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Parametrix for a Characteristic Cauchy Problem.

A. BOVE - J. E. LEWIS - C. PARENTI

0. - Introduction, statement of the problem and main results.

In this paper we consider the following second order differential operator
with smooth coefficients defined in = 2~ 

We assume that the functions aij are real, aji, i, j = 1, ..., n and
that for some 6 &#x3E; 0 we have

for every (t, x) E For sake of simplicity we shall suppose that
all coefficients in (0.1) are constant outside of a compact set.

We are concerned with the Cauchy problem:

One can prove that the Cauchy problem (0.2) is C°°-well posed iff v(O, x)
+ 10 {0, - 1, - 2, ...}, which we assume from now on.
We propose to construct a parametrix for pb. (0.2), i.e. an operator

(for a suitable T &#x3E; 0) such that

where y denotes the restriction to the hyperplane t = 0.

Pervenuto alla Redazione il 13 Aprile 1983.
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Actually, under some technical additional conditions, we shall construct
a parametrix JE7 with the following properties:

For every and for every

where are the two canonical relations defined

in the following way: for every let

be the integral curve of the Hamiltonian vector field

issued from (y, ~), then

We point out that Af are the usual canonical relations appearing in the

Cauchy problem for the wave operator (see e.g. J. J.
Duistermaat [3]).

Then, modulo uniqueness for pb. (0.2), we obtain from (0.5) a precise
description of the singularities of the solutions of pb. ~a.2 ~,
while (0.4) implies that singularities do not scatter along the boundary.

The construction of E is quite long and technical since the usual methods
of geometrical optics cannot be applied.

To motivate such a construction consider the following particular
case of (0.1)

To solve (0.2) for Po we take the Fourier transform
of it and obtain

Putting and writing it can be easily
seen that v satisfies the Bessel equation
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Fig. 1 - The characteristics are tangent to t = 0.

Since we are looking for solutions which are sniooth in the t variable

up to t = 0, taking into account the initial condition, we get

where

J,.(z) being the usual Bessel function of the first kind.
It can be easily recognized that Eo extends as a continuous operator

from ~’ (.Rn) into 0’(R’)) and that Po.Eag = 0, yEog = g.
Relation (0.4) is trivially verified. To prove (0.5) we split J,.(z) into a

sum of the two Hankel functions (see G. Wat-
6OR LiJ)-

The functions have the following asymptotic expansion
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for

(see G. Watson [7, Sec. 7.2 (5), (6)]).
By (a.11), for every t &#x3E; 0 the operator Eo splits into a sum of two inde-

pendent elliptic Fourier integral operators of the form

for some

Relation (0.5) is now a straightforward consequence of (0.12) and the
calculus of the wave front set (see L. Hormander [5]).

We remark that the amplitude in (0.9) exhibits a rather
different behaviour in the two regions const. More precisely, y in

the region  const. the parametrix Eo behaves like a pseudo diffe-
rential operator (with non-classical symbol), y while for - + oo Eo
is essentially the sum of two elliptic Fourier integral operators whose phases
are hidden in the amplitude This remark suggests that, in the general
case (0.2), one should perform two different constructions in the regions

 const., y &#x3E; const. respectively.
According to this strategy we collect in Ch. 1 all the formal ingredients

we need to construct the parametrix: in particular, y in Sect.s 1.1-1.3 and
Sect.s 1.4-1.6 we construct a formal parametrix for (0.2) in the region
Vi ~~! &#x3E; const. respectively, by using suitable integral representations for
Bessel’s functions. We point out that such a technique has been already
used in the literature (see e.g. S. Alinhac [1]).

In Ch. 2 the two formal parametrices are glued together and a precise
operator calculus is developed.

CHAPTER 1

FORMAL THEORY

1.1. - Formal parametrix in the region  const.

The amplitude for the parametrix Eo in (0.9) has the homogeneity property
- - __ ~_

This suggests that the right homo-
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geneity involved in the problem is of the following type:

We are thus led to consider operators of the form

where the amplitude q is given by an « asymptotic sum » of functions homo-
geneous in the above sense.

The following definition will be convenient.

DEF. 1.1.1. Let m be a real number.

i) By 0m we denote the class of the functions

ii) By T- we denote the clacss of the functions

such that

It is easy to check that the operator maps pm into
and that

We consider, y formally, y the following operator:

where

Imposing that Eg satisfies (0.2), we obtain
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To implement (1.1.3) we write with

To compute the formal series in terms of the q’s we replace the coef-

ficients of P by their formal Taylor expansions and collect in exp
all the terms with the same homogeneity degree in the sense

of Def. 1.1.1. It is convenient to introduce the following notation

Using (1.1.4) we define the differential operators:

We note that

A straightforward computation yields:

with:
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Conditions (1.1.3) can thus be rewritten as the following sequence of
transport equations

1.2. - The first transport equation : 0.

To solve the Cauchy problem (1.1.8) we reduce the equation Li* = 0
to a Bessel equation. For this purpose we change the variables as follows:

Using the relations

we obtain the following Bessel equation for w(z) :

The Bessel function

is a solution of (1.2.4). Taking into account (1.2.1) and (1.2.2) we are led



8

to define

which is well defined as an element of po satisfying (1.1.8) provided

From now on we assume that (1.2.7) is satisfied.

1.3. - The other transport equations.

To solve the Cauchy problems (1.1.9)j we shall use the following integral
representation for Jpo(z) (see G. Watson [7, p. 163 (1)]):

where .L is the contour shown in fig. 2 and the argument of a + 1 and a - 1
is chosen to be zero at the point A.

Fig. 2 - L is a contour symmetric with respect to the origin, enclosing the points ::l:1.

The above representation makes sense provided

which is a technical condition we shall assume from now on.
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Putting

we have proved in Sect. 1.2 that

To state the main result of this Sect. we need some definitions.

DEF. 1.3.1. 1, Define

Let By we denote the class of all functions g of the form

where Cp,qE 0-’.
Note that the functions and are holomorphic with respect to the

variable z and C°° in x; moreover, because of the symmetry of the contour L,
the functions are even functions of z. 

-

From this remark it f ollows that given i then

THEOREM every j &#x3E; 0 there exists a function
such that the functions

are solutions of the Cauchy problems (1.1.8), (1.1.9)~ .

PROOF. By induction on j. For j = 0 the assertion follows from the
construction in Sect. 1.2 and from (1.3.3), (1.3.4).

Let us suppose that we have already found functions
with such that i satisfies

(1.1.8), if h = 0, and (1.1.9)h for
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Equation (1.1.9)~ can be rewritten as

Moreover, y using (1.1.5) we can write

for some

Analogously:

where is defined in (1.1.4) and Ca,k are smooth functions of x.
Sinc and (1.3.8) and the inductive hy-

pothesis imply that

for some

In the same way, using (1.3.9) we get

where the coefficients belong to O-j+2.
Taking into account the formula

it is easy to recognize that is a linear combination of and

with coefficients in while is a linear combination, with
coefficients in 0°, of
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Now we note that the operator Li written in the z variable becomes:

Taking into account the preceding remark, formulas (1.3.10), (1.3.11)
and (1.3.13), it is easily seen that to solve eq. (1.1.9)j it is enough to handle
the following equations:

We look for a solution of (1.3.14) of the form

Since

we are reduced to solving the equations:

As a preliminary remark we note that the integration of the second equa-
tion in (1.3.16) can be actually reduced to that of the first one in the above
formula (with s = k and p, p + 1, q, (q - 1)+).

Now, by induction, the following formula can be easily proved

for some smooth functions 
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Using (1.3.17) we conclude that eq. (1.3.16) can be reduced to the form:

Equation (1.3.18) is immediately solved:

where the ej are suitable constants.
From the above results it follows that eq. (1.3.7) has a solution which,

when written in the z-variable, y is a linear combination with coefficients

in 0-i of functions x) with p, q  2j. Therefore we have proved that
there exists a function for which

Since and 1 it is enough to put

which proves the theorem. q.e.d.

REMARK. It is worthwhile to point out that if the coefficients au in
(0.1) are constants then Theorem 1.3.1 holds with
This is a consequence of two remarks:

a) in E-, (see (1.1.5)) there is not the term

Then only the first equation in (1.3.14) must be solved.

1.4. - Formal parametrix in the region vï &#x3E; const.

We shall use the notation
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Denote by the solution of the non-linear Cauchy problem

It is well known that pb. (1.4.2) has a unique solution

for a suitable T &#x3E; 0.
Define

Thus cp-x solves the eikonal equation:

We explicitly note that is not a smooth function of t at t = 0.

Writing the formal Taylor series of p:1:. with respect to the s variable and
-putting as in (1.2.1) we can write

a - I ,-.

-with

The following definition will be convenient.

DEFINITION 1.4.1. Let m be a real number.

i) By pm we denote the class of the functions
,such that

ii ) By ~m we denote the class of the functions,
.such that

We note that the map

is a bijection.
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From now on we shall denote by elements of 
which we do not need to specify.

We are looking for an operator formally defined by

where , and such that. ..

for t &#x3E; 0.

As usual we require that

Using (1.4.4), (1.4.5), by a computation we obtain

where z is given by (1.2.1).
We can write
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Substituting (1.4.11) into (1.4.10) and replacing
according to (1.4.7), yields

Let us define the following operators:
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We explicitly note that when k is odd, in 0 all the coefficients vanish
except for

It is worth remarking that

Using (1.4.13)-(1.4.15) and writing we can put (1.4.12)
in the final form

In (1.4.16) we use the convention that a sum over negative integers is zero.
To implement (1.4.9) we are forced to solve the following sequence of

transport equations:

1.5. - The first transport equation

The following transmutation formula will play a crucial role in the sequel:

where

Under the hypothesis (1.3.2) the equation has two

independent solutions given by:

where E± are the contours shown in fig. 3.
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Fig. 3 - The contours L~ ; arg (0" + 1) and arg (0" - 1) is chosen to be 0 in A

and - n in B.

From G. Watson [7, p. 167, (6), (7)] it follows that

where H(’) are the Hankel functions and is given by (1.2.5).
Using (1.5.1) we solve the first transport equation (1.4.17) putting:

We point out that
and
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1.6. - The other transport equations.

To solve eq. (1.4.18), (1.4-19)kl we shall need the following definitions.
DEFINITION 1.6.1. Let

By we denote the of functions
such that:

ii) For every can be written in the form

the are holomorphic functions of a in So having a pole of order at most j
act a = 0..F’urthermore, for every K cc R: and for every 6 E ]0, 1 [ there exists
a non-negactive integer such that

(here log a is defined cutting C along the positive imaginary axis). By 
we denote che class of functions x, ~) defined in Sl such that

DEFINITION 1.6.2. Let We define

where Lx are the contours described in fig. 3.

We remark that, for
Furthermore (1.5.3) can be rewritten as with

We have the following result.
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THEOREM 1.6.1. Let p0 be defined as in (1.5.5). Then for every 1 the

transport equations (1.4.18), (1.4.19),~ have a solution of the form

for suitable

PROOF. As we noted above the first transport equation (1.4.17) has al-

ready been solved by a function of the form (1.6.3); thus we can proceed
by induction on k. Suppose we have already constructed 0 ...., p~(k-1)~2
of the form (1.6.3); let us now try to find P+k/2 (the case is quite
analogous).

We look for the form Using (1.5.1) we
obtain

where are the functions appearing in
The last sum in (1.6.4) vanishes if k = 1.
A straightforward computation shows that the r.h.s. in (1.6.4) can be

written in the form exp I for some

We are thus reduced to solve the equation

where

We look for a G in the form

For 0 we obtain the equation
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By Def. 1.6.1, with thus we can
write

for some c~a E and some functions 6l(~, x, ~) holomorphic in the strip
IRe ’I C 2 and vanishing at C = 0.

It is now a trivial fact to recognize that eq. (1.6.7) can be solved within
the class q.e.d.

1.7. - Asymptotic expansions of some integrals.
In this Sect. we study the asymptotic expansion for z - + oo of integrals

of the following type:

where and .Lo is the contour shown in fig. 4.

Fig. 4 - The contour Lo.
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Here and in the sequel we shall always suppose that condition (1.3.2)
is satisfied.

Performing the change of variables 6 = iu/z, da = ilz du, since for

or E SO log a = log (iu) - log z, we obtain

where is the contour shown in fig. 5.

I

Fig. 5 - The contour y; the radius 6 (z) is chosen such that

Let us prove the following lemmas.

LEMMA 1.7.1. Let Then, for every.
there exists a constant such that

PROOF. - For z &#x3E; 1 we choose 6 = b(z) = 2 ; then, by Def. 1.6.1,
is linear combination of integrals of the type

where x(~, ~ ) is holomorphic in So.
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From the estimates

which hold with a suitable N for it follows

Hence the lemma is proved. q.e.d.

LEMMA 1.7.2. For every v E C and every j E Z+ we have

where

PROOF. Both sides of the above relation are entire functions = v

2013 j ~ C. The equality is trivially proved when Re C - t &#x3E; - 1; hence the
lemma. q.e.d.

LEMMA 1.?’.3..F’or every v E C have

with the same C(v) as in the preceding lemma.

PROOF. Straightforward. q.e.d.
We state now the main results of this Sections.

THEOREM 1.7.1. Let 1p E containing powers of log a of order at 
For every pair of integers there exist functions

such that for every there is a con-

stant C &#x3E; 0 for which :
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PROOF. - Using the representation

The Theorem easily follows from Lemmas 1.?’.1.-1.7.3. q.e.d.

THEOREM 1.7.2. Let x, ~) ~ 0-i be the functions constructed in

Theorem 1.6.1. acnd L~ ( j ) the maximum order of powers of log or acppearing in
the integral representaion of Then for every pair o f integers (m, 1),

there exist functions such that for
every. there is a constant

which

for
(1.7.4) will be written briefly

PROOF A trivial consequence of Theorems 1.6.1. 1.7.1. q.e.d.
In the next theorem we prove some kind of converse of the preceding

result.

THEOREM 1.7.3. Z~ be such that :

f or some

For are sol2ctions of the equations (1.4.18)

iii) For every j &#x3E; 0 there exist I and a sequence of
functions such that

where the - has the sacme meaning as in (1.7.5).
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Then there exist functions f or which

where 1± are the integrals defined in (1.6.2).

PROOF. - By induction on j. When j = 0 there is nothing to prove since
by assumption i),

Suppose that the assertion holds up to j - and let us prove it

for (the case P-,,2 is quite analogous).
Write By the inductive hypothesis

we have

with a suitable

Since two independent solutions of the homogeneous equation MG(z) = 0,
z &#x3E; 0, are given by z) (see (1.~.4) ), by the proof of Theorem 1.6.1 there
exists a function such that

for some functions

From (1.7.6 ) ~ and Lemma 1.7.1 we get

with some new

On the other hand

for some suitable functions bm, with bo(vo(x)) =A 0 (see W. Magnus - F.

Oberhettinger - R. P. Soni [6], p. 139).



25

Comparing (1.7.10), (1.7.11 ) with (1.7.6 ) ~ we conclude that c-,= 0.
Choosing in (1.7.9) we prove the

theorem. q.e.d.

CHAPTER 2

THE RIGOROUS DISCUSSION

2.1. - Symbol classes and oscillatory integrals.

To put the formal series Eq-i/2 and constructed in Ch. 1 in a

rigorous framework we need to define some classes of symbols which are
closely connected with those considered by L. Boutet de Monvel [2]. In

the sequel by a cutoff function we mean any function x E Co (R) which is
identically 1 in a neighborhood of the origin.

DEFINITION 2.1.1. By we denote

the class of all functions such that for every
there exists a constant f or which

for
We put

By we denote the intersection

will denote the space of all symbols p(t, x, ~) such that

for every cutoff function will denote the
.

space of all symbols p(t, x, ~) such that for every
cutoff function x. All these spaces are equipped with their natural topology.

EXAMPLES. 1) Let satisfy:

in an even analytic function of z. Then for every fixed
cutoff xo the symbol
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2) Let satisfy:

ii) for some ,u E .R and for every
there is a constant C &#x3E; 0 for which for

Then for every fixed cutoff xo the symbol

In the next lemma some properties of the classes of symbols defined
above are collected. The proof, which follows along standard arguments
will be omitted (see e.g. L. Boutet de Monvel [2]).

LEMMA 2.1.1.

2ff I and

ii) Let X be a cutoff function and ~, &#x3E; 1. Define,

Then :

is a bonitded subset of, I

is a bounded subset of

Let then there exists a symbol
such that

iv) Let then there exists a symbol
such that i.e.

True symbols can be recovered from the « formal » symbols of Chp. 1

using the following lemma.

LEMMA 2.1.2.

i) Let then for every cutoff X
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ii) Let and define

Then for every cutoff X

where

iii) Let and X any cutoff. Then, for every

iv) Let and x any cutof f. Then, for every

PROOF. i) By Def. 1.1.1 thus the con-

clusion follows taking into account that on the support
of

ii) Is a trivial consequence of Theorem 1.7.1, of Example 2) and Lem-
ma 2.1.1 iv).

iii) Since it is enough to prove the assertion in the
case I = 0. Now, locally in x we have

Moreover, locally in x we have

Thus the claim follows.
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iv) Suppose first k - 21 &#x3E; 0. Then for j == 09 1 locally in x we have

Hence the first assertion follows. If k - 21  0, take s &#x3E; 0 such that

1-~-2~2013~2013~&#x3E;0. Then locally in x we have

Hence the second assertion follows. q.e.d.
We now turn to the discussion of some oscillatory integrals. Let

q(t, x, ~) E T) and let X be any cutoff function. We consider the
following operator:

The continuity of E follows from Lemma 2.1.2 iii). We now show that .E
can be continuously extended to an operator, still denoted by .E, from 8~(.R")
into

Take and then

with

Integration by parts with respect to x shows that 6f($) is C°° and rapidly
decreasing for ~ -~ oo.

Therefore, by the Paley-Wiener theorem we can define

by the relation
By an application of Lemma 2.1.2 iii) it follows that

and the map g - Eg is continuous.
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It is worthwhile to observe that for 0 and for every s E [0, T]
the operator

is a pseudo differential operator of order + 2j.
Operators of the form (2.1.2) will take care of the formal parametrix

in the region t ~~ ( 2  const. constructed in Sects. 1.1-1.3.
To give meaning to the formal operators introduced in Sect. 1.4 let

99(t, x, $) denote any one of the two phase functions gg±(t, x, $) defined in
(1.4.3).

Let 1nd let x be any cutoff function.
Consider the operator

We now show that E’ maps continuously into

where the latter denotes the subspace of I whose elements

are flat functions at t = 0.

It is easy to recognize that can be written as an sum of

integrals like (2.1.3) with new amplitudes in and new cutoffs.

This proves that To show that Eg is flat at t = 0

consider Locally in x we have the estimate

if 2N-7~&#x3E;0.
Therefore for N large enough.
Let us now show that the operator (2.1.3) can be continuously extended

as an operator from into

Take and then

where
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As a consequence of (1.4.3) the following estimate holds for x in a com-
pact set:

Consider the operator

where 0 is a cutoff function.

Integrating by parts we get, for every N &#x3E; 0:

It is easily verified that, for every s &#x3E; 0 we have the estimate

The rapid decrease of (8f)($) allows to define Eg, when g E ~’(.Z~n), accord-
ing to the formula

One can easily see that Moreover, arguing as
above, one can verify that Of course, for every j &#x3E; 0
and for every the operator

is a Fourier integral operator with phase ~) and amplitude in &#x3E;

2.2. - Construction of the true parametrix.

Our first attempt to construct a parametrix for pb. (0.2) will be to con-
sider an operator of the form:
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where:

i) x is any cutoff function.

with and the are

the functions constructed in Sects. 1.2, 1.3. We recall that, for any cutoff xo,
according to Lemma 1.1.2 i).

with and

the p ~~~2 are those constructed in Sects. 1.5, 1.6.
We recall that, for any cutoff ac-

cording to Lemma 2.1.2 ii).

are the phases (defined for t E [0, T]) constructed in (1.4.3).
First we observe that

Since , I and

we conclude that and thus the second condition in (0.3)
is fulfilled.

Now

Now the following crucial remarks are in order:

I) By construction ’or large f or every
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Moreover, by the construction performed in Sect.

has, for large ~, the asymptotic expansion

with

and the operators L1-hl2 are defined in (1.1.5).
From Theorem 1.3.1 it follows that As

a consequence the operator

is smoothing.

II) By construction for large ~, for every

Now we claim that with asymp-
totic expansion (1.4.15), for large computed for

To prove our claim, i.e. to show that the formal computations performed
in Sect. 1.4 have a meaning within the classes Boo we only need to show that
for large with the asymptotic expansion (1.4.4)
(computed for

To prove this fact we recall (1.4.2); from the Taylor expansion

we get the estimate:

Hence the estimate:

in any region and locally in x.
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The claim on being proved, from the construction performed in
Theorem 1.6.1 it follows that

As a consequence, it is easily verified that

III) To control the symbol

we need to prove the following assertion:

If and on some interval, then:

ii) For every

The proof of i) is obvious since J7- 1/ ~~ on the support of x. To prove
ii) we write

and note that on the support of 7 and locally in x we have the estimates:

if and if

Hence and

This proves our assertion.

The commutator can be written as

for suitable functions

and
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Let us consider the symbol

We recall that in Theorem 1.3.1 the symbol was obtained as
where q-i has the form

with the given in (1.3.5).
Putting

the contours Z~ being those of fig. 3, we define accordingly

Thus

Let us fix a function ’ with 2 = 1 on supp Y, U supp x2. By
Lemma 2.1.1 iii) we can construct two symbols
with

It follows that (2.2.4) can be rewritten as

where R=3= E S£~(0, T) are defined in (1.4.4).
Now we claim that we can modify the symbols p~~~2, ~ &#x3E; 1, constructed

in Theorem 1.6.1. in such a way that the new 1, satisfy the transport
equations (1.4.17), (1.4.18), keep the structure (1.6.3) and be such that
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The proof of our claim is based on the remark that while p’ -r- p- satis-
fies the initial condition no initial condition has ever

been imposed until now on P+,/2+ P-,/2 for j &#x3E; 1.
We deal only with the sign + and make a preliminary formal computa-

tion. From the definition of q’"!:.i/2 and the construction of Sect. 1.3, we have

so that

On the other hand the construction in Sect. 1.6 yields

Hence

Expanding exp [- iR+] as a »am of terms of decreasing homogeneity, y
we write

The symbols 0-,/2 satisfy the transport equations (1.4.17), (1.4.18) and
have an asymptotic expansion as in Theorem 1.7.3; moreover, y Wo = 0, so
that we can apply Theorem 1.7.3 and conclude that there exists a function

for which

We define new symbols _ -, by

For convenience we shall continue to denote the modified

symbols p#~~ 2. We emphasize that no modification is needed for po+.
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Let us now turn to the claim (2.2.6); we have

Now

Hence, since

Furthermore, y by definition :

Hence, y since on supp x2 ,

Now

By Remark III, ii)
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Since with asymptotic expansion (see
(1.4.5)), we have

Then

By the modification of the p±~~2 performed above, we can conclude that

As a consequence we have that claim (2.2.6) is proved. In the same way
one can prove that

We summarize all the preceding remarks in the following theorem.

THEOREM 2.2.1. There exist a symbol acnd two

symbols such that the oper-

ator .E defined in (2.2.1) has the f ollo2ving properties :

where

with a symbol and

with symbols
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ii) yE - I is a smoothing operator.

The operator C is obviously a sinoothiiig operator, precisely
Therefore, to obtain a parametrix we need to exorcise the

’ 

" --

terms B±. This will be done in the following. theorem.

THEOREM 2.2.2. There exist two symbols

such that

PROOF. We prove the theorem in the case of the sign +, dropping for

simplicity the superscript. Putting s = 2 vt and T’ = 2 V T we need to

prove that for a given symbol
there exists a symbol r(s, x, ~) belonging to for which

where has been defined in (1.4.1) and P is the operator (0.1)
written in the new variables (s, X), i.e.

A computation yields:

Since we divide both sides of (2.2.27) by
and obtain the condition
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where and Q is a
second order operator with smooth coefficients homogeneous of degree - 1
with respect to ~; note that

As a consequence, the following system:

is a part of the Hamiltonian system for 1p so that the map
is a global diffeomorphism. Writing (2.2.28) in the new va-

riables (s, y) we obtain:

where, for simplicity, we continue to denote with the same notation the func-
tions written in the new variables.

Since maps into to

prove the existence of satisfying (2.2.30) it will be

enough to show that for every m e JS and every
there exists a symbol " such that

To prove this assertion consider the operator

which maps C£i into itself and satisfies the equation sa,HG = G. To solve
(2.2.31) we take h = HØ and obtain the equation
which can be solved in i by the standard Picard’s approxi-
mation procedure.

Let us now turn to (2.2.30). Using the preceding result we can construct
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a formal series with:

By a standard argument one can find such that

This completes the proof of the theorem. q.e.d.
As a final consequence of Theorems 2.2.1, 2.2.2 we have

GOROLLARY 2.2.1. A parametrix for the Cauchy problem (0.2) is given by
,E + + jt- where E is given by (2.2.1) and

with the given by Theorem 2.2.2.

In the next theorem we list some microlocal properties of the constructed
parameterix .E + j{ + + A-= B2.

THEOREM 2.2.3. For every ; we have:

For every

where At have been defined in (0.6).

PROOF. We split .E into a sum .E = Eo + E+ + E-, corresponding to

the three terms in (2.2.1). Then As we have al-

ready remarked the operator is a pseudo-differential oper-
ator, and this proves i).

To prove ii) we observe that (2.2.33) is obvious when s = 0 since

the diagonal of For s we have

since the operator
is smoothing. As we have already remarked

are Fourier integral operators with phases and amplitudes
therefore by well known results on

the calculus of WF (see L. Hormander [5]) we have
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To prove the converse inclusion we recall that for every are the

graphs of the symplectomorphism

(see (0.6)). Moreover,. mo-

dulo Now is an elliptic symbol as follows from (1.5.6), i.e.
Since

is flat at s = 0, we can conclude that for some s &#x3E; 0 the symbol
is invertible in for As a consequence we obtain

To finish we observe that

so that

The above equality holds then for all s E [0, T[. To see this we observe
that and that for t &#x3E; s &#x3E; 0, solves a

Cauchy problem for the strictly hyperbolic operator P, with Pl2+ E C°°.
Known results on the propagation of singularities for strictly hyperbolic

Cauchy problems yield our thesis (see e.g. J. J. Duistermaat [3]). q.e.d.

REMARKS. 1) The construction of the parametrix t2 for pb. (0.2) has
been performed under the hypotheses vo(x) + 10 10, - 1, - 2, ...~, vo(x) - 2
~ {0,1, 2, ...~. While the first condition on vo is natural because of its neces-
sity for C°°-well posedness of the Cauchy problem (0.2), the second one is,
in our opinion, only technical. We believe that by changing the integral
representation for Bessel functions one should provide a way to drop the
condition

2) According to Theorem 2.2.3, the parametrix c2 allows to describe
the singularities of solutions of the equation which are

normally regular, y i.e. (at least when vo(x) satisfies con-
dition (1.2.7)). However, since t = 0 is characteristic for P, one can find
solutions of the equation Pu = 0, t &#x3E; 0, which are not normally regular
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distributions and with

o-WF(g). Typical examples are the following ones;

which solve
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