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PDE- Viscosity Solution Approach to Some Problems
of Large Deviations.

WENDELL H. FLEMING (*) - PANAGIOTIS E. SOUGANIDIS (**)

0. - Introduction.

The theory of nonlinear, first order PDE of Hamilton-Jacobi type has
been substantially developed with the introduction by M. G. Crandall and
P.-L Lions [3] of the class of viscosity solutions. This turns out to be the

correct class of generalized solutions for such equations. M. G. Crandall,
L. C. Evans and P.-L. Lions [2] provide a simpler introduction to the sub-
ject while the book by P.-L. Lions [16] and the paper by M. G. Crandall
and P. E. Souganidis [5] provide a view of the scope of the theory and
references to much of the recent literature.

Recently, L. C. Evans and H. Ishii [9] illustrated the usefulness of the

viscosity solution methods in studying various asymptotic problems con-
cerning stochastic differential equations with small noise intensities. They
gave new proofs based on PDE-viscosity solution methods for results of
Ventcel-Freidlin type which were previously treated by quite different

(probabilistic and stochastic control) techniques. In the present work we
use a similar PDE-viscosity solution method to give a new proof and
extend a result of W. H. Fleming and C.-P. Tsai [15] concerning optimal
exit probabilities and differential games. The problem considered is to

control the drift of a Markov diffusion process in such a way that the

probability that the process exits from a given region D during a given
finite time interval is minimum. An asymptotic formula for the minimum
exit probability when the process is nearly deterministic is given. This
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83-K-0542 and by NSF under Grant No. DMS-8401725.
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formula involves a crucial quantity I, which turns out to be the lower
value of an associated differential game.

More precisely, y following [15] let $(-) be an N-dimensional stochastic
process with continuous sample paths defined for times t&#x3E;s. Let Dc RN

be open and bounded with smooth boundary aD. For initial time sand

state $(s) = x E D, let -r,x denote the exit time from D (i.e., the first t such
that $(t) c aD). For fixed &#x3E; 0, P(isxT} is the exit probability.

We assume that $(-) is a controlled Markov diffusion process satisfying
in the It6-sense the stochastic differential equation

where y(t) is a control applied at time t, 8 &#x3E; 0 is a parameter, u is an N X N
matrix and w(.) is an N-dimensional Brownian motion. In [15], it was

assumed that J = identity matrix. We assume that y(t) E Y, where Y c RM
is compact. Moreover, the control processes y(-) admitted in (0.1) have
the feedback form

where y: [s, T] x RN ---&#x3E;- Y is Borel measurable. As far as b and are con-
cerned we assume that b(., .) is bounded Lipschitz continuous, a(.) is of

class C2 and bounded together with its derivatives, and there exists 0 &#x3E; 0

such that

where ac = aG’. Let us note here that we have made no attempt to discover
minimal assumptions; in particular, y it will be clear later that by using
obvious approximations we really need only assume or to be continuously
differentiable with bounded derivatives.

Let

Of course, the exit probability depends on E and y in view of (0.1), namely
== c§’£. The minimum exit probability is

The function qE(x, s) satisfies the dynamic programming equation (for de-
tails see [15])
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where Dq-, denotes the gradient vector and tr a(x)D2qB === .2 aijq:tXj. . The

boundary conditions are i,i

In general, it is difficult to get effective information about qE and the optimal
control in this way. Instead, we seek an asymptotic formula for qe, valid

for small E &#x3E; 0, of the form

where I turns out to be the lower value of a certain differential game. Equa-
tion (0.6) can be written as

which is a weaker result than a WKB expansion

- asymptotic series in powers of e .

The expansion (0.7) cannot be expected to hold except in certain regions
where I(x, s) is a smooth function of (x, s). We have no results concerning
(0.7), although an expansion up to terms involving e, 82 for a similar problem
arising in stochastic control was given in [12, Sec. 6] and [14].

The differential game, which has I as its lower value, is formally
described as follows. (For more details and motivation see [15].) There

are two players, a maximizing player who chooses y(t) e Y and a mini-
mizing player who chooses z(t) c Rv. The state x(t) of the game at time t
satisfies

Let rtx denote the exit time of x(t) from D, and Tx/BT = min (ix, T). Let
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The game payoff is

We consider the lower game in which (formally speaking) the minimizing
player has the information advantage of knowing both y(t) and x(t) before
z(t) is chosen, while his opponent knows only x(t) before choosing y(t).
This formal description can be made precise in one of several possible ways,
each of which involves concepts of game strategy. The Elliott-Kalton for-

mulation, which is made precise in Section 1 ([6], [7], [10]), is convenient

here.

Let I = T(x, s) denote the lower value of the game, in the Elliott-Kalton
sense. Let

The Isaacs or dynamic programming equation associated with this lower

game is

The main result is:

THEOREM. (a) I(x, s) is the unique viscosity solution o f (0.12) in D X [0, T)
2with the boundary conditions

(b) Let T-, - - - log q-,. Then:

As candidates for viscosity solution of (0.12) we admit functions I E

00,1(15 X [0, T’]), VT’ T, where 00, "(-b x [0, T’]) is the space of continuous
functions defined on D x [0, T], which are Lipschitz continuous with re-

spect to x.
We continue with the basic plan for the proof of the theorem, thus

explaining the previously mentioned PDE-viscosity solution method. The
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fact that I is a viscosity solution follows by standard arguments concerning
the relation between the Elliot-Kalton formulation of the value of dif-

ferential games and viscosity solutions (L. C. Evans and P. E. Souga-
nidis [10]) as well as some resealing similar to the one used by W. H.
Fleming and C.-P. Tsai [15]. The uniqueness part was pointed out to us
by P.-L. Lions and a simpler argument was given by M.G. Crandall. (For
more details see M.G. Grandall, P.-L. Lions and P. E. Souganidis [4].)
For part (b) following L. C. Evans and H. Ishii [9] we obtain estimates,
independent of s, on IE and its first derivatives, using the fact that IE satis-
fies the equation

with boundary conditions (0.13). These estimates together with part (a)
and some standard results concerning viscosity solutions conclude the proof.

There are several advantages of this method over the original proof
of [15]. Principally, we considerably simplify the proof of [15], which

involves differential game theoretic and probabilistic arguments as well

as several limit arguments. As a result of this simplification, we are able
to extend the results of [15]. For a summary of the above, as well as some
other results concerning the use of PDE-viscosity solution methods in

stochastic control we refer to the expository paper by W. H. Fleming [13]
The paper is organized as follows: Section 1 deals with part (a) of the

theorem. Section 2 is devoted to part (b). Finally, in the Appendix we
reproduce in a simple case the uniqueness result concerning viscosity solu-
tions of (0.12), (0.13).

ACKNOWLEDGEMENT. We would like to thank M. G. Crandall and P.-L.

Lions for several useful discussions.

1. - We begin this section by reviewing and modifying, when necessary,
some basic definitions and concepts concerning the lower value of a dif-
ferential game. We employ here mostly the notation of Elliott-Kalton

[6], [7] (cf. also [10], [17], [18]) and the introduction.
For s E [0, T] define

we will hereafter identify any two functions which agree a.e. Any mapping
p: N(s, T) -+ M(s, T ) is called a strategy for the minimizing player provided
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for each r E (s, T ),

for

implies

Denote by d (s, T ) the set of strategies for the minimizing player.
Next, for (X, s) c D x [0, T], we define

with X(-) solving (0.8) for Y(-), Z(-) = fl[y](-) and L, x as in (0.9). We
call I the lower value of the differential game. Sometimes we write I =

I(z, s; T) to emphasize its dependence on T. Since no upper bound is

imposed on control functions z( . ) E N(s, T), it is easy to see that I(x, s)  ex&#x3E;
for all (x, s) E D X [0, T) despite the penalty function X in the payoff. More-
over, it is immediate that I(x, s) = 0 for every (x, s) E 3J9x[0, T).

Perhaps the most important property of I is that it satisfies the dynamic
programming optimality condition. In particular, we have :

THEOREM 1.1. For (x, s) E D X [0, T) and T - s &#x3E; (T &#x3E; 0

The dynamic programming optimality condition can be formulated more

generally using the notion of nonanticipating functionals. Since we do not

need this general form here, we do not state it. (1.2) is proved as in L. C.
Evans and P. E. Souganidis [10] with some minor changes (cf. ahso [8],
[17], [18]). To illustrate that the presence of x in the payoff does not cause
any major diflicillties we include the proof. The notations are similar

to the ones in [10]. Finally, for simplicity we drop the dependence of

4(8, T ) and M(8, T) on T.

PROOF OF THEOREM 1.1. Set
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and fix y&#x3E;0. Then there exists 6 c- A (s) such that

Also, for each v E D

where x(-) solves (0.8) on (s + G, T) with the initial condition x(s + a) = v
and -r.,, is its exit time from D. Thus there exists ðv E d (s + a) for which

Define # c- J (s) as follows: for each y E .lVl (s) solve (0.8) on (s, T) for
x(s) = x and z(’ ) = ð[y](.) and compute Ta:. Set

It is easy to check and we leave it to the reader that fl is a strategy. Con-

sequently for any y E M(s), (1.4) and (1.5) imply

so that

Hence
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On the other hand there exists # e 4(s) for which

By (1.3)

and consequently there exists y, E M(s) such that

If T0153 :: s + a, in view of (1.7), there is nothing to prove. If -c. &#x3E; s + a
for each y E X(s + ar) define y E M(s) and E d(t + a) by

Now

and so there exists y, E M(s + a) for which

Define y E M(s) by

Then (1.7) and the definition of # imply that Tx(s+a)  T in (1.9). Moreover,
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(1.8) and (1.9) yield

and so (1.7) implies

This and (1.6) complete the proof.
Next we want to establish the joint in (x, s ) continuity of the value

function 1. This will follow from the following proposition concerning the
behavior of I under rescaling (cf. [15], Lemma 4.1). We have:

LEMMA 1.1. Let iT  T’ T. There exists a constant Rl ( depending on
T) such that

PROOF. From (0.9) and (1.1)

where J(O, T) consists of those j8eJ(C,T) such that -r,,  T for all

y E M(O, T). From this it is easy to see that I (x, 0 ; T ) is a nonincreasing
function of T, which is the left hand inequality in (1.11).

We obtain the right hand inequality as follows. Let ex = T’T-11. For

any f3 E 4 (o, T) and y E M(0, T) we consider #’ E A (0, T’) and y’ E M(O, T’ )
given by

It is immediate that

where x(-), x’(-) solve (0.8) with the same x, s = 0 and z = fl[y], #’[y’]
respectively. We want to estimate the difference of their respective payoffs
a and a’. If x(t) E D for t E [0, T], then obviously
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Hence we may assume that

By (0.10) we have

By (0.9) and the fact that -1  Lx  17

where la-1(0153)f A. On the other hand, since

we have

and therefore

To conclude the proof we need to show that

for some constant g which depends only on T. To this end, choose zo E RN
such that

and define # c-,d (0, T) by

Then, Tae T for every y E M(0, T). Moreover, the payoff n satisfies yr TL*,
where E* is a bound of L(x, y, z) for I-, I  Iz. 1. Let



181

We then have

which proves Lemma 1.1.

As a consequence of this lemma, we prove the following result concerning
the continuity of I with respect to s. We have:

PROPOSITION 1.1. For x E D and s c- [0, T), s F--+ I(x, s) is continuous.

PROOF. The result is an immediate consequence of Lemma 1.1 given
that

where the last equality follows easily from the definition of I.
Next we prove the Lipschitz continuity with respect to x of the value

function 1. As a preliminary step we need the following lemma.

LEMMA 1.2. Let x, x E D. There exists a constant .R2 which depends only
on T such that

PROOF. For any x’ E D such that

let z(x’) E RN be such that

For y &#x3E; 0 fixed there exists 6 c J [0, T) such that

and

Next, define p: M(O, T+ (0153- xI) - N(0, T + (x- xl) as follows: For

§ eM(0, T+ Ix - &#x26; 1) let y e M(0, T) be such that
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If &#x26;(-) is the solution of (0.8) for s = 0, z(.) = ð[y](.) and x(0) = x, then

It is easy to check that p E J (0, T + Ix - &#x26;1) and we leave it up to the
reader. In view of the above definition, it is obvious that, for every

g c- M(O, T + Ix- &#x26;1),

We then have

where IL(x, y, z) [  Li if Iz) c 2 and

From (0.9) and the fact that a-1, b are bounded Lipschitz

Since

by taking h = x - x we obtain

for suitable bz , b2 , where .K depends on T. We take R2 = L i + bl.K + b2 .
We are now ready to prove the following proposition.

PROPOSITION 1.2. For 1/2 T  T’  T there exists a constant R3 which de-
pends on T’ such that
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PROOF. We have by Lemmas 1.1, 1.2

The same inequality holds if x and x are exchanged. We take R3 === Rl + .R2 .
The next result is concerned with the limit of I(x, s ; T) as st T. In par-

ticular, we have

PROPOSITION 1.3. For x E D, lip1 I(z, s; T) = + oo.T

PROOF. - Let y &#x3E; 0 be fixed. There exists ð E L1(s, T ) such that

This implies

But

Combining the above inequalities we obta,in

which finishes the proof.
We are now ready to prove part (a) of the Theorem. We have:

PROOF OF PART (a). The fact that I belongs to the class of functions
and satisfies the boundary conditions required by the statement of the

theorem follows from the previous propositions. Moreover, Theorem 1.1
and the proof of Theorem 4.1 of [10] imply that I is a viscosity solution of

Finally, as explained in the Introduction, the uniqueness is a part of general
results of [4] and it is illustrated in a simple case in the Appendix.
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2. - We begin this section with some observations concerning the mini-
mum exit probability qE(x, s) and I£(0153, s) = - s log qe(0153, s). In particular,
qE E C;,1(A) for any compact A c D X [0, T), where , is the space of
functions f defined on 0 snch that f, f t , f x’ , laeixi’ i, j = 1, ..., N are Holder
continuous with exponent fl. Since qE satisfies (0.4), (0.5) an elementary
calculation shows that I’ satisfies the nonlinear parabolic PDE

with boundary conditions

Moreover, it is an easy exercise to write (2.1) in the form

where H is given by (0.11).
Next, we establish estimates, independent of s, on 18 and its derivatives.

We begin with an 1--estimate for s  T.

LEMMA 2.1. There exist positive, constants a, b such that

for every

PROOF. - Without any loss of generality we may assumc that D lies in
the slab, 0  x,  C for some C &#x3E; 0. Let v : 15 X [0, T) 1-+ R be defined by

where a, b are some positive constants to be determined so that v is a

supersolution of (2.1). Since v(x, s) &#x3E; 1’(x, s) for (x, s) E aD X [0, T), simple
maximum principle considerations will imply (2.4). We need
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But

where 0 is given by (0.2) and B is such that

A simple computation shows that if a(»20 and 3abO&#x3E;2B then (2.5) is

valid, thus the result.
The next result gives more precise information about the upper bound

of 1S and, moreover, characterizes the way that 11 assumes its value as $’
approaches aD. We have:

LEMMA 2.2. There exist positive constants y, 6 &#x3E; 0 such that

PROOF. - By Lemma 2.1 it suffices to verify such an estimate in some
neighborhood of aD. Moreover, it is well known that d E C2(r) ( cf. J.

Serrin [19]) where 7’== {x c- D: dist (x, 8D)  el for some appropriate e &#x3E; 0.
Let u : Dx[0y T) - R be defined by

ivhere y, 3 are to be determined so that

for every

and u is a supersolution of (2.1) in r x [0, T). We only indicate now how
to satisfy the second requirement, since the first one follows immediately
from Lemma 2.1.
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To this end, observe that for 8  2y we have

where 0 is as in (0.2) and N2/aij(x) 1 e. Here we used the fact that in

.T id(x, ôD)Xtx;J1 I  C and ID dist (x, aD) I =- 1. The rest of the proof is similar
to the one of Lemma 2.1.

To conclude the remarks concerning the uniform L°° estimates on 11

as well as on the way that Ie assumes its boundary conditions we need the
following lemma.

LEMMA 2.3. Let 0 C C2(D). For every M &#x3E; 0 there exists a positive con-
.stant CM such that

for every

and

PROOF. The result follows from the maximum principle provided we
show that

is a subsolution of (2.1) for an appropriate constant OM. Indeed, we have

provided CM is sufficiently large.
We continue with a result concerning a uniform in 8 estimate on the

modulus of continuity of 18 on Dx[0y T’ ] for every T’ T. In particular,
using Bernstein’s trick and Lemma 2.2 we obtain a uniform in s estimate
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on IDlEI. This together with arguments from the standard parabolic theory
imply auniform ill 8 Holder estimate on IE with respect to s. We have:

LEMMA 2.4. For every T T there exist a con.4Jtant C = C(T’) and
a = a(T’ ) with 0  oc  I such that

and

PROOF. To simplify notation we now omit writing the superscript E.

We select a smooth cutoff function § = C(s) such thst i m 1 on [0, T’],
C == 0 near T. Set

where Â&#x3E; 0 is a constant to be selected below.
Let (xo, so) E 15 X [0, T) be such that

for every

Then, for every (x, s) E D X [0, T’], we have

which implies (2.8) provided we have an estimate on IDI(xo, 8,)12. If xo E ôD

such an estimate follows immediately from Lemma 2.2. So we may assume

that xo E D. Then at (so, xo)

and

In what follows we are going to assume for technical reasons that we are
dealing with an equation of the form
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with G a smooth function such that

for every I

where B is such that lb(x, y) I B. The result then follows for the original
equation by a simple approximation argument and we leave it to the

reader to fill in the details. Using now routine calculations we deduce that
at (xo, so)

Moreover

and similarly for products 2e’2(alcl)xtaijIxhlxZxj. If we take a sufficiently
large then (2.12) and the above imply that at (x,,, so)

were in the above calculations we repeatedly used C to denote any con-
stant which depends on the data.

Now, recall (2.10) to compute

This for A sufficiently large implies

.and thus the result.
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For the estimate on the Holder norm let us assume 0 E D. Define

then

Since f E LOO(Q) standard parabolic estimates give a local in s estimate of
the Holder norm of IS with respect to s.

By combining all the previous results we may now proceed with the
proof of part (b) of Theorem 1. Indeed, we have:

PROOF OF PART (b). Lemma 2.1 and Lemma 2.4 imply that álong every
subsequence sk -0, Ilk -* I locally uniformly in D X [0, T), where I, which
in principle depends on the subsequence, is a continuous function on

D x (0, T). In view of a standard result concerning viscosity solutions

([3], Theorem VI.1), 1 is a viscosity solution of (0.12). Moreover, Lemmas

2.2, 2.3 and 2.4 imply

The uniqueness of viscosity solutions of (0.12) with boundary conditions

(0.13) together with part (a) imply that

thus the result.

Appendix.

Here we want to reproduce in a simple case a result which is going to

appear in M. G. Crandall, P.-L. Lions and P. E. Souganidis [4] concerning
uniqueness of viscosity solutions of (0.12), (0.13). For simplicity we assume
that u 1 1 (identity matrix) and, moreover, that we deal with the for-
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ward in time problem

with u E Go, "(.D x [8, T]) for every 8 &#x3E; 0. The substitution t = T - s changes
this into (0.12)-(0.13), with a =-= 1. It follows from the results of G. Barles [1]
and M. G. Crandall and P.-L. Lions [3] that for every 99 E CO,’(-D) with
qJlôD = 0, the problem

has a unique viscosity solution which we denote by 8(t)gg(-). Moreover, 
8(t) has the semigroup property, S(t)lpS(t)1p if lp1jJ, and 8(t)gg is conti-
uous in t in the uniform norm.

Let u be a solution of (A.1). It is not difficult to show that for every

x E D, u is a decreasing function of t. From this, it follows that u(x, t)f 00
as ttO uniformly on compact subsets of D. Now for every lpE OO,l(l5) and
8 &#x3E; 0 the comparison estimates of [3] imply

where wagg denotes the minimum of w, p. We claim that as E§0

Indeed, if not, there exist 6 &#x3E; 0 and BntO, xen E D such that

and

Since u(-, En) -&#x3E; + oo uniformly on compact subsets of D, x, E aD. How-
ever,

which gives a contradiction.
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From (A.3) and (A.4)

If (A.I) has two solutions u, w the above observations imply that

for every

by taking 99 = w(-, 8), 99 = u(-, 8) respectively, which yields the unique-
ness.
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