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The First Initial-Boundary Value Problem
for Quasilinear Second Order Parabolic Equations.

GARY M. LIEBERMAN (*)

0. - Introduction.

In a fundamental work [29] Serrin obtained very general conditions
under which the Dirichlet problem for a quasilinear elliptic equation with
arbitrary smooth boundary values is solvable in a given domain; he also
showed that these conditions were sharp in that the problem is not solvable
for some (infinitely differentiable) boundary values when they are violated.
Prior to [29], existence of solutions for uniformly elliptic equations had
been shown by Ladyzhenskaya and ITral’tseva [18] and for uniformly
convex domains by Gilbarg [6]. A natural question to ask is, what sort
of existence theory can be established for the first initial-boundary value
problem for quasilinear parabolic equations: For uniformly parabolic
equations this question was answered by Ladyzhenskaya and Ural’tseva [19]
at the same time as their work on elliptic problems, and following Serrin’s
work came several investigations on nonuniformly parabolic problems: [2],
[12], [33]. Unfortunately all of these works fall short of the comprehensive-
ness of [29]. Edmunds and Peletier [2] consider a slight generalization of
the uniformly parabolic case while Ivanov [12] considers a parabolic version
of Gilbarg’s uniformly convex problems; in both cases we shall see that
their results are not best possible even within the restricted settings. Tru-

dinger [33] fares better in that he proves solvability under conditions

essentially as general as Serrinis, but he does not examine the sharpness
of his conditions. (We also mention the work of Iannelli and Vergara Caf-
farelli [11], Lichnewsky and Temam [20], and Marcellini and Miller [28] on
the time-dependent prescribed mean curvature equation. These authors
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are concerned with non-classical solutions, in particular the solutions in [20]
and [28] do not generally assume their boundary values even in a weak
sense, so their results are not strictly comparable to ours. Moreover they
only consider time independent boundary values.)

The purpose of this paper is to present sharp parabolic analogs of Serrin’s
existence and non-existence results. As we shall see, the elliptic methods
carry over to the parabolic setting with only minor changes. This fact is

apparent in [33] but not in [2] or [12], so we shall repeat many of the details.
Moreover we consider somewhat less smooth initial and boundary values

(corresponding to the regularity of boundary values for elliptic problems
in [21]) than would be used in a strict analog of Serrin’s theory.

Of course the key to our existence theory is the establishment of certain
a priori estimates, and most of our effort is to prove such estimates. After

we present some basic results in Section 1, we discuss the crucial estimate,
on the spatial gradient of the solution on the lateral boundary, in Section 2.
Related to this boundary gradient estimate are some oscillation estimates
which imply non-existence of solutions for certain initial-boundary data;
these estimates and non-existence results appear in Section 3. Estimates

(other than the boundary gradient estimate) needed for the existence

program are given in Section 4. These estimates have all appeared before

(in [2], [12], [16], [19], [22], [30], [32]) so we shall give all but one in sim-

plified form; the exception is a Holder estimate of the gradient near the
boundary. For our purposes the version of this estimate due to Lady-
zhenskaya and Ural’tseva [19] by itself is inadequate so we use also some
results of Krylov [16] adapted to the less smooth initial and boundary values
we are considering. A somewhat different approach appears in [17]. Finally
some existence theorems, extending those in [2], [12] and [33], are given
in Section 5.

I. - Statement of problem,.

We denote by Q a cylindrical domain in Rn+l (n &#x3E; 1), i.e., Q has the form
Q = D X (0, T) for some open, connected D c Rn and some positive T
(although most of our discussion is applicable to non-cylindrical domains
as well), and we define
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The significance of the letters B, C, 8, S is discussed in [24]. Points in Rn+l

will be denoted by X= (x, t), Y= (y, s), etc., and we write

We use a subscript t to denote differentiation with respect to t, and we
define C2,1(S2) to be the set of all functions u such that u, Di u, Dijtt, ut
(i, j = 1, ..., n) exist and are continuous on Q. Define the operator P on
02,1(Q) by

We observe here and below the convention that repeated indices are to
be summed from 1 to n, and Du = (D, u, ..., Dn u).

Our concern in this paper is with the problem

for continuous 99 under the assumption that P is parabolic, i.e., the matrix

(ai’(X, z, p )) is positive for all (X, z, p) c-.Q x R x B,. Additional hypoth-
eses will be imposed on P, q, and Q presently. Associated with P are the

maximum and minimum eigenvalues, A and A, respectively, of the matrix
(aii) and the Bernstein invariant [1, p. 456]: 8 = aii PiPj.

Various Holder norms and spaces will be used; our notation follows [24]
and should be compared with that in [7] and [19, Sect. 1.1]. We use ( I to
denote the usual Euclidean length

on Rn as well as the parabolic length

on R"+’, and we denote by go(SZ) the set of all uniformly continuous func-
tions u equipped with the norm
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For a E ( 0,1 ] and @ E (0, 2] we define

and we suppress the subscripts Q and D when these are clear from the
context. For a = k + a where k is a non-negative integer and 0  ot  1,
we denote by H. (Q) the set of all functions u for which all derivatives of
the form D§ D§ u(j + 2i  k) exist and are continuous with

finite. Setting

we introduce for 6 &#x3E; 0,

We then denote by H(b)(Q) the set all of u which restrict to Ha(Qð) functions
for all 3 &#x3E; 0 and for which

is finite.

For y &#x3E;, 0, we denote by Hv(SS2) the space of all functions 99 on SQ which
are restrictions of Hv(D) functions for some open D D D, equipped with
the norm

Similarly H,(IXD) denotes the set of all restrictions to SQ of Hv(D) func-
tions, and H(.Q) denotes the set of all ggcH,(S2) whose restriction to SQ
lies in Hv(SQ) and for which the function qo given by rpo(0153) _ gg(x, 0) has
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finite norm . Other useful collections of functions are

(1) GI(D), the set of all functions u e Ho(Q) with Du E HO(Q),

(2) W.’,’,, the set of all functions u such that luln+l, IDui-+’, ID2uln+l,
lu,j"+" are integrable over SWwith respect to the measure dsdt, and

(3) 0’(TD) the set of all functions on SQ which are restrictions of
infinitely differentiable functions (with respect to x and t) in R .

If D is bounded and if there is a function E Cl(Rn) such that

and IDtpl =1= 0 on aD, we say that 8D e C1 or 8Q e Ci. If also y E Hv for some
y &#x3E; 1, we say that 3.De2?y or ail e Hy. When BQ G HV for some y &#x3E; 1,
it follows from [24, Sect. 2] that the sets Hy(Sil), Hv(SQ), and H§ are invar-
iant under Hv changes of coordinates and that there is an intrinsically
denned norm on Hy(8Q) which is equivalent to the one we have given.

Next we note that Hv(8Q) functions have useful extensions.

LEMMA 1.1. Let q; E Hy(SQ) for some y E (1, 2]. Then for any posit’ive
constants M and E with M&#x3E; sup 1q;1 and any y E aD, there is a function

and a constant such that

where subscripts denote differentiation with respect to xi, xj, or t, and if; and its
derivatives are evaluated at (X, xo) E Q X (0, 1] in (1.2d). Moreover, if there
is a constant Wi such that

f or all

with
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then (1.2) holds, a1td

PROOF. Let £5 D (j and let §5 be an Hv(15) function with rp = g on SQ
and For y E C2(Rn) supported in with OVl
in R" and y(y) = 1, we set

An appropriate q5 is given by

for a suitable non-negative, compactly supported CE OOO(Rn+l) with j(d Y = 1
and C(,q, s) = 0 for 8&#x3E; O. Then (1.2a, b, c) are clear. A proof of (1.2d) and
a suitable C are given in [23, Sect. 3]. When (1.3) holds, we replace

by Ø1(T - t) in (1.5) to obtain (1.4). ·

Note that 0 actually depends on Igglv through the quantities

In addition, by means of a suitable choice of the function and the use
of cp(X) rather than the term

in (1.5), we can guarantee that p(X, 0) = gg(X) for all X in a given closed
subset of

We also recall from [23, Theorem 1.3 and 4.2(b)] properties of a-

regularized distance.

LEMMA 1.2. Let "C’D E H’1 for some y c (1, 2]. Then there is a function
(! E H(- I) 8uch that

for some positive constant c(D).

We close this section with a comparison principle based on [8, The-
orem 10.1] which seems not to have been stated before in quite this form
although it is similar to [3, Theorem 2.16] (cf. [2, Theorem 3]).
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LEMMA 1.3. Let u, v be two functions in Ho(Q) n 02,1(,Q) with u  v on
5’D, and Pu &#x3E; Pv in Q for some parabolic operator P such that ail is inde p en-
dent of z and there is a non-negative constant It such that

for all

T hen u  v in Q.

PROOF. Set w = exp (- pt) (u - v), and let .Xo be a point in Q where w
attains its maximum. Since

at Xo, it f ollows that, at .Xo ,

Hence u  v at any maximum of w, so w  0’ in Q..

2. - The boundary gradient estimate.

We now give the estimates which are central to our existence program.
In order to retain some clarity of expositon, we present details only in some
cases with an indication of how to proceed in general.

We begin with some definitions and results essentially in [21], and based
on [9] and [29]. Proofs of these results, often simplied from [21], are included
for completeness and in order to consider comparison surfaces other than aD.

For P as in Section 1 and u an Ho(Q) r1 02,1(Q) solution of (1.1), we
introduce an auxillary operator P by

such that

is non increasing in z for fixed
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(More general P can be used but we see no reason to do so here.) Clearly
; we indicate later a suitable choice for d. Set

and let N contain a set of the form

for some positive 8 and q; we call N a parabolic neighborhood of Xo. If

there are functions wt E Ho(N r1 Q) r1 C2,1(.N n Q) such that

we call w+ an upper barrier and w a lower barrier at Xo : The comparison
principle Lemma 1.3 then implies that

so if w* are in .8’1, we can estimate

In particular if 2u± and u are in C’(S2), we have

Thus a bound on [Dw±(Xo) I independent of Xo gives a bound on IDulo:s.Q.
We shall construct only upper barriers, which we call barriers, for brevity;
similar arguments yield lower barriers.

The basic building block of our barriers is a comparison surface

8 = 8* X (0, T). We assume that 8* is a surface in Rn containing zo but

disjoint from D. We also assume the existence of a positive constant 60
such that 3S* is disjoint from B’ = (z: [z - zo[  30) and the function

d(x) = dist tx, 8*) satisfies d E C2(B’ m Q). (If we wish 8* to be aD, we
modify this definition by setting B’ - S03B4o o provided 30 is small enough;
in this way we can obtain a uniform boundary gradient estimate directly



355

as in [21]). Our barriers will have the form (adapted from [9])

where f is a function at our disposal, 0 is as in Lemma 1.1 (with 8 = 60 and
Q replaced by , , and Concerning f,
we assume that there is 6 E (0, 50] such tht

With N = {X c- Bx (0, T]: d(x)  61, (2.3) implies (2.1b, c, d) so we need

to determine 6 and f so that Qw  0, in which case

As in Lemma 1.1 we use subscripts to denote derivatives of ip. Also

we omit the arguments of d, f, q; and their derivatives, and we write (jii

for dii(X, Dw) and a for d(X, w, Dw). We also define

and observe that Pw = ’Wi + ’W2 - w,, w = §5, . Some basic results are

collected in the following lemma (cf. [21, Sect. 2.1]).

LEMMA 2.1. Let y, M, P, q;, ip, P, , 8, and w be as above. Then

If there are non-negative constants go and P,l such that

or and
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then

an.d for any positive constants C2 and c3 , 2ue can determine f and 6 so that (2.3 )
is satisfied, t’&#x3E; C2 on (0, b), and 

.. .

If also is finite, then we can replace (2.8) by

PROOF. We first not

Therefore

Since (t)2  2, we have (2.4).
To prove (2.5) we have from (2.9) that

and

When A y,, Alp 12, (2.7) follows from (2.4), (2.5), and the inequality
Â,Bd. When 4AW26, (2.7) follows from (2.4).

To obtain (2.8) and (2.8)’ we first estimate Wi by . 

’ 

"

Since (2.10) is obvious for 0 = 0, we assume 0 =A 0, so
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Combining this inequality with

gives

The proof of (2.10) is completed by using (2.6) to infer that A-#,&#x26;, and
then using (2.7).

To prove (2.8) and (2.8 )’ it therefore suffices to show that for any

positive constants ,u2 and #3’ there is a positive constant 61 such that for

any 6 c (0, 61], there is a function f satisfying (2.3a), f’&#x3E;p, on (0, 3), and

For a given 6, the solution of this boundary value problem is given implic-
itly by

Since H is independent of 6 and

we have also f’&#x3E;Iz,, if 6 is small enough.
We remark that (2.6) is a consequence of the usual conditions:

Also (2.6) can be replaced by !1 = 0(8) if IDTL is small enough.
From this lemma, it follows that Pw  0 (for suitable f and 6) provided

8: or - Tfi is sufficiently large and positive. In particular if 1 = 0(8) (so
that (fl ) 2 &#x26;,, is bounded from below by a constant as f’ - oo) or if 99 is

independent of time (so that the term O/V-2 is not present in (2.8)), then
the calculations of [21] (see also [9] and [29]) carry over without essential
charge to the parabolic setting.

THEOREM 2.2. Let 99 c- H,, for 8ome y c- (1, 2] and suppose that for each
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xo E aD, there is a ball of fixed radius whose closure meets D only at xo : -. If also

then arcy solution U E ell(.Q) U 02,1(Q) of (1.1) obeys the estimate

PROOF. We take as comparison surface 8* the surface of the ball in
the hypotheses, and we choose 30 = 1. With a(X, z, p) - a(X, u(X), p)
and w given by (2.2), it is readily checked that lfi = 0(8). The proof is
completed by using (2.13) to estimate Ofv-1 and then using Lemma 2.1 to
obtain Pw  0. N

We note that here and in the rest of this section, condition (2.13) can
be localized to

(2.13)’ 1 = 0(S) in a neighborhood of any point where 99, =A 0 .

If y = 2, we can use a comparison principle based on Krylov’s maximum
principle [15, Theorem 3.1] for TV’,’ solutions and the assumption that g
is defined in Q to relax (2.13) to the pointwise estimate

Moreover the 0 (8) term in (2.6)’, (2.13), and (2.14) can be replaced by
0 ( [ p [h ( j p [ ) 6) where

h is positive and non-increasing on (0, oo) ,

since in this case the differential equation (2.12a) is replaced by

which is also solvable under our hypothesis (see [26, Section 2] for details).
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Thus our Theorem 2.2 includes [2, Theorem 8] and [33, Theorem 6]
as special cases. (In fact the version of (2.13) used in [2] is more restrictive
than ours.) In comparing our results to those in [2], [12], and [33], we shall
not mention these additional considerations again although the results

in those references are stated in terms of the more general structure.
If the ball in Theorem 2.2 is replaced by any .ge surface with 1  0  2

and if we strengthen (2.6 )’ to

then, by introducing the regularized distance e of Lemma 1.2 in place of
the ordinary distance d, (2.12a) is replaced by

where 0’ = min f y, 0} and this equation is solvable under our hypotheses
(see [21, Sect. 2.1 and 2.2] for detainls). Similarly (2.14) can be replaced by

since we are again led to {2.12ac)’. Moreover the hypotheses (2.6 )", (2.13 ),
(2.14)’ are invariant under a change of variables

for x E He, so we infer a boundary gradient estimate in this case for non-
cylindrical Be domains also.

For convex domains a boundary gradient estimate follows under weaker
hypotheses.

THEOREM 2.3. Let 99 E H’ 7 for some y E (1, 2] and suppose Q is convex.
If (2.6), (2.13), and (2.14) hold, then any solution u of (1.1) satisfies (2.15).

PROOF. Now we use a supporting hyperplane for 8* and take 60 = 1.
With a as in Theorem 2.2, we infer from (2.14) and the linearity of d that
= 0(8). a

This theorem generalizes [33, Theorem 5]. An alternative proof is

provided by introducing a concave regularized distance in D from [23,
Theorem 1.4] and proceeding as in [21, Sect. 2.3].

By strengthening the geometric restriction on Q, we can relax the growth
restriction on a. We say that D satisfies an enclosing sphere condition of
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radius R at xo E aD if there is a ball of radius R containing D such that xo
is on the surface of this ball. If D satisfies an enclosing sphere condition of
radius ..R at every point of aD, we say that D is R-uniformly convex.

THEOREM 2.4. Let D be R-uniformly convex and let q7 E HY for 8ome
R &#x3E; 0, y E (1, 2]. Suppose (2.6), (2.13), and

where 1.) is the trace of (aii). Then (2.15) is valid for any solution u of (1.1).

PROOF. Fix xo E aD, let 8* be the (surface of the) enclosing sphere,
and set do = R/2. From (2.9) we have

and by direct computation we have

where y is the center of the ball. Thus, since B/2  ix - y I  B, we have

By virtue of Lemma 2.1 this estimate gives the boundary gradient estimate.

Let us observe that when is Lipschitz with respect to t, we can
incorporate the Lipschitz quotient f/J1 = Q;)2;SD into (2.16) by using (2.8)’
in place of (2.8).

COROLLARY 2.5. Let D be R-uniformly convex and let q; E H; for some
R &#x3E; 0 and y E (1, 2]. If (2.6) holds and

or if y = 2 and

for some R’ &#x3E; R, then (2.15) is valid for any solution u of (1.1 ).
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PROOF. When (2.6) and (2.16)’ hold, we replace (2.8) by (2.8)’ in the

proof of Theorem 2.4. When y = 2 and (2.16)" holds, we have

and hence (by using (2.11) in place of (2.10))

for f’ sufficiently large.

Corollary 2.5 with (2.16)" generalizes [12, Theorem 2.1] in which (2,16)"
was strengthened to

The geometric restrictions on D we have considered so far are simple
conditions on the curvatures of the surface 8*. More general conditions on
the curvatures were given by Serrin [29, Sect. 9]. We use the modification
[8, (14.43)] of these conditions (see also [31, pp. 850-852]). Suppose for

Ip I =F 0 the coefficients of P can be decomposed so that

(2.18c) (ajb) is positive semidefinite on D x 8’-’,

(2.18d) aoo is non-increasing in z for fixed (X, C) E f2 X Sn-1,

(2.18e) aij and aoo are continuous functions of (x, 03B6) E D X sn-1 ,

where Sn-1 = {C ERn: 03B6 = 1}, and define

Ao being an upper bound on the magnitude of the eigenvalues of (aijo ).
For xo E aD, we now write S*(a?o) and 30(zo) to make explicit the depen-

dence on xo, and we denote by 8 ’D the set of all ordered pairs (y, xo) E aD X aD
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for which For I we define

Choosing

leads to additional boundary gradient estimates.

THEOREM 2.6. Let cp E Hy for some y E (1, 2], suppose P can be decomposed
according to (2.18), and suppose (2.6) and (2.13) hold. Define "0 by (2.19)
and suppose that

(2.20a) a" and aoo are Lipschitz f unctions of (x, C) uniformly in (t, z),

or

Theit any solution it of (1.1 ) satis f ies (2.15).

PROOF. Fix xo E aD, and for x c- D with Ix - x,,  30 denote by y the
nearest point to 8* on the intersection of aD and by v the normal to 8*

through x. Note that y is uniquely determined and that v(y) = Dd(y) = Dd(x).
From (2.17) we have

so (2.5) implies that

To obtain our boundary estimate, we compute:

for c1= sup
i

The key step is an estimate of the term in square
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brackets:

If (2.20a) holds, then there is a constant c2 such that

Also 1’(d) d  f (d)  1 since 1" o. Using this inequality, (2.22), and the

monotonicity of aoo with respect to z yields

Thus

which leads to a boundary gradient as before.
On the other hand if (2.20)’ holds, we can imitate the preceding calcula-

tions to infer that

and hence

Since xo &#x3E; 0, we therefore have Ifi 0(1) for If large enough.

When y = 2 and 8* = aD, Theorem 2.6 coincides with [33, Theorem 7].
As with Corollary 2.5, Theorem 2.6 holds without assuming (2.6) if y = 2
and (2.20)’ is satisfied. Also we can eliminate (2.13) from the hypotheses
(for y E (1, 2]) if fJJ&#x3E;2; BD is finite and if (2.20) (or (2.20)’) is suitably augmented.
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COROLLARY 2.7. Let 9? c- H’ v for some y E (1, 2], suppose P can be decom-
posed according to (2.18), and suppose (2.6). If is finite and
if either (2.20) and

or (2.20)’ and

are satisfied, then (2.15) is valid for any solution u of (1.1 ).
Again, when y == 2 and (2.20)’, (2.23)’ hold, this corollary is true with-

out (2.6).
We also point out that a simple variant of the decomposition (2.18),

described in [8, Problems 14.2-14.4], allows us to recover our previous
results as special cases of Theorem 2.6 or Corollary 2.7. In particular,
Theorem 2.2 corresponds to Theorem 2.6 with (2.20) holding and a4i a.
all zero.

Elliptic analogs of the theorems in this section appear in [8], [21], [26].
129], and [33]; the basis of all the results in these works is, of course, [29],
Moreover all the boundary gradient estimates of these works have simple
analogs in the present work when (2.13) holds as well as more subtle ones
like Corollaries 2.5 and 2.7 when (2.13) is not assumed.

The barrier constructions of this section generalize easily to non-Holder
moduli of continuity. As in [26] a boundary gradient estimate is valid for
Dini moduli of continuity and a boundary Holder estimate with arbitrary
exponent in (0, 1) is valid for non-Dini moduli. Also, by virtue of the

local nature of our arguments, we can obtain boundary gradient estimates
for equations with behavior appropriate to diDerent theorems of this

section at different points of SQ; see [29, Sec. 11]. 
’

We also point out that if for some positive constant u, a
boundary gradient estimate can be obtained by adding

to our (upper) barrier and applying Lemma 1.1 to

when determining ~. Moreover, by virtue of the local nature of our argu-
ments and the comments after Lemma 1.1, a boundary gradient estimate
is valid if we only assume that 99 is smooth and u is bounded whenever
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t &#x3E; - &#x3E; 0 with the hypothesized bounds depending on E; of course the

boundary gradient estimate is also dependent on 8.
The estimates of this section apply to fully nonlinear equations using

the methods and ideas of Futev [4]. We indicate briefly the necessary
modifications when

The parabolicity of P is expressed in terms of positive functions lo(X, z, p, r)
and Ao(X, z, p, r) such that

for all positive semidefinite matrices n. We then set

and we assume there is a function A (X, z, p) such that

for m and lp I sufficiently large. Fixing cl &#x3E; 0 and defining

we infer from the proof of Lemma 2.1 and (2.21) that

for a suitable choice of f in our barrier w. Under the hypotheses of

Theorem 2.2, we therefore have

If we make the additional assumption that
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for some position constant ..K and all large m and p, we obtain Pw  0 with

C, = 2,u/K. Moreover we can replace Km by .K(m), with E an unbounded
increasing function in (2.25) when y = 2. Similarly Theorem 2.3 holds
in this case because the term lp JA is not present in (2.24). For the remaining
theorems in this section, we refer the reader to [4].

We close this section by observing that in one space dimension, only
Theorem 2.2 (or 2.3 which is equivalent because A ===...1 and D is convex
in this case) is applicable. Thus we have boundary gradient estimates for
one-dimensional problems provided 1 and a are not too large relative to
A ---- A .--- all, or 99, = 0 and a is not too large. A supposed counter-example
to this last assertion was given in [12, Theorem 5.2] but we have been
unable to make sense of the construction in the English version of that
work.

3. - Non-existence results.

We now show that (1.1) ceases to be solvable for arbitrary q; E .gv when
our structure and geometric conditions are violated. From the proof of
these results it follows that (1.1) is not solvable in this case even for arbi-

trary q; E Coo.
As with other results of this type, our starting point is a simple variant,

Lemma 3.1, of the comparison principle used in Section 2. Our comparison
functions are, in fact, taken almost directly from [8, Sect. 14.4], which is

based on [29, Chapt. III] ; the only difference between the functions there
and here is that we add on a suitable multiple of t. Thus our results can

hardly be considered new. Nonetheless they seem not to have been noticed
before except in a few simple situations ([2, Theorem 17], [12, Theorem 5.1],
and [28, Sect. 3]) where the precise relation between the time-dependence
of T and the solvability of (1.1) is obscured.

Throughout this section P is as in Section 2 with a(X, z, p) = a(X, u, p),
and L, M, 0, # denote positive constants with # = 0/(1 + 0).
We now state our comparison principle, which is essentially [2,

Theorem 16] (see also [8, Theorem 14.10] and [29, p. 459] for elliptic
versions) .

LEMMA 3.1. Let F* be a relatively open 01 portion of aD with inner normal
and set If and

i satis f y Pu in Q, and on

then v,&#x3E;u in Q.
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Let d = diam D, a c- (0, 6/2), and Y E oDe For 1Jl E C2(LX, ð) and m, x
constants to be chosen, set

Suppose that V(b) = 0, 1p’(IX) == - oo, and 1p &#x3E; 0 on (a, 6). If Pw  0 = Pu

on the set where ix - y I &#x3E; Lx and lu,l&#x3E; M, then we choose

and v .--- w in Lemma 3.1 to infer that

Suppose there is a non-negative constant 71 such that

(Note that if also a 0 and q &#x3E; 0, then for any q’c- (0, n) we have

Thus, in this case, we can assume 77 to be arbitrarily small.) Then a suitable
1p is given by

for sufficiently large K provided we take x = n. Hence (3.2) is valid for

this V and m.
Now suppose there is a ball with center xo and radius .R lying entirely

in D withy on the boundary of the ball. For 8 E (0, .R) and X" E C2(0, .R - 8)
set

Suppose also that Z. (0) = 0, X’(-R - 8) = 00, and Xs &#x3E; 0 on (0, R - e). If

Pw*  0 = Pu where [u [ &#x3E; M, Ix- y  a, Ix - xol  .R - E and if

I and or . and I

then Lemma 3.1 with v = w* yields
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When also for some eonstant xo independent of 8, we can

send 8 to zero so

In particular if there are constants 0., &#x3E; 0 and .R‘E (0, R) such that

then a suitable Xe is given by

for K sufficiently large provided x* = ø1, .R - .R’ &#x3E; e, and a &#x3E; s. (There
seems to be some confusion over this point on p. 349 of [6].) Hence (3.2)"
holds with xo = KRO. Since (3.3 )’ implies (3.3) (with q arbitrarily small
if ø1 &#x3E; 0 and 77 = 0 if ø1 = 0), it follows from (3.2) and (3.2)" with

oc = (R - .R’ ) /2 that

Thus 99(y, t) cannot be prescribed arbitrarily. Moreover by repeating the
arguments above with - u in place of u, we can relax (3.3 )’ to

provided a does not change sign on this set.

These considerations lead to our first non-existence result, which corre-
sponds to the elliptic results [8, Theorem 14.11] and [29, Theorem 16.1] and
which extends the parabolic results [2, Theorem 17] and [12, Theorem 5.1].

THEOREM 3.2. Let D be a bounded domain and let R be the radius of the
largest ball contained in D. If there are constants f/J1 and B’c- (0, B) for which
(3.5) holds and i f a does not change sign when (zl&#x3E; M, lp I &#x3E; L, then there
is (p E Coo for which (1.1 ) is not solvable. Moreover for any s &#x3E; 0 this 99 can

be chosen so that lpt I  f/J1 -f- s on S. If f/J1 = 0, we can choose (p to be time

independent.
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Thus Theorem 2.2-2.4 are sharp in that 8 cannot be replaced by
(p [° 6 in (2.6)’, (2.13), (2.14), (2.16 ) and R cannot be replaced by a smaller
number in (2.16). Also in Corollary 2.5, BqJtlo cannot be increased beyond
the bounds given by (2.16)’ and (2.16 )".

Note that we could have used the corresponding comparison functions
from [29, Chapt. III] in place of w and w*, and hence Iplo in (3.5), and in
the corresponding conditions to come, can be replaced by h( fp I) for any

positive, non-decreasing h with

We also note an immediate corollary for the case n = 1.

COROLLARY 3.3. Let D c Rl be an interval. If

and if a does not change sign, then there is cp E Coo for which (1.1 ) is not solvable.
Moreover for any B &#x3E; 0 we can take IT, I  ø1 + 8 and, i f f/J1 = 0, we can

take cp to be time independent.

For the time-dependent prescribed mean curvature equation

wvhere

Marcellini and Miller [28, Sect. 3] prove a version of Corollary 3.3 for time-
independent boundary values.

Suppose now that the decomposition (2.18) for P is valid with a_

inhependent of z and 6 = o(lpIA). (The following argument can be mod-
ified as in [29, Sect. 18] to allow aoo to depend on z.) Suppose also that

It is a simple calculation to check that Pw  0 if w is given by (3.1) with
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x = 0 and

so (3.2) holds. We now define x- by (2.19a) with 8 as in Section 2 except
that 8* c -D. For R be chosen and X,_ as for (3.1)* we set

For a fixed t, we see that

where the o(I) term tends to zero as R + lJz§- 0. If X8 is given by (3.4),
then, for any q &#x3E; 0 and K sufficiently large depending on q,

Setting

we infer that Pw**  0 if

by taking %** = 0, or 0, respectively. Hence we obtain (3.2 )" with x*

replaced by x**. We thus have an analog of [8, Theorem 14.12] and [29,
Theorem 18.1].

THEOREM 3.4. Suppose P can be decomposed according to (2.18) with
or = o(fpIA) and aoo independent of z, and suppose (3.7) holds. Define x-
by (2.19a) (with 8* c D) and suppose (3.8) holds for some y E aD. Then there

is qg E C°° for which (1.1 ) is not solvable. If the first inequality of (3.8) holds,
then we can take Itptl  4&#x3E;1 + 8, while if the second inequality holds, tp can

be made time-independent.

Theorem 3.4 remains valid upon replacing a by - a in (3.7) and x-

by x+ in (3.8). Also if one of the inequalities in (3.8) is valid only for t in
some interval (to , t1 ), then Theorem 3.4 still applies because we can repeat
the proof with t1 in place of T and IX e SQ : tto} in place of BD (and simi-
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larly for Theorem 3.2). Thus we cannot increase xo in Theorem 2.6 beyond
the bound given there. Moreover conditions (2.23) and (2.23 )’ of Corol-

lary 2.7 are sharp in that when ip JA has a limit as lp - oo, i(p, 10 cannot
be increased beyond the bounds given there, even for positive xo .

4. - The other estimates.

For our existence program, we need several estimates in addition to

the boundary gradient estimate of Section 2. The simplest ones are bounds
on the size of the solution and its gradient. Since these bounds, especially
the gradient bound, have been proved under farily general conditions else-
where (e.g., [2, Sects. 3 and 5], [12, Sect. 3], [22], [30, Sect. 6]), we give
them here only in simplified form.

In our first lemma, C’(DxRxRn) denotes the set of all functions g on
GxMxR" such that gx , gx, gp (but not necessarily gt) exist and are contin-
uous on D x R x R-, and 6 is the operator given by bg == g, + ip 1-2p. g.

LEMMA 4.1. Let u c- H,,(Q) n C2,1(92) be a solution of (1.1), and let !to,

P]Lg !t2’ /-43 be non-negative constants.

(a) If

then

(b) If u E 01(Q) and if there are f unctions a4i and ci such that

(4.3a) (a’*j) is positive definite with minimum eigenvalue A*,

(4.3c) *j ei and a are in

then
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PROOF. For (a), we assume first that ,u2 &#x3E; 0 and that D lies in the slab

0  xi  do = diam D. Defining

it is readily checked (cf. [8, Theorem 10.3]) that

Hence by Lemma 1.3, we have I u I  v in Q, which implies the desired result
for #2 &#x3E; 0. For the case #2 = 0, we let #2 tend to zero.

For (b), we apply the operator Dk u.Dk to the equation Pu = 0 and set
v = IDuI2. Following the proof of [8, Theorem 15.2], we see that v is a

weak solution of the inequality

hence is a weak solution of

and thus by [19, Theorem 111.7.2]. a

We mention that a global gradient bound can be obtained without
assuming u E 01 by combining the [u] estimate from Section 2 and a suitable
interior gradient bound as in [26, Sect. 4]. As the interior gradient bounds
have not yet appeared explicitly in a suitable form, we shall not pursue
this matter further.

The final estimate needed is a Holder estimate for Du. For 92 E 02,1(ffQ)
such an estimate was proved by Ladyzhenskaya and Ural’tseva [19,
Theorems V.5.2 and VI.2.3] under certain assumptions on the coefhcients.
of P, of which we single out a Lipschitz condition with respect to t. More

recently Krylov [16, Theorem 4.2] proved a Holder estimate for the normal
derivative of the solution on SQ (again for C2&#x3E;1 data) under slightly different
hypotheses, in particular without the Lipschitz condition. Using Krylov’s
result in Ladyzhenskaya and Ural’tseva’s method gives the full Holders

gradient estimate without the Lipschitz condition for 01(Q) solutions with
C2&#x3E;1 data. We use a variant of this combination (cf. the remarks following



373

[27, Theorem 2.4]) to relax the hypotheses to Ho solutions with bounded
gradient, Hv data, and even some unboundedness of the coefficients of P
as mentioned in Section 2.

In order to apply Krylov’s ideas, we make some observations. First

by virtue of the global gradient bound, the matrix (aij(X)} - (aii(X, u, Du))
satisfies

for all X E Q, with known positive constants A and A. Setting

we see that fLul is bounded by a known constant. For our purposes, it is

useful (and in fact crucial) to generalize this bound to I-Lul (d* )2-’’ being
boinded. (Recall that d*(X) = min {dist (x, aD), ti}.) We now use the

regularized distance (! of Lemma 1.2 and the function §5 of Lemma 1.1

(obtained by taking - 1 in the proof) to obtain an extension 99 of g to
all of Q with cp E .H2-’’ and lijJt-y)  C(n, 19’1y) by setting p(X) = §5(X, o(x)) .
Replacing u by u - §3 and locally flattening aD (with o as the 0153n-coordinate),
we may assume that

with known constants .F’1 and H.
Also for positive constants -r, e, B we introduce the sets

where x’ = (xl, ..., 0153n-l). Under these hypotheses, we begin our proof ot
the Hölder gradient estimate. Our first step is a comparison result based
on [16, Lemma 2.1] and the idea of Caff arelli for elminating Krylov’s added
independent variables.

LEMMA 4.2. Let y, Pl, A, A, R, -r be positive constants with A &#x3E; Â, 1  y  2,
lOR2 min {1, i) and set e = A/[2 + (2n + 4)A]. (So G(e, 2R) c B+ and
x"  ti in G(e, 2.R).) Define L by (4.6) and suppose (4.5) holds. If u E C2,1(B+)
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satisfies

then

PROOF. We set

A simple calculation shows that

so the maximum principle imples that w &#x3E; 0 in G(e, 2R). Since G(,o, B)
,c G(e, 2R) and w.,  3Xn in G(t), R) we have

which leads easily to the desired result. ·

From Lemma 4.2 we infer a preliminary oscillation estimate for UlXn
(cf. [16, Theorem 4.2]).

LEMMA 4.3. Let L be as in Lemmac 4.2. If u E
.satis f ies

,on the set of all X E B+ with xn  ti, then there are positive constants P and C
depending only orc y, A, A, n such that

for any .R such that 0  R 2  ! min {1, TI.
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PROOF. It suffices to prove the inequality when R21/10 m.in {1, -r}.
Fix such an .R and for i = 1, 2 set

Since I in E we can apply the weak Harnack inequality
[10, Theorem 3.1] to u - m2 xn in E. Thus there are positive constants C
and x depending only on 1, A and n such that

by Lemma 4.2. Adding to this inequality the corresponding one for

M,Xn- U (which is proved in the same way) and observing that

we conclude that

Applying [8, Lemma 8.23] completes the proof..
Next we estimate í-fJl2 osc u/x". When -r&#x3E;-!, this quantity can be

G(e, (,r/2)i)
bounded in terms of H. When r  1, we proceed as in [16, Lemma 2.2)
using a barrier argument similar to the one in Lemma 4.2.

LEMMA 4.4. Let y, F1, À, A, r, .L be an in Lemma 4.2 with í  1. If
u E C2&#x3E;1(B+) and if there is a non-negative constant H such that

then

whenever
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PROOF. We begin by showing that for any .R E (0, 1’] and xo with xo = 0
and (xo  2 , we have

on the set . .I To prove this estimate,
let c E (R, 1] and introduce the functions

Defining

we easily check that satisfies

Since zv E W;’; 1 (E), the maximum principle [15, Theorem 3.1] implies that
w &#x3E; 0 in 27. (Alternatively we can approximate u?1 by suitable C2,1 functions
and apply the classical maximum principle as in [16]). Therefore w&#x3E;O
in 2:R, and so

We now choose and observe that

to infer (4.13).
To complete the proof, we denote by B1 the coefficient of -R’y in (4.13).

By taking .R = tl = xll in that inequality, we infer that

For ..R E (0, TI] and e E (R, t) we define

It is readily checked that
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satisfies IJiij  0 in E+, iii &#x3E; 0 on !f E+, so preceeding as before and recalling
the definition of H1 yields

The proof is now completed by fixing X and then taking _
and

Since P  y - 1, applying this lemma to u and - u gives the required
estimate on T-fJ12 osc u/xn when 0  r  min {Ty 11. We therefore ob-

G(e, (,r/2)*)
tain a Holder estimate (with exponent /3) on ulxft by virtue of Lemma 4.3
and 4.4. Back in the original domain (and with the original boundary
values) we have a Holder estimate on (u - §5)/o. This estimate implies
that the normal derivative D, u exists on SD (in fact the existence follows
from Lemma 4.3) and that D,, 2c is Holder continuous on SQ ; we shall

use the sharper estimate.

COROLLARY 4.5. Let y, h’, K, 2, A, T be positive constants with A&#x3E;Â
and I  y  2. Let 3OeJ?yy define L by (4.6), and suppose (4.5) holds for
all X E Q. I f u E H,, (S2) (1 02,1(Q) satisfies

then the normal derivative D, u exists on SS2. Moreover there are positive
constants {1 = (1(n, Â, A, y) an d C = C(F, K, T, n, A, A, y) and a function
v E H(-fl-’)(S2) such that

PROOF. The existence of D, u follows from the preceding remarks.
For (4.15) we take fl from Lemma 4.3. A simple modification of the proof
of [23, Theorem 4.2(b)] (see also [24, Lemma 2.3]) implies that there is a
function’ with and

because ID, u I#; s.Q  C. From the remarks preceding this corollary, we
infer the first inequality of (4.15) provided d(x)  ti, so it remains to

establish the inequality
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However for the function v, we have

The maximum principle applied to
result..

gives the desired

The Holder gradient estimate now follows by combining Corollary 4.5 with
the interior Holder gradient estimate of Ladyzhenskaya and Ural’tseva [19]
in the sharp form given in [32]. We carry out the details for operators in
the divergence form

in which case aij = aAi/ap’ .

THEOREM 4.6. Let aS2 E Hv, 99 E H,,(ffQ) for some y E (1, 2], and let P
. 

have the form (4.16) in Q. If u E Ho(Q) n C2,1(Q) is a solution of (1.1) and
if there are positive constants I, Ax , ilK such that

then there are positive constants

such that

PROOF. (In this proof we denote by cl, c2, ... constants depending only
on the same quantities as C in (4.19).) Setting L = aii(X, u, Du)Dii - Dt,
we have

Thus for fl and v from Corollary 4.5 and w = u - v, it follows that
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Moreover uk = Dk u, k = 1, ..., n, is a weak solution (see [19, p. 436] or

[32]) of the equation

with It satisfying
For r &#x3E; 0 and X, c- R"+", denote by Q(r, Xo) the cylinder

and for r, R, R’ constants satisfying 0  r  BBl, let Q(r) = Q(r, Xo)
and Q(R) = Q(-R7 Xo) be (concentric) cylinders in S2,.. Since lflklc,(R’)v-2
in Q(.R), [28, Theorem 2.2] implies that there is a constant a = G(ÂK, px, n )
E (0, 1) such that

and hence

Furthermore we have osc Dv  c5 e,6 for e = r or B and therefore
e(e)

for a = min {fl, y} and
Now let E = Q(R", Xl) be an arbitrary cylinder in IJ,, and let X, Y

be in 27, for some s E (0, If’). If [X - Y[ C E, then (4.21) with r = [X - Y[ I
R = E gives

an inequality which is obvious if IX - Y I &#x3E; c. So if we multiply this

inequality by E, take the supremum over e &#x3E; 0, and set

we obtain
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To proceed we note the following interpolation inequality, which is

proved just like [8, (6.86)]:

for all p E (0, 2 ]. Combining (4.22) and (4.23), with suitable p, gives

Now for X,, and X2 in Q, we set R’= I min ld*(X,), d*(X2)}. If IX, - X21 [
 R’ /2, we use (4.24) with R" = .R’ and X = X,, to infer

Next we set B = R’/2 and note that Er = Q(R, Xl), so

Hence

and therefore (4.21) with and Xo = X, yields

On the other hand if (4.24) implies that

The combination of these last two inequalities gives (4.19). a

The proof of Theorem 4.6 is based on [21, Chapter III] which, in turn,
is based on [8, Lemma 6.20] in its use of the rate at which a solution of a
differential equation goes to zero near the boundary. A slightly different
but equivalent approach is given in [34, Theorem 6.1]. Note that the

techniques of [5] cannot be applied directly in the parabolic case without
assuming some smoothness of aii with respect to t ; however, these techniques
can be combined with the methods described here just as in [26, Sect. 5].

As we have already remarked, (4.19) can be obtained more easily if

IA,I, JJLJ and IBI are bounded and if u E C:I(D). In this case the estimate
on [D, u],8;,,,, implies that Du E Hp(fJ’Q) and [32, Theorem 4.2] gives the
estimates. Our approach proves the continuity of Du.
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When P is in general form the H61der gradient estimate is proved in
the same way with [32, Theorem 2.3] replacing [32, Theorem 2.2].

THEOREM 4.7. Let 8Q e Hy, 99 E Hy(SQ) for some y E (1, 2]. Let U E C(Q)
n02,1(D) be a solution of (1.1). If there are positive constants K, yK, PK 8’ltCÀ
that (4.17 ) holds and

Then (4.19) holds with a also depending on K.

Note that the estimates on the derivatives of ail are only used to obtain
(4.20) from [32, Theorem 2.3].

If Q is a noncylindrical domain with aS2 E Hv in the sense of [24, Sect. 2],
the proofs of Theorems 4.6 and 4.7 are applicable without change. Moreover
a global Holder gradient bound for solutions of fully nonlinear equations
follows by using an interior Holder gradient bound based on the parabolic
version of [32, Theorem 5.1] (and the difference quotient arguments of [27]
to relax the smoothness of u to u e 02,11 ) in place of [32, Theorems 2.2 and
2.3]. This bound includes the corresponding result in [17, Theorem 3] with
the rest of that result contained in the remarks after Theorem 2.2’ and a

parabolic version of [34, Theorem 7.2]; the parabolic version of this theorem
proceeds via the observations in [30, Sect. 6].

5. - Existence theorem.

We now infer solvability of (1.1) under appropriate conditions from the
estimates of Sections 2 and 4. Only a few selected existence results will
be given. Suitable parabolic versions of the elliptic results of e.g., [8,
Sect. 15.5] and [29, Sect. 14 and Chapt. IV] are also easily obtained.

The basic tools for these results is a consequence of the Leray-Schauder
fixed point theorem.

LEMMA 5.1. Let OD c- Hy and I? c- HV(SQ) for some y E (1, 2). Suppose

(5.1a) aii, a lie in, H,, (D x R x R") for some a e (0, 1) ,

(5.1 b) aii depends Lipschitz continuously on (x, z, p) uniformly in Q,

(5.1c) (ail) &#x3E; 0 .

Suppose at so that there are functions bii, b defined on DxRxRnx[O,l]
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such that

(5.2a) bij(.; -r), b(.; -r) lie in H:(QxRxRn) for each -r E [0, 1] ,

(5.2b) bii depends Lipschitz continuously on (x, z, p) uni f ormly in S? X [0, 1],

(5.2c) (bii) &#x3E; 0 ,

(5.2d) bij(.; 1) = aU, b(.; 1) = a,

(5.2e) as functions o f z, bii(.; -r) and b(.; r) map [0, 1]

continuously into H(X(Q x R xRn) .

Set

P,, v = bii(X, v, Dv; r) Dii v + b(X, v, Dv; -r) - v,

and suppose also that the problem Po v = 0 in Q, v = 0 on 5’Q has only
the zero solution. If there is a constant .M such that for every z E [0, 1], and
solution v E H(- v) of P, v = 0 in Q, v = -rgg on PQ obeys the estimate IV[l  M,
then (1.1 ) has a solution u E H(-V).

PROOF. Since this result is fairly standard (except for the H(-") setting),
we skecth the proof, based on [8, Theorems 11.4 and 11.8] and [21, Lemma 1.2].
For 6 c- (1, y) to be chosen, we define a map T: H,, x [0, 1 H,6 by saying
u = .T (v, -r) if u is the unique solution in H 2 +aa of

The existence of u follows from [25, Theorem 11.3]. It is readily checked
that T is continuous, and [24, Lemma 5.2] guarantees that T is compact.
Also by hypothesis T(v, 0 ) = 0 for all v E H,,. If (v, r) E H,, X [0, 1] satisfies
v = T(v, -r), it is readily checked from [25, Theorem 11.3] that v c- H(- v)
and also that IvI1M. Hence by Theorem 4.7 [1[a  X,, for some 6 E (1, Y)
and some constant M,, independent of v and r. Hence by [8, Theorem 11.6],
there is u e Ha for which u = T(u, 1) and therefore it is the desired solu-
tion..

Using now the classical Schauder theory of Friedman [3, Chapt. 3],
we can improve the regularity of the solution for smoother data.

COROLLARY 5.2. Under the hypotheses of Lemma 5.1 if also aS2cH,+,,,,
99 c- H2 +,,, and Pgg = 0 on CSZ, then (1.1) has a solutions u c- H2 +,.
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Note that the condition PT = 0 on CD is necessary for u to be in H2+X.
An earlier version [2, Theorems 1 and 2] of this corollary was proved using
only Friedman’s Schauder theory; this version required that the map T
in the proof of Lemma 5.1 had as range space .g2 + aa and hence a much
stronger condition than just Pgg = 0 on CQ was needed. Ivanov [12,
Theorem 1.1] (see also [13, Theorem 2.1.3]) essentially proved Corollary 5.2
using Friedmanis Schauder theory and also the LV Schauder theory of

Solonnikov [19, Chapt. IV]. (Also Ivanov did not have available the Krylov
boundary estimates we used in Section 4, so his hypotheses are somewhat
stronger than ours.) As well as allowing .gy initial and boundary data,
our approach has the advantage of only using Schauder theory in Holder
spaces.

For our purposes, it suffices to choose bij(X, z, p; 1’) = (1 - 1’) ðij
+ 1’aii(X, z, p), where bij is the Kronecker ð, and b(X, z; p; 1’) = -ra(X, z, p);
then Po v = 0 in D, v = 0 on T92 has only the zero solution by [3, Theo-
rem 3.7]. Other choices for PT, suitable to other structure conditions, can
be found in [2, Sect. 1], and in [8, Sect. 15.5] and [29, Sect. 14] for elliptic
problems.

We now present our existence theorems.

THEOREM 5.3. Let aD E Hy and 99 E Hy(fJ’D) for some y E (1, 2). Suppose
P satisfies the structure conditions (4.1), (4.3), (5.1 ), and

(5.3) 1 = 0(8) or cp is time independent

If D satisfies a uniform exterior sphere condition, then (1.1 ) has a solution

PROOF. In Lemma 5.1, we observe that the estimates provided by
Theorems 2.2 and 4.1 will be valid with constants independent of r. N

In light of the remarks following Theorem 2.2, we see that this theorem

(augmented by Corollary 5.2 and a suitable extension of Lemma 4.1) includes
[2, Theorem 14 and 15] and hence [12, Theorem 4.2] and [19, Theo-

rem VI.4.1] as special cases. Elliptic analogs of our result include [8,
Theorem 15.13], [21, Theorem 4.2], and [29, Theorem 14.1].

THEOREM 5.4. Let 8Q E .gy and rp E Hy(fJ’Q) for some y E (1, 2 ) ioith Q

R-uniformly convex. Suppose P satisfies the structure conditions (4.1 ), (4.3),
and (5.1). If either



384

(a) P satisfies the structure conditions (5.3),

(b) P satisfies is f inite and

or

(c) q E H2 and there is R’ &#x3E; R such that

then (1.1) has a solut-ion

Theorem 5.4(c) is a stronger version of [12, Theorem 4.1]. An elliptic
analog is [8, Theorem 15.14].

Our final result is a parabolic version of Jenkins and Serrin’s sharp
criterion [14] for the solvability of the Dirichlet problem for the minimal
surface equation. To state this result succintly we define

THEOREM 5.5. Let a.Q E C2, let y E (1, 2) and denote by H the mean
curvature of aD. Then the problem

is solvable for arbitrary 99 E H’ if and only if

Note that we have used (2.22). When ip c- H2, (5.7) can be replaced by
a pointwise inequality between 1971 and H; the sufficiency of this form of
(5.7) for the solvability of (5.6) is due to Trudinger [33, Corollary 4].
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We also consider the family of related problems

for T a real parameter; always assuming that H &#x3E; 0 on a.D. For T0y
(5.6 )T is solvable for arbitrary cp E HJ:/ if and only if M = 0; for T== 0,
(5.6 )T becomes (5.6) and hence is solvable for arbitrary 99 c- H’ if and only
if (5.7) holds; for 0  T  2, (5.6),r is solvable for arbitrary rpEH provided
.M is finite; and finally for T 2 (5.6 )= is solvable for any q; E Hy. Note

that the elliptic analog of (5.5)1" for any 1:, is

so the parabolic problem has the same solvability characteristic as the

elliptic one if T&#x3E;l (which corresponds to 1 = 0(8)) or if q is time inde-

pendent.
We close by mentioning that the techniques of [8, Sect. 14.5] can

be used to modify our boundary gradient estimates so that modulus of

continuity estimates at the boundary for solutions of (1.1) result when q
is merely continuous. In conjunction with suitable interior gradient and
interior I3older gradient estimates, these boundary estimates can be used
to show that (1.1) is solvable with continuous boundary, values. Unfor-

tunately various technical complications (e.g., the restrictions on cp when
1:A 0(8) in Section 2) arise which sometimes prevent the consideration
of arbitrary continuous boundary values. For this reason we shall not

pursue this matter further.
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