. We will
not give the proof here.

THEOREM 15’: Let p = 1 and C Assume that one of the
conditions (I) and (II) below hold.
(I) There exists an s &#x3E; n such that k E H 1 ~s(SZ), k-1 E Lloc(S2) and E(k) is

a Radon measure with negative part E(k)- E 
(II) There exists a sequence of such that for each n, kn  k

a.e. in 0., kn = k a.e. in {x : kn (x)  n} and the assumptions in (I) holds
for each kn.

Then there exists an extremal couple (q, u) which solves the problem and which
has the properties 

....

(i) u is a non-negative minimizer of J, normalized so that

(ii) U E and U is locally Holder continuous.

with equality in the interior of I. Here
I 

. - 

/

I = {x : u(x) = and A j 1 = J(u) is the maximal first eigenvalue.
(iv) R4(ii) = J(u).

REMARK: k is continuous in Q since k E where s &#x3E; n, [GT],
Chapter 7.

PROOF: The proof is almost the same as the proof of Theorem 15. But
some new complications occur.

First we prove the theorem under condition (I). Let be the sequence

approximating constructed in Lemma 7. Define kg as the solution of

where Ee is the operator corresponding to We have ke C C(Q) since

E(k) E where s &#x3E; n, [GT], Theorem 8.24.
From [GT], Theorem 8.16, we get the following estimate
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where c does not depend on 6-. To see this we note that

and that E, has the same ellipticity constant as E.
The right hand side of (5.6) tends to zero 0. Hence k, -~ l~ in

Ll (Q) as E - 0.
We can add a constant 0(£) to k, so that kE, &#x3E; k a.e. in SZ. Then k,

fulfils the conditions in Theorem 14’. Thus, we have a solution (qg, Ug, Àg) of
the problem with k and faijl replaced by k" Let u, be non-negative

and normalized so that

A semicontinuity argument yields

Theorem 14’ (iii) gives

since E(k). This shows that is bounded in for every
0.’ cc S2. It is also easy to see that is bounded in Ho’(.Q). Hence, for a
subsequence, we have

The statement about the convergence of qe involves a diagonalization procedure.
It is easy to establish the following
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and

Let us prove (5.8). Theorem 14’ yields

since u, on the essential support of qe. From the above we see that is

bounded from above by 2(Àhk2 - kE(k))+ E Ll(Q), if E is small enough. Hence,
letting E tend to zero yields (5.8). The proofs of (5.7) and (5.9) are also easy
and we omit the details.

From (5.8) and (5.9) we find that A = Rq(u) = J(u). Hence u is a minimizer
of J. Furthermore (5.7) and (5.8) show that

Now we can apply Lemma 6’ to conclude that (q, u) is an extremal couple.
From the above it is also clear that (i), (iii) and (iv) hold.
To finish the proof of (ii) we only have to note that Eu E which

follows from the fact that qu E and u E Thus, the local Holder
continuity of u follows from [GT], Chapter 8.

To prove the theorem under condition (II) we argue as follows. Let u be
a minimizer of J. Then Ilulloo  oo by Proposition 12’. For each n we

get a solution to the problem with k replaced by kn. Furthermore, all
these solutions have the maximal first eigenvalue a = J(u) by Proposition 12’
and is bounded in Hol(Q). Proposition 12’ also yields that is bounded
in L’(Q). Hence, un(x) un(x) = if n is large enough
and we get 

,.,.

That is (qn, un) is an extremal couple and it is clear that properties (i) - (iv)
hold.

Often the of functions in Theorems 14’ and 15’ can be
chosen as kn = min(k, n). To see this, let us assume that and k are smooth
functions. Let cp E be non-negative. We have
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provided Gauss Theorem holds for the set { x : k  n } . Since Vk and d8
have the same direction, it follows that the contribution from the truncation is
a positive measure and thus it does not affect E(1~)-. This technique is used in
Chapter 6, Example 3.

For certain functions k we can use the following method to obtain the
family { kn } .

Let { x &#x3E; n } . Take n fix and assume that there exists an N
such that S2N C C Qn. Take Sp E such that 0  ~p  1 and p = 1 on 

Put kn = (1 - p)k + Then kn = k on I x : n} and on S2 we have

This gives us a with the desired properties.

I

Uniqueness and other properties of the extremal couple (q, u)

In this section we will extend the results obtained in Section 4. Throughout
we will assume that (q, u) is one of the extremal couples constructed in Theorems
8’, 14’ and 15’ respectively.

The following four results are proved as before.

PROPOSITION 16’: The function 4 is a unique maximizer of the first
eigenvalue of (0. 1).

COROLLARY 17’: If g : Rn --+ Rn is a linear transformation such that Q,
k, h and E are invariant under g, that is

where g is represented by the matrix Then 4 is invariant under g.

PROPOSITION 18’: Assume that the conditions in either of Theorems 8’,
14’ or 15’ hold. Then u is the unique non-negative minimizer of J.

COROLLARY 19’: Assume that g has the same properties as in Corollary
17’ and that the assumptions in Proposition 18’ hold. Then u is invariant under
g, that is u = u o g.

Proposition 20 has no natural counterpart here.

Define

where we have introduced SZ, E, h and k as parameters.
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PROPOSITION 21’ : We have

where A is the Laplace operator and 6 is the ellipticity constant of E. If E
has constant coefficients, then 6 can be chosen as the geometric mean of the
eigenvalues of the matrix Here * is the spherical symmetrization defined
in Section 4.

PROOF. If we note that (k-’)** = (I~* )-1, the result follows easily from the
properties of spherical symmetrization and the proof of Proposition 21 given in
Chapter 4.

Since the problem of finding A(Q*, -6A, h*, k*) is one-dimensional and
therefore easier to solve, we can use Proposition 21’ to obtain an estimate from
below of the maximal first eigenvalue.

If Q is a ball, E = -A and h = h*, then Proposition 21’ shows:

Among all admissible equimeasurable weight functions k,
l~* gives the smallest maximal first eigenvalue.

The same result holds with h and k interchanged. We can use similar
arguments to obtain related results.

The singular case where p = 1 

In the argument after Theorem 13’ we arrived at the following conclusions.
Assume that the conditions in Theorem 13’ hold and that k is continuous a.e.
in Q. Then the non-negative minimizer u of J satisfies

where

Nothing in the result above is changed if we redefine q to be oo on the
set {x = 0}. Actually, the zero set of k is negligable in our problem,
since it is obvious that the maximizing function q can be assumed to be o0
there. Thus, the corresponding eigenfunction is zero a.e. on this set.

However, if we can not apply Lemma 6’ to conclude that
is an extremal couple. But we have the following result.
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THEOREM 22: Let p = 1 and C L°°(S2). Assume that one of the
conditions (I) and (II) beloia, hold.
(I) There exists an s &#x3E; n .such that k E n H 2,1 (Q) and E(k) is a

Radon measure with negative part E(k)- E LS(S2).
(II) There exists a sequence of functions such that for each n, kn  k

a.e. in Q, kn = k a.e. in f x : n~ and the assumptions in (I) hold
f ’or each kn.
Then

There exists a couple (q, u) with the following properties:
(i) u is a non-negative minimizer of J.
(ii) Eu + qu = Àhu, where A = J(u).
(iii) u E and u is locally Holder continuous in Q.
(iv) 0  qk  (Ahk - with equality in the interior of I =

(vii) Eu + qu = Àhu holds pointi4,ise a.e. in S2.

If the supremun1 in (5.11 ) is attained at q E BA, then q = q a.e. and

(q, u) is an extremal couple.

PROOF. First we prove the theorem under condition (I).
Let (qb,Ub) be the solution of the problem with k5 = k + 6, 0  6  1. The

existence of a solution is guaranteed by Theorem 15’. Assume that each u6 is

non-negative and normalized so that
.. 

Let J6 be the functional J with k replaced by k8. We have the following
facts

Here (5.13) follows from Theorem 15’ and the other statements are obvious.
For a subsequence we have
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We will only prove (5.14) and (5.18). The other statements follow easily
from the properties of given in Theorem 15’.

To prove (5.14) we first note that is bounded in by (5.13).
Hence, for a subsequence we have

But (5.13) also gives that

since k E H’,’(0). Thus f = 0 on the zero set of k, and (5.14) follows with
I

by Theorem 15’. If we let d tend to zero we obtain

The only non-trivial term We argue as follows. Write
Q

then 12 ---; 0 by (5.13). If we note that and on

k(x) &#x3E; 0}, then dominated convergence yields
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This shows (5.19), and (5.18) follows by continuity.
If we put v = u in (5.18) and use (5.16) we find that A = Rq(u) = J(u).

Then (5.11) follows from (5.12) and u is a minimizer of J.
From the above, it follows that Eil E Ls(S2) where s &#x3E; n. Hence u is

locally Holder continuous. If C then u E and Eu+qu = ahu
holds pointwise a.e. in S~.

We have proved the existence of a couple (q, u) satisfying (i) - (vii) above.
To see that this is the only possible maximizer we argue as follows.

Assume that the supremum in (5.11) is attained at q E BA. Since 
J(u), it follows that u is a minimizer of Rq. Clearly q E v &#x3E; 0})
and we obtain

Combining this equation with (ii) yields that q = q a.e. on the essential support
of u. But then (5.16) shows that q = q a.e. on the support of k. Hence q is the
only possible maximizer (k 2dx).

To extend the result to hold under condition (II) we argue as in the proof
of Theorem 15’.

REMARK: The condition k E H2~ 1 (S2) was only needed to conclude that
E(k) = 0 a.e. on k(x) = 0} (and (vi)). Clearly, this condition can be
weakened.

This section will be concluded with a discussion whether there exists a
maximizer q E BA in (5.11) or not. We do not have a definite solution of this
problem but we will give some partial answers.

Let be the couple constructed in Theorem 22 and let v be a non-
negative minimizer of Rq. Assume that there exists no maximizer of (5.11).
Then Rq(v) = A’  A = Rq(u). It is clear that Rq is Gateaux-differentiable in the
direction of v at u and viceversa. This gives us (A - = 0. Hence

Q

Let be the components of 0. B {x : = 0 1 and let 4 be oo on
the zero set of k. It is clear that u and v have their essential support in ~J L2j

i
and that Ev = A’v holds in each component The strong maximum principle
yields that for each K2j, either u = 0 (v = 0) in Qj or u &#x3E; 0 (v &#x3E; 0) in Qj. Thus
we have the following corollaries.

COROLLARY 23: Assume that the conditions in Theorem 22 hold and that
either S2 B f x : = 01 is connected or u is non identically zero in any of the
components li2j I, then there exists an extremal couple (q, u).

The proof follows from the discussion above.
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COROLLARY 24: Assume that the conditions in Theorem 22 hold and that
there exists a minimizer v of Rq with the properties given above. If v is not

identically zero in a component Qj of S2 ~ { l~ : k(x) = 0 1 and if E HJ(Qj),
then there exists an extremal couple (q, u).

PROOF. Assume that the conclusion is false. Take {wn ~ c such

that v and 0. Let vn = ênWn, where 6n &#x3E; 0 is small enough so that
We have

Hence

if n is large enough. This is a contradiction.
Assume that the components 10j I satisfy d(Qi, Qj) &#x3E; 0 for all i and

that each aS2i satisfies some "minimal" smoothness conditions. Then it can be
shown that the minimizer E for each component Qj, and hence
there exists an extremal couple by Corollary 24.

We do not have an example where (5.11 ) does not have a maximizer. But
what can occur is the following.

Let 01 and K22 be two components such that n 0. Although v
is zero a.e. on k(x) = 0} it is clear that we cannot conclude that v E Ho(0i)
for i = 1, 2, and we might have  The inequality in (5.11) is

obtained by letting q tend to a measure with mass on aS21 n aQ2-

6. - Examples and generalizations

In this section we will give some simple examples to illustrate the results
and to indicate some generalizations.

Let p = 1, SZ = (-1, 1 ), A = 1, E = -A, h = 1 and assume that k fulfils
the conditions in Theorem 14’ or Theorem 22. Furthermore, let (q, u) be an
extremal couple. We know that u E (Theorem 13’). If k is C2 on the
coincidence set I = = then u solves the free boundary problem
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Here A, I and u are the unknown. If we can solve this problem, we obtain the

maximizing function g

In the figures below we give some numerical solutions.
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The example in Figure 2 is interesting. Here the eigenspace corresponding
to the first eigenvalue is two-dimensional.

The solution u in Figure 3 is zero in one of the components But
we can show that (q, u) is an extremal by using the corollaries of Theorem 22.

EXAMPLE 3: Let us consider a problem where we have to truncate the

obstacle k. Take k = 1 - 1. As the family (kn) we take min(k, n).
lxl 

,Clearly, this family satisfies the conditions of Theorem 14’. We get the following
numerical solution.

EXAMPLE 4: If we take k = 1:f: lxi, then E(k) = -k" = T-26. For k = ]
we have E(k)- = 0 and we obtain the following solution.
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If 1~ = 1 + lxl, then E(k)- = 2So and the assumptions in the theorems do
not hold. However, formally we have q = (Ai + 2So)X{ [-a, a] } if A &#x3E; 2 and

q = Ab~ if A  2. The graph of u is given below.

It can be shown that q is a maximizer of the first eigenvalue. Furthermore,
there exists no maximizer of the first eigenvalue in L1 (S~). Let us prove the last
statement. Assume that q E L (Q) is a maximizer. Then we have inf Rq(u) = J(u).

u

But then u is a minimizer of Rq. + qu = and thus q cannot be
in 

EXAMPLE 5: In this paper we have only considered the eigenvalue problem
with zero boundary data. However, the technique used in this paper can be used
to study the problem when we have mixed boundary data. By mixed boundary
data we mean the following.

Let 8Q = 19Q U aSZ2 be a decomposition of the boundary. We take u = 0
on all, and 9,u = 0 on where av is the normal derivative.
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However, we have to be careful. For example, Theorems 13 (13’) do not
always hold if we have mixed boundary data.

As an example, let us consider the following problem. Find

maximizing the first eigenvalue of

We get the Rayleigh quotient

which is estimated from above by

If tan a or tan ~3 is unbounded, then the corresponding term is excluded in the
formulas for Rq and J.

Let u be a non-negative minimizer of J normalized so that 1.

Then u solves the variational inequality

Here K = {v E H 1 (~2) : v  1 } and A = J(u). If tan a or tan/3 is unbounded,
then we impose zero boundary data at the corresponding boundary point.

Note that u also solves the variational inequality above with K =

Iv E 1 and v(x) = u(x) for x = ±1}. Thus, we can make a
transformation in order to satisfy the hypothesis in Theorem A2. Hence
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Thus, u solves

A variation of (6.1 ) at the boundary yields

with equality if the boundary point does not belong to the coincidence set I.
If we assume that tan B &#x3E; 0 and tan a  0, then it is easy to see that we

have equality in (6.3). Hence, if we combine this fact with (6.2), we get

This shows that q E BA.
Using the same method as before, we can show that (q, u) is an extremal

couple. Thus, we have proved that the problem has an extremal couple, provided
0 and tan a  0.

Now let us consider the case where tan ~3  0 and u(- 1) = 0. In this
case we do not have equality in the first inequality in (6.3). However, a simple
calculation shows that we have the following formal solution.

and a 1 is the first positive

is the negative root of

The same argument as in Example 4 shows that there is no maximizer in
BA. This shows that Harrell’s result [HA] is incorrect. He claims that whenever
we have a self-adjoint realization of -A+q, then the maximizer 4 is the maximal
eigenvalue times a characteristic function.

Clearly, the arguments above can be extended to the general case, where
k and h are non-constant. However, we have to impose certain conditions on
k. We give two numerical solutions of the problem in the figures below.
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If we take BA : where 1  p  oo, then a solution can
-.l 1

be obtained using the same technique as in Section 2.

EXAMPLE 6: In this paper we have assumed that Q is connected. However,
all results except Proposition 18 (18’) hold if this condition is excluded.

Let us consider a simple example. Take l~ = h = 1, p = 1, E = -0 and
S2 = (-1, 0) U (r, 1), where 0  r  1. We can argue as before to obtain an
extremal couple (q, u).
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If

then

and

...

The solution is illustrated in the following figure.

If (6.4) does not hold, then u = 0 in the component (r, 1). In this case we
obtain the same solution as in Example 1 in the component (-1, 0).

This example also shows that Proposition 18 does not hold, if we have

equality in (6.4). On the other hand, if we do not have equality in (6.4) then
u is the unique non-negative minimizer of J.

EXAMPLE 7: We have obtained several explicit solutions in the case where
p = 1. In this example the case p = 2 will be considered.

Take S2 = (-1, 1 ), l~ = h = 1, A = 1, and E = -A. In Section 2 we proved
that the extremal couple exists and is in Furthermore, 4 and u
are even non-negative functions and u is the first eigenfunction of



41

A straightforward calculation yields

Since the level sets {x : c} are connected (Proposition 20), we also find
that u’(x)  0 for -1  z  0, with equality at x = 0.

The solution of these equations gives us the first maximal eigenvalue
a 1 and the maximizer q = u2. Thus 4 is the square of an elliptic function.
However, it seems difficult to find explicit expressions for li and 

EXAMPLE 8: Consider the problem of finding q E BA, minimizing the first
eigenvalue of (0.1). This problem can be solved using the same technique as
in this paper. We will take k = h = 1 for simplicity.

The Rayleigh quotient Rq is estimated from below by

To determine whether J- is bounded from below or not, we need the following
result.

PROPOSITION 25: If p &#x3E; n and 0. is bounded, then there exists a constant
2

C such that for all - &#x3E; 0 there exists a ti, such that

Furthermore, the following shows that the result is sharp.
n

(i) If p  n/2 or if n = 2 and p = 1, then (6.5) does not hold for any fix ê.2

(ii) If p = n and n &#x3E; 2, then (6.5) does not hold uniformly in - &#x3E; 0.
2

PROOF. Take - - (if n = 2, then let r  oo). The Sobolev imbedding
r 2 n

theorem yields
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For 2p’  r, we have the following interpolation inequality ([GT], Section
! B

Combining this inequality with (6.6) gives the first part of the proposition.
If p  2013, then (i) follows by a dilatation argument. Actually (i) just states

2 
that the Sobolev imbedding theorem is sharp. If n = 2 and p = 1, then (i) follows
from [AD], Example 5.26.

Clearly, (6.5) holds for some e &#x3E; 0, if p = 3 and n &#x3E; 2. However, if we

assume that (6.5) holds uniformly in ê &#x3E; 0, then it follows that the inclusion

map

is compact. But this is a contradiction (cf. [AD], Example 6.11 ).

THEOREM 26: Let a 1 (q) be the first eigenvalue of (0.1 ), where k = h = 1.
Then the following hold:
(I) If p &#x3E; 1 and p &#x3E; n then there exist an extremal couple (q, u) such that

2 
2p 

, 

~ ~ ~,(i) minimizes a 1 over &#x3E; -oo and LP P 
(ii) u is a non-negative minimizer of J- and u is the first eigenfunction

of

where the eigenvalue ILI 

Furthermore, if there exists an open set U c SZ such that laijl I is bounded
on U for 1  i, j  n then:

(II) If p  n or p = 1 and n = 2, then there exist functions C BA such
?.

(III) If p = n and n &#x3E; 2, then there exists a positiv constant A* such that if
2

A  A* then (I) holds and if A &#x3E; A* then (II) holds. If A = A* none of the
cases (I) and (II) need to hold.

Part (I) and (II) in the theorem is proved using Proposition 25 and arguing
as in Section 2. The only new difficulty in part (III) is to prove that there exists
a minimizer of J-. Since H¿ -+ L 2p’ is not compact we cannot use the standard

technique. However, the following lemma can be proved using a result of Brezis
and Lieb [BL].

LEMMA 27: If there exists a 6 &#x3E; 0 such that J¡+8 is bounded from below
in Ho, then Ji attains its minimum.

The proof is omitted.



43

If E = -A in Theorem 26 part (III), then we can show the following
results.

(i) A* = C-2, where C is the best constant in  ·

(ii) If n &#x3E; 4, then inf = 0 and the infimum is not attained. Thus in

uEH01
this case there is no minimizer of the first eigenvalue and inf À 1 (q) = 0.

QEBA*

(iii) If n &#x3E; 4 and 1  Ixl (  2 } then the minimizer of JA is
nonradial if A is sufficiently close to A*. This shows that the minimizer
q is not unique and does not have the same symmetries as E and Q

(compare with Theorem 16 and Corollary 17).

These results are closely related to a paper by Brezis and Nirenberg [BN]
and the proof will be given in a later paper.

The minimizer in part (I) of the theorem is a bounded function and if

faij I C L°° then the same holds for the minimizer in part (III). Thus in this
case we can obtain the same regularity results for the extremal couple as in
Section 2.

The theorem does not include the case n = 1, p = 1. However, Talenti
[TA] has showed that if E = -A and Q = (-R, R), then g = -Abo minimizes
the first eigenvalue over BA.

If k and h are not assumed to be constant, we can obtain results similar
to Theorem 26.

Appendix

Here we shall prove two results used in this paper. The first theorem
concerns the regularity of solutions of the variational inequality.

The second theorem states that if u is non-negative and satisfies

then u is bounded.

The following theorem is proved using the same technique as in [KS],
Chapter 4.

THEOREM A 1: C CO,l(Q) and aSZ E C2 . Assume that h E LOO (Q),
h &#x3E; 0 a.e. in Q, k E Hl(o.), k &#x3E; 0 a.e. in 0. and E(k) is a Radon measure
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such that E(k)- E for some s &#x3E; n. Then the non-negative solution u of
n

(A. 1) is in C where a = 1 _ -.
s

REMARK: The theorem does not state that there exists a solution of (A.1 ).

PROOF. First, we recall that u E L°°(Q) and that u also solves (A.1 ) if
we take K = ~u E Ho (S2) : u  1~~ (cf. Proposition 12’). Hence, u is the unique
solution of the variational inequality

where f = MA E L’(Q) and

The uniqueness follows since the operator in (A.3) is strictly monotone.
Consider the penalized problem

where 6 &#x3E; 0 and

The operator L : H-1(Q) defined by

is coercive, strictly monotone -and continuous on finite dimensional subspaces.
Hence, (A.4) has a unique solution ue, [KS], Chapter 3.

Our next step is to prove that fu,l C K. The non-negative function
~ min(u,,, k) E and (A.4) yields

By the assumptions, E(k) is a Radon measure, thus
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If we subtract these two equations and note that

we obtain

The right hand side is non-positive. Hence ~ = 0, that is k.

Applying the LP estimate ([MO], Section 5.6) on solutions of (A.4) yields

Hence lu,l is bounded in ~f~~(~). For a subsequence, we have

If we combine Minty’s lemma [KS] and (A.4) we obtain

Let us assume that ess inf k &#x3E; 0. Then we can choose 6 &#x3E; 0 and v  k - 6 in
n 

-

the inequality above. Letting e ~ 0 yields

Finally, if we let d -4 0 and apply Minty’s lemma again, we find that u solves
(A.3). Hence, u = u by uniqueness and we get u C 

To finish the proof we have to remove the condition ess inf k &#x3E; 0. Let

1i5 be the solution of (A.3), where we have replaced K by Kc5 = {u E 
u  I~ + s ~, s &#x3E; 0. Clearly, the LP estimate (A.5) holds for Uc5. Hence is
bounded in H2,S (S2). The same arguments as above yield that us - ii in 
as 6 - 0.

By the Sobolev imbedding theorem we have C where
a = 1 - ~. This concludes the proof.

From (A.3) we 0. Equation (A.4) 
(E(k) - Ahii)-. Thus, if we let - --~ 0 we obtain
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Define the coincidence set I as the complement of ~x 3p E
such that p(z) &#x3E; 0 and u + p  I~ ~ . A variation of (A.3) I yields

Thus, we have proved the following corollary of Theorem Al.

COROLLARY A2: We have

REMARK: If k is continuous, then

THEOREM A3: Assume that Ev where (aj) C and

for all (x, ç) E 0. x Rn . Let u be non-negative and satisfy

If c L-(Q), then = and the result is a special case of
[GT], Theorem 8.15.

We will need the following lemma.

PROOF. If = HJ(o.), then the result follows from [GT], Section 7.4.
Take u E and ~un } C such that un - u in Then

each F(un) E and it is easy to verify that F(un) ~ F(u) in If
we can show that ~F(un)~ is bounded in then Lemma 1 yields that
F(u) E 

The boundedness of ~F(u)} follows from the estimate

To prove the last part of the lemma, we observe that

Choose a subsequence such that un - u and Vu a.e. in S2 as
If we let n --~ oo and use Fatou’s lemma we finally obtain



47

PROOF OF THEOREM A3: Clearly, we can assume that h = 1. The proof
is the same as that Theorem 8.15 [GT] and goes as follows.

Let N be a positive integer and take (3 &#x3E; -1. Define G E oo)) by
if 0  s  N and G is linear if s &#x3E; N.

Using Lemma A4, we get

since u is non-negative and satisfies (A.2). If we also note that
we obtain 

- _ _

Now, the Sobolev imbedding theorem and the definition of F yield

where we take n = 2.1 in the two-dimensional case.

Finally, letting N -~ oo gives us

where x = nn 2 &#x3E; 1.

If we note that (A.6) holds for any B &#x3E; 1, we get by induction with
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