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Linearized Stability Results
in Continuous Interpolation Spaces.

A. SCHIAFFINO - A. TESEI

1. - Introduction.

The so-called linearized stability principle is an elementary, yet powerful
technique to investigate the Lyapunov stability character of solutions for
a wide class of evolution equations. In the case of semilinear parabolic equa-
tions, such procedure leads to study an abstract Cauchy problem, namely

where A is the infinitesimal generator of a strongly continuous analytic
semigroup exp [At] on some Banach space E and a is a nonlinear function
from E to itself (a(0) = 0); if the type of the semigroup is negative and a
is Fréchet differentiable at zero with a’(0) = 0, the asymptotical stability
of the trivial stationary solution with respect to solutions of (1.1) easily
follows.

A naive extension of the above reasoning to the case of quasilinear pa-
rabolic equations reveals to be troublesome, as in this case the nonlinear
term cr is only continuous from the domain D(A) of A to the space E ; the
difficulty is related to the fact that the convolution with the semigroup
exp [At] doesn’t take continuous functions with values in E into continuous
functions with values in D(A)-in other words, no maximal regularity
result holds for the linear problem

if f is continuous with values in E [1, 2, 7].

Pervenuto alla Redazione il 9 Aprile 1983 ed in forma definitiva il 29 Novem-
bre 1983.
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As a consequence, we find it useful to work in continuous interpolation
spaces intermediate between D(A) and .E, where such a maximal regularity
result is known to hold [2]; relying upon this property, we prove by a per-
turbative approach a linearized stability result, which applies to any space
in the above referred family. It should be observed that continuousin ter-

polation spaces between D(A) and E are given a concrete characterization
in several cases of interest [2, 7]: in particular, they are little-Holder spaces.
when .E is a space of continuous functions and A a second-order uniformly
elliptic operator with regular coefficients [7]. We shall be working within
such a framework to investigate a class of quasilinear parabolic problems (1),
thus proving the asymptotical stability of the stationary solutions in little-
Holder spaces (see Section 3). The present results should be compared with
those of [8], where similar ideas are developed starting from Sobolevskij’s.
theory of evolution operators and used to study quasilinear parabolic pro-
blems in the case .E is in El-space: in such case, assumptions on the space
dimension are needed to prove asymptotical stability results concerning
stationary solutions.

Section 2 is devoted to the statement of the results, which are proved
is Section 4 and 5 and applied in Section 3 to the investigation of a las&#x26;

of nondegenerate initial-boundary value parabolic problems with nonlinear
diffusion. Some definitions and results to be used in the following are given
in the Appendix for the convenience of the reader.

2. - Statement of the results.

Let E denote a Banach space and D(A) C E the domain of
a closed linear operator A in E. For a given couple of Banach spaces E,
.~ the Banach space t(E, F) of continuous linear operators from E to P
will be considered (norm we set t(E):= C(.E, E). For any T &#x3E; 0 we

denote by C’( [o, T] ; I’ ) the space of k times continuously differentiable
functions from [0, T] to a Banach space F, endowed with the usual norm;
the notation C([0, T] ; F) := 0°([0, T] ; F) will be used.

Let E, F be two Banach spaces such that .F’ is continuously embedded
in .E. By a local (classical) solution of the Cauchy problem in E :

we mean any which satisfies (2.1 ) ( ~’ _
= T(uo) &#x3E; 0; o c F); the solution is said to be global if T = + 00. Ex-

(1) Quasilinear parabolic problems of general form can be dealt with similarly.
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istence and uniqueness results concerning classical solutions for a wide class
of parabolic problems, which encompasses (2.1) as a particular case, can
be found in [2]. The usual definitions of asymptotical stability or instability
of the null solution with respect to solutions of (2.1) will be used in the

following.
The following assumption will be made throughout:

~(~1) A is the infinitesimal generator of a strongly continuous analytic
semigroup exp [At] on .E of negative type, namely

Under the assumption (A ), we can consider the following Banach spaces :

endowed with the norm ; respectively

endowed with the norm The space Do (respec-
tively De+1) can be viewed as an interpolation space between D(A) and E
(D(A2) and D(A), respectively) [2]. It can be proved that is con-

tinuously embedded in De and the restriction A : Do is the infi-
nitesimal generator of the restriction of the semigroup exp [At] to Do; in
addition, such restriction is analytic [2].

We shall also use extensively the extrapolation spaces defined in [3],
whose ideas and results of relevance for the present purposes can be briefly
summarized as follows (see the Appendix for further details). Under the

assumption (A) (2), a larger space f (depending on A by construction) can
be defined in which E is continuously embedded, i.e., is dense in f
(3 denoting the natural injection of E in ~). Moreover, an extension A
of A can be defined in L such that:

(a) A is the infinitesimal generator of an analytic semigroup on f;
(~) D(A) _ J(E); J

(y) -D(A2) _ 
Due to (fl), (y) we get (with obvious notations) by clas-

sical inteipolation results [12]; then it is natural to define the extrapolation

(2) Actually, the semigroup need only be bounded [2].
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spaces [)o{()E(O, 1»). If B is a closed ]!near operator on .E with
domain D(B) = D(.A), such that both and B-1 A are bounded on E,
an extension 13 of B in E can be defined : it follows from the closed graph
theorem that the operators A and B (respectively l and B) lead to the same
interpolation spaces Do (Do-,, respectively; 0 c- (0, 1)).

Wben no confusion arises, we shall use the same notation for an operator
in E and its extension in ~.

Concerning the problem (2.1 ), the following additional assumptions will
be made:

j (i) N is a continuous map from to L(D(A), .E), respectivelyI from D(A) to C(D(A2), D(A) ) ;

(R) R maps D into itself continuously; moreover, y there exists &#x3E; 0

such that I implies

We can now state the following asymptotical stability result.

THEOREM 1. Let (A), (N), (R) be satisfied ; moreover, assume that f or any
~co E there exists a unique local solution u E 0([0, T] ; DO+1) 0 01([0, T] ; Do)
of the problem (2.1) ( T = &#x3E; 0 ; 0 E (0, 1 ) ). Then :

(a) for any Uo E D,+l such that /uolo+1 is small enough, the corresponding
solution of (2.1) is global;

(b) the trivial stationary solution is asymptotically stable in .De+~ with
respect to solutions of (2.1).

In order to prove the above result, we need preliminary informations
about the linear nonautonomous problem in E:

where t &#x3E; 0 and the operator A is assumed to satisfy the assumption (A) ;
in this respect the following result plays a central r6le [2, 9].
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THEOREM 2. Let A be the infinitesimal generator of a strongly continuous
analytic bounded semigroup on E. Then:

(a) h E 0([0, t] ; D.) implies Sh E 0([0, t] ; Do+1), where

(b) the following inequality holds:

where e~(t) := Mt -i- .l~l(te-~- 22-e.l~hl (1- 6) )/(6(1- 2~ e)) (M1&#x3E;O being a con-
stant such that t &#x3E; 0 ).

We are now in position to state the following assumption concerning
the family ~1~(t)~ :

in addition,

CO( .) being the function of the inequality (2.3).
Due to results concerning the extrapolation spaces (see above), the

maximal regularity result expressed by Theorem 2-(a) holds even if

moreover, the following inequality (analogous to (2.3))
holds:

the definition of 6~( . ) being similar to that of c,,(-) above.
The following additional assumption on the family {M(t)} can now be

introduced:

( M’ ) ~VI E C([0, t] ; ~.(D(A), E~) ; for any t e [0, t] A + M(t) is invertible, 
and [A + are bounded on D(A) (3) and the following
inequality holds: .

where 6~( . ) is the function of the inequality (2.3’ ).

(3) We shall be dealing in the following with the extensions in E of such oper-
ators.
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We can now state the following result concerning the linear problem (2.2).

THEOREM 3. Let (A), ( M) be satisfied ; then for any uo E DO+l there exists
a unique solutions u E 0([0, t] ; n C 1( [o, t] ; Do) of the problem. (2.2) with
~ - 0. Moreover, there exists a constant such that:

According to Theorem 3, the solution map G(t, 0) : G(t, O)uo
:= u(t) relative to the problem (2.2) with f = 0 is defined for any t ~ [o, t];
moreover,

Similar considerations hold for the translated problem

(where 0  8  t  t), so that the solution map G(t, s) : G(t, s) u°
: = u8(t) is defined on the triangular domain 0 c s c t c t (observe that uO(t)
= u(t) in the above notations ). The fact that G(t, s) can be extended to Do
so as to prove a variation-of-constants formula for the problem (2.2) is the
ontent of the following theorem.

THEOREM 4. Let (A), (M), (M’) be satisfied. Then there exists a map G

from the domain ((t, s) ~0 c s ~ t ~ t~ to L(D 0) r1 L(D 0+1) such that

(a) the following equalities hold in the strong sense in De :

(b) there exists ko &#x3E; 1 such that :

(c) for any f E 0([(0, t)] ; Do) and u,, E the unique solution u E C( [0, t] ;
n C1( [0, t]; Do) of the problem (2.2) is
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The existence and uniqueness claims in Theorems 3, respectively 4 are well-
known and can be proved under weaker assumptions [2]; we focus here on
the proof of the estimate (2.4) and of the representation formula (2.7), which
are needed in the proof of Theorem 1.

Finally, let us observe that Theorem 1 gives an asymptotical stability
result in Do (respectively DO+2) instead of DO+1’ if its assumptions are satisfied
in the extrapolation space f (respectively in the Banach space D(A), endowed
with the graph norm) instead of the space E ; this argument can be iterated
to give asymptotical stability results in different interpolation spaces, de-
pending on the regularity of the solution to problem (2.1). It can also be

observed that instability results concerning the problem under consideration
are proved in the usual way (see [6]).

3. - Application to nonlinear diffusion problems.

In the present section we investigate stationary solutions to non-

degenerate nonlinear diffusion problems by using the linearized stability
result given in Theorem 1; the following subsections are devoted to the
case of homogeneous Dirichlet, respectively Neumann boundary conditions.

(a) We are interested in the following problem: ,

where Q C Rn is an open bounded domain with 000 boundary aS2. The fol-
lowing assumptions will be made throughout the present section:

then the pro-
blem (3.1) can be rewritten as follows:
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Let us denote by .E the space of continuous functions on d7 which
vanish on 8Q and by D the domain of the Laplacian in E (i.e., D(4)
: = endowed with the graph norm. The map y~ : D --~ .~,
v - 1p(v) := X(v)L1v + g(v) is easily seen to be Fréchet differentiable from D
to L~’ under the assumptions (99), (f); if y(13) = 0, we have for any 

where - 0 as 0. For the present purposes it is convenient
to separate out the part of or which is of higher order from E to itself ; we
get easily

where

and mag ( IRk(v, u) I./ lu 1,) - 0 as lu lz 0.
k-I,2

Now let v denote a (classical) stationary solution of the evolution equa-
tion in (3.2) with the given boundary conditions: the new unknown function
u = v - v is seen to satisfy a Cauchy problem in E of the form (2.1 ), if the
following definitions are introduced.

Observe that, due to the assumptions (p) and (f), both L1p and 4q
belong to the space of continuous functions on ,~. Let us

also note the following equality for subsequent purposes:

We shall be dealing in the following with the Banach spaces D(A),
D(A 2) endowed with the graph norm.



289

observe for further reference that the m(x, u(x)~ (respect-
ively belongs to E whenever u e E (uED(A),
respectively). When no confusion arises, the notation 

:= u(x)) (x E l7) will be used; clearly, p depends on u.

(y) Set u) := R,(v(x), u) - u) (x E S2; u E R);
define for any 2c E E

Let us consider the Holder space C"’(D) ( k endowed

with the usual norm, namely

(where oc = ..., ocn) is any multiindex); we shall denote by 
the subspace of consisting of all functions whose derivatives of the
k-th order satisfy the following condition:

The so-called little-Hölder space is clearly a Banach space under
its interest for the present purposes lies in the following

result [7].

PROPOSITION 3.1. Let Q 9 Rn be an open bounded subset with boundary
aS2 of class 000. Let A be a uniformly elliptic operator in E defined as follows :

a,,, bl, c E C(SZ) (i, j = 1, ..., n). Then Do is isomorphic to the Banach
space hoe(S2) of f E which vanish on aSZ (0 E (0, 1), 6 ~ 2 ~. If in addi-
tion ai f, bl, c E and aSZ is of class h2o+2, DO+l is isomorphic to the Banach
space h2o +2(S~) of f E h2o+2(Q) such that both f and Af vanish on aSZ (0 E (0, 1),
e ~ 2 ).
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The above concrete characterization of the interpolarion spaces Do, 
is of use in the proof of the following asymptotical stability result (4).

PROPOSITION 3.2. Let (~), (f) be satisfied and g’(0) = 0 : let v denote any

stationary solution of the evolution equation in (3.2) (with the given boundary
conditions) such that the real part of the spectrum of A is strictly negative.
Then v is asymptotically stable in the little-H ölder space with respect
to solutions of the problem (3.2).

PROOF. - According to [10], the operator A defined in (3.5) is the infini-
tesimal generator of a strongly continuous analytic semigroup on E ; if the

spectrum of A lies in the left open half-plane, the type of exp [At] is negative
as A has compact resolvent. This proves the assumption (A ) to be satisfied.

It is easily checked that the restriction y~ ~h2e+~ is Fréchet differentiable

from h"+’(D) to with derivative 2 (eG(0,l),0~); then the
existence of a unique local solution of the problem (3.2) in C( [0, T] ; h2e+2(~) )
~1 C1( [0, T] ; any uo E (T == follows from [2, Theo-
rem 4.1]. Obviously, the same is true for the solution of the problem (2.1)
in the present case.

Let us prove that the map u - N(u) defined in (2.6) satisfies the as-

sumption (N). Due to the regularity properties of the map fl (see (fl) above),
it is easily seen that the property (N)-(i) is satisfied.

To check (N)-(ii), observe that the spectral properties of A imply A-’,
thus (4 + q/p)-1, to exist as a bounded operator in E; in addition we get

From the equality

it follows easily that the extension of in E satisfies the inequality

where c(u) - 0 if [Jul,, -~ 0; in particular, c(u)--&#x3E;- 0 if u E and 0,
thus (N)-(ii) follows.

(4) It may be observed that also the Holder spaces C7+’(9) can be characterized
as interpolation spaces between D(A) and E (2, 12]. However, D(A) is not dense
in such spaces, as it is required e.g. in the proof of Theorem 4.
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To check (N)-(iii), observe that the following inequalities hold:

Let us prove for instance (3.10), the proofs of (3.8) and (3.9) being similar
(and easier). We have for any (see the Appendix):

where

whence the conclusion.

From the above inequalities (N)-(iii) follows by interpolation results [12].
Due to the characterization of h2()+2 given in Proposition 3.1, the opera-

tor .R defined in (3.7) is easily seen to satisfy the assumption (R) : thus the
result follows by Theorem 1.

It is easily checked by a classical argument (see [5]) that the real part
of the spectrum of A is negative if the is decreasing;
under this sufficient condition, global attractivity results can be proved
by monotonicity methods [4].

(b) If Neumann homogeneous boundary conditions are considered,
formal calculations like those of the subsection (a) lead us to the problem

the particular choice

where 8n denotes the outer normal derivative at aS2 and the other quantities
are defined as above. The space E is now C(D), namely the space of con-
tinuous functions on as for the operator A, it is defined as follows:
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It is proved in [11] that A is the infinitesimal generator of a strongly continu-
ous analytic semigroup on E.

Clearly, the content of Proposition 3.2 still holds true in the present case,
provided we have a concrete characterization of the interpolation spaces
Do analogous to that of Proposition 3.1. We don’t know of any general
result in this respect; such a characterization is given for the one-dimen-
sional case in the following proposition, whose proof makes use of some ad-
ditional Banach spaces, namely:

PROPOSITION 3.3. Let A be the following uniformly elliptic operator
in C([0, 1]~:

where a, b, c E C( [o, 1] ). Then Do is isomorphic to the Banach space h2e( [o,1] )
(respectively 1 ] ) ) if 0 E (0, )) (if 0 E (1 , 1 ), re8pectively ) .

PROOF. Let us denote by (Y, (0 E (0,1)) the continuous interpolation
spaces between two Banach spaces Y and X, Y continuously embedded
in X, defined in [2]. Following the method outlined in [7], it is easily seen
that is isomorphic to the interpolation space (C2 (0 E (o,1 ) ; o ~ i).
On the other hand, we have C, = .F’o 0153 where Fo (respectively Fi) is

the space of even (odd, respectively) functions of C,; then there exists a
natural isomorphism j between For and C( [o, 1]), j(u) denoting the restriction
on the interval [0,1] of any U E Fo. As j: C,2 ~ D(A), the following
isomorphisms between Banach spaces are seen to hold:

thus the conclusion follows.
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4. - Proof of the linear results.

Let us prove a preliminary lemma concerning the problem (2.2).

LBMMA 4.1. Let the assumption of Theorem 2 and (M) be satisfied. Then

for any f E C( [o, t] ; Do) and uo EDo+1 there exists a unique u c- C( [o, t] ; Do+1)
n Cl( [o, t] ; Do) which solves the problem (2.2). In addition, the following 
mate holds :

PROOF. Consider the operator
as f ollows :

defined

whenever we have:

here use of the inequality (2.3) and assumption (M) has been made. It fol-

lows in particular that I + Q is an invertible operator from 0([0, t] ; Do)
to itself, such that

(a) Consider first the case 

according to the maximal regularity result expressed by Theorem 2-(a),
u c- C([0y t] ; r1 t] ; Do). To prove that u is the (unique) solution of
the problem (2.2) when uo = 0, set g : _ (I -f -- then g E 0([0, t] ; Do) and
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which proves the claim. Moreover, we have:

i.e., the inequality

which exists due to (a) above. It is immediately seen that u ~ 0([0, t]; Do+l)
r1 t]; Do) is the (unique) solution of the problem (2.2); due to the

inequality (4.2) we also have:

whence the result easily follows.

Results and estimates like those above are proved in [2] in the case
M=0

We can now prove Theorem 3.

PROOF oF THEOREM 3. Existence and uniqueness follow from Lemma 4.1.
The assumption that exp [At] is of strictly negative type has not been

used so far, thus we can apply Lemma 4.1 to

which solves the problem
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In particular the inequality (4.1) gives (with f = 0)

whence the estimate (2.4) follows easily with ko:= M(2 + max {1, 
+ 

In order to prove Theorem 4 we need two lemmas.

LEMMA 4.2. Let (A), (M), ( M’ ) be satisfied. Then there exists a map G
f rom the domain {(t, to C(Do) n such that :

(a) us(t) : = G(t, s) uo is the unique solution of the problem (2.5) in

C( [o, n Cl( [0, t]; Do) (respectively in C( [o, t] ; Do) n Cl( [0, t] ;
DO-1)) whenever uo E DO+l (uo E Do, respectively);

(b) G(s, s) = I, G(t, s’) G(s’, s) = G(t, s) as operators
in Do ;

(c) max s)lIo,oIIG(t, exp [- (ro/2)(t- s)] 
with a suitable constant 

PROOF. Let (A) and (~1’) be satisfied; then results similar to those of
Lemma 4.1 and Theorem 3 follow, whose formulation is left to the reader.
As a consequence, under the present assumptions a solution map relative
to the problem (2.5) can be defined in DO+l and extended to Do preserving
the norm, due to the uniqueness of the solutions of (2.5). The property (b)
is easily seen to hold, thus the proof is complete.

LEMMA 4.3. Let the assumptions of Lemma 4.1 and (M’) be satisfied.
Then G(t, .) is strongly differentiable on D,+l(t E [0, t]), s) : Do
and the following holds on DO+l:

PROOF. (a) For any

whence the strong continuity of G(t, .) on Do as s immediately follows

(here use of Lemma 4.2-(b), (c) is made). On the other hand, for any
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the following inequality holds:

as a consequence, the claims are proved for the case ,

(b) Assume now we have

For the first integral in the right-hand side the following estimate holds
due to the assumption (M) :

the second one can be similarly estimated as follows:

Now observe that u8 (respectively is a continuous, thus uniformly
continuous map from [s, t] (respectively [0, t]~ to (~(.I~e+1~ D.), respect-
ively) ; namely, for any &#x3E; 0 there exists 6 &#x3E; 0 such that so - s C implies
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f or any

Then from (4.4) and the above inequalities we get

whenever so - s  ~; thus the claims follow also when 8 ~ 8; and the proof
is complete.
We can now prove Theorem 4.

PROOF oF THEOREM 4. Claims (a) and (b) are the content of Lemma 4.2;
as for (c), choose f E C([0, t]; D8+1), and denote by u the correspond-
ing unique solution of the problem (2.2) (which exists by Lemma 4.1). For

we get, according to Lemma 4.3,

then the equality (2.7) follows by integration on [0, t]. A standard exten-
sion argument proves the result for a general this com-

te,s the proof.

5. - Proof of theorem 1.

Set Eo:= min {l/(2~c(0)), 61 where = 6g(t) : = max 
(cø(.) and i5,(-) being the functions which appear in the inequalities (2.3)
and (2.3’), respectively) and k = ke:= if (2 + max {1, + 
It is easily seen that there exists 9 E (0, co) such that, for any e E (0, E), the
quantity
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has the following properties:

In addition, denote by z (0, T) ) the supremum of the interval (con-taining the origin) of times such that IUolo+1  Ek implies lu(t)/o+1  -.

(a) Let us first prove that IUolo+1  8k implies 7:&#x3E; i whenever E E (0, ë).Otherwise, we have on the interval [0, -r)c[0, z which entails

due to (N) and the definition of F. Then the variation-of-constants for-
mula (2.7) can be used to represent on [0, r) the solution of problem 2.1 ~here G(t, s) is the solution map relative to problem (2.5) with if() = N ( u t )(0~«T). Due to (2.6) and (R) we get: 

() ( ()

whence, by Gronwalllq lemma:

L B- / J

This in turn implies u(i)  g, thus r - + oo, contrary to the assump-
tion T  z.

(b) Let us assume 8/k with c E (0, ë); then it follows T&#x3E; f,
according to (a) : the inequality (5.1) is now satisfied on [0, f) and we have
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due to the definition of f and 9. Were r  + 00, there would exist a posi-
tive integer n such that i = ni + s [0, z) ) ; this in turn would imply, y
iterating the above procedure,

which is absurd. From the contraction the global existence of the solution
of (2.1) and the asserted Do+1-stability of the trivial stationary solution follow.

In order to prove that is infinitesimal as t 2013~ + observe that

for any positive integer n; as the right-hand side of the above inequality
is infinitesimal when n - oo, the result follows.

6. - Appendix.

Let E denote a Banach space and A the infinitesimal generator of a

strongly continuous analytic semigroup exp [At] on E, with domain D(A. ) ~ E.
Let denote the graph of A, namely

is a Banach space when endowed with the norm of the product E X E,
since A is closed.

Let us introduce the space R defined as follows:

if we denote by (u, v)~ the coset of (u, v) in E X E, namely

the space f is a Banach space when endowed with the norm
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where the infimum is taken with respect to any (~, q) E such that

(~ - U, 77 - v) E G(A).
The natural injection 3 of E into -R is defined as follows :

The following results can be proved [3].

THEOREM A.l. (i) is dense in È. (ii) Let Ã be the operator defined
as follows:

then.Z has the same spectral properties as A and ÃJ = JA. (iii) D(.Z~) = J(D(A)).
The operator Ã is called the extrapolation of A to f.
According to the above results, y it is natural to set by definition

where

The spaces DO-1 will be referred to as the extrapolation spaces relative to
the operator A (obviously, by definition).

The extrapolation i of A to E having been defined, let us consider a
different linear operator B in B and look for conditions which allow us to
define its extrapolation È to E; observe that the dependence of E on the
operator A makes the problem nontrivial. Sufficient conditions for extra-

polating B in an important case are the content of the following theorem.

THEOREM A.2. Let B denote an unbounded closed operator in E such that

D(B) = D(A) and (Â - B)-1 exists (as a bounded operator in E) for any ~, &#x3E; 0.

Assuming that

(A.3) both A-1 B and B-1 A are bounded in B ,

define the extrapolation B of B to ae as 
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(where denotes the closure of A-’B in E). Then (Â- exists (as
a bounded operator in ae) for any I &#x3E; 0. In addition,

implies
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