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Boundary Value Problems
for Harmonic and Minimal Maps of Surfaces into Manifolds.

LUC LEMAIRE

Statement of results.
’ 

Let and N, h be smooth Riemannian manifolds, with compact
and possibly with boundary. Let 99: M - N be a C°° map. Its energy is

defined by E(99) = where V is the volume element associated with
M

g and the energy density is given by = ! IdP12. A map 99 is called

harmonic iff it is an extremal of E. Such a map satisfies the equation -r(gg) = 0,
where i is its tension (see [5] for details).

I 

The existence problem is primarily concerned with the presence of a
harmonic map in the various homotopy classes of maps from .lVl to N. We

again refer to [5] for a list of known results and a detailed bibliography.
In the present paper, we first study this existence problem in the case of

maps from a surface with boundary to a manifold, for homotopy classes
relative to Dirichlet and Neumann problems. M, g will denote a compact
surface with boundary, which is necessarily a connected sum of tori, projec-
tive planes and half spheres, whose boundary circles Ci (i = 1, ..., b) con-
stitute the boundary 3if. The interior of if is denoted by We shall

always suppose aN empty but note that H. Meeks and S.-T. Yau have

shown how to replace such an N by a convex manifold with boundary
(see [13] for definition and proof).

For the Dirichlet problem, we shall use the following

(1.1) DEFINITION. and ffJ1 be two continuous maps to N

.,such that = = 1p. and g~l are homotopic relatively to the Dirichlet
problem induced by 1p iff they are C° homotopic through a f amily (pt with = 1p.

If qo and qi are homotopic and Ck (resp. Ck in .lVl° and OJ on 31, j  k), then

Pervenuto alla Redazione il 10 Novembre 1980 ed in forma definitiva il 6 Di-

cembre 1980.
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the homotopy can be realised by a Ck map (resp. Ck i-n MOX [o, 1] and OJ on-
MX [0, 1]).

In other words, the homotopy classes of-say-Ck maps relative to a.

given are the connected components of the space of Ck extensions, with
respect to any C’ topology, 0  1  k.

Following the basic method of C. B. Morrey [14], [15, p. 378-389], we
use the Sobolev class of maps L’(M, N), defined by means of any Rieman-
nian embedding of N in RP as N) = {~: M -+ RP : c N almost

everywhere and 0 E L’(M, RP)}.
ø is here seen as the composition of the map 99: M -~ N with the embed-

ding.
To state the first result, recall finally that a manifold is called homo-

geneously regular [14] iff there exist two positive constants c and C such
that any point w of N is in the domain of a coordinate chart F: U R"
whose image is the unit ball and such that F(w) = 0 and

and X E TuN. This condition is always satisfied if N is compact.

(1.2) THEOREM. Let M, g be a compact surface with boundary and N, h a.
homogeneously regular manifold, such that II2(N) = 0, where II2(N) denotes
the second homotopy group. Let 1p: N be the restriction to of a con-
tinou8 and Lî map f rom M to N. Then the Dirichlet problem

admits a golutioit 99 in every relative homotopy class, smooth in MO, continuous.
on M and minimising the energy in the class. If y~ E N) (ot-HOlder-
continuous derivatives up to order s) with 0 c s c 00, then 99 E N).

A solution of the Dirichlet problem for maps from a plane domain to a.

manifold, without homotopy restriction, was obtained by C. B. Morrey [14].
The existence of harmonic elements in the homotopy classes of maps from
a surface without boundary to N with II2(N) = 0 was proven in [11], using
basically Morrey’s method, and by J. Sacks and K. Uhlenbeck [16] [17]
by a completely different approach. [19] provides a variation of the proof
of [11] which will be used here.

(1.3) REMARK. The hypothesis II2(N) = 0 cannot be simply omitted-
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Indeed, [10] and [11] give an example of a homotopy class relative to a
Dirichlet problem for maps from the 2-disk to the 2-sphere without harmonic
representative. For a list of some manifolds satisfying II2(N) = 0, see [5,
(10.9)].

Consider now the Neumann problem defined by 8,q = 0 along 8M,
where a, is the normal derivative. If Po and PI satisfy this condition and are
freely homotopic, then they are also relatively homotopic in the sense that
they are homotopic through a family 99, t with = 0 along a M. Indeed,
it suffices to modify the parametrisation of the maps of the homotopy.
We state:

(1.4) THEOREM. Let M, g be a compact surface with boundary and N, h a
compact manifold with II2(N) = 0. Any homotopy class of maps f rom M to N
contains a smooth solution of the Neumann problem T(p) = 0, = 0,
minimising E in the 

Recall that by transport of the loops, any continuous map 99: M - N
induces on the first homotopy groups a conjugacy class of homomorphisms
[p*], the conjugacy coming from the changes of base point. The preced-
ing result is a corollary of:

(1.5) THEOREM. Let M, g be a surface with boundary and N, h a compact
manifold. For any conjugacy class of homomorphisms y: II1(lVl) -+II1(N),
there is a solution g~ of the Neumann problem such that [q*] = y.

REMARK. We shall show by means of examples that a homotopy class
relative to the Dirichlet or Neumann problem can contain more than one
harmonic map. However, if the sectional curvature of N is negative, the
harmonic maps are essentially unique in their classes.

Classically, the existence of harmonic maps is used to obtain minimal
surfaces i.e. (in this framework) maps from a surface M to N which minimise
or extremise the area

Here, the integral is independent of the choice of g, which will in general
not be specified a priori.

Without going back to the history of the method (see e.g. [3] and [15]),
we note that it was applied by C. B. Morrey to maps from a plane domain
to N [14], and by J. Sacks and K. Uhlenbeck [18] and R. Schoen and S.-T.
Yau [19] to maps of closed surfaces.

Recall [14, chap. 1] [15, (9.1)] that for two CO paths yo : Io-N, yi: Ii-*N
(where 10 and II are intervals), the distance between ~o and ~1 is defined as
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the infimum over all homeomorphisms H: 11 of magh dist 
A curve in the sense of Fréchet is an equivalence class of paths

at zero distance from each other. One can define the distance,, between two
such curves as the distance defined above for any of their parametrisations,
and if a sequence of curves converges to a curve in this sense, there exists
a sequence of paths parametrising them converging uniformly to a para-
metrisation of the limit.

A closed simple curve is called a Jordan curve.

(1.6) DEFINITION. Let Fi be b disjoint Jordan curves in N and qJo, qJ1:
1Vl --~ N two continuous maps mapping Ci in a monotone way on Fi. 1Ve say
that cp° and are relatively homotopic if they are homotopic through a family 99t
with (jJtj Ci monotone with image in Fi.

Again, homotopic maps with higher differentiability are homotopic
through maps with the same differentiability.

(1.7) THEOREM. Let M be a compact orientable surface with boundary
01 ~J ... u Cb and N, h a homogeneously regular mani f otd such that II2(N) = 0.
Let Ti, ..., Fb be disjoint Jordan curves in N such that there exists a continuous
map 1jJ: J,l - N of finite energy, mapping each Ci monotonically on Fi and
szcch that [1p*]: Il1(N) is injective. Then 1jJ is relatively homotopic to
a minimal map T, smooth in MO and continuous on M, mapping Ci i on Fi
in a monotone way and minimising the area among all such maps. If each
Ti is a Cs +" curve ( 2 then 99 E N).

(1.8) REMARK. The hypothesis that [1jJ*] be injective is used to prevent
standard degeneracies of the surface when its area decreases to an infimum,
like a change of genus or the splitting into more than one connected com-
ponents. The hypothesis d  d* of [3] for maps from a surface to .Rn or of [14]
for maps of plane domains to N has the same purpose, but is of a different
nature since it restricts the possible types of surfaces M in relation with the

given Fils. Note also that our hypothesis excludes the case N = Rn.
Theorem (1.7) is related to the Dirichlet problem for harmonic maps.

One might wonder whether minimal maps could also be solutions of the
Neumann problem. We shall easily observe that it is not so. Indeed :

(1.9) PROPOSITION. Let 99: N be a minimal map such that = 0

along an arc a of (a not reduced to a point). Then 99 is constant.

It is a pleasure to record my thanks to J. Eells and V. L. Hansen for
useful conversations, in particular during the 1980 Complex Analysis Semi-
nar at the I. C. T. P. (Trieste).
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2. - The Dirichlet problem for harmonic maps.

We first justify the differentiability statements made in the definition
of relative homotopy (1.1).

In the case of manifolds without boundary, it is shown in [4] chapter 16,
section 26, that two Ck maps which are CO homotopic are in fact Ck homotopic.

In the case of definition (1.1), the proof shows that for s &#x3E; 0 small enough,
two Ck maps 990 and 99, homotopic relatively to their boundary restriction 1jJ
are Ck homotopic through maps qi such that dist v(x)) C E for x E am.
Using the techniques of [4, (16.26.3 and 4)], one can then Ck deform the
maps qi in a tubular neighbourhood of am to make them coincide with 11’
on aM.

When considering two maps 990 and qi which are Ck in MO and Ci on M,
one can first Ck deform in such a way that it coincides with qo in a tubular

neighbourhood of am (using a bump function and [4, (16.26.4)]). The problem
is then reduced to that of Ck maps on a slightly smaller manifold with
boundary

We now turn to the proof of theorem (1.2).

(2.1) LEMMA. Let M be a compact surface with boundary, N a manifold
with II2(N) = 0 and and 99, two continuous maps from M to N equal on am.
If for any path fl in .lVl with endpoints on am, is relatively homotopic
to (i.e. homotopic with endpoints fixed), then 990 and are relatively homo-
topic (as in definition (1.1)).

In fact, we shall establish a more technically stated result:

(2.2) LEMMA, With the same hypothesis on M and N, fix a point PE01.
The maps and equal on am, are relatively homotopic if a) ggo* = 

(we don’t have conjugacy classes here since we can
f ix a base point P with f/Jo(P) = CP1(P)), and

b) for a set of non-intersecting paths i  b) from P to points of the
Ci’s, and are relatively homotopic.

When am = ~, this reduces to a well-know property (see e.g. [20, proof
of theorem 11, chapter 8, section 1]).

PROOF OF LEMMA (2.2). It is well known that 1~ can be represented by a

region bounded by a polygon, with some sides identified two by two,
the others corresponding to the boundary curves (see e.g. [21, chap. 5]).
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In the present situation, we can write the surface symbol (list of sides
of the polygon, with identification of pairs of sides with the same name) as

so that all vertices except those adjacent to Ci i (2  i  b) correspond to the
point P, the curves Pi provide the slits from P to Ci, the a~’s represent the
cross caps and the bj, c/s the tori.

Still denoting by qo and CP1 the maps induced from R to N, we have
qo(P) = and 990,c, = Moreover, qo and CP1 restricted to any side
of the polygon a.R are homotopic with fixed endpoints.

We can then deform continuously to make it equal to on aR. Indeed,
in a tubular neighbourhood T of aR (with corners, which don’t matter since
we work in the CO framework), we can first change the parametrisation of g~l
in such a way that the half of T closer to 8R (say ~S) has image on 
The homotopy from to defined on oR can then be used to define a map
from S to N, connecting and 9,010R-

qo and qi are then equal on the one-skeleton of a cellular decomposition
with only one 2-cell. By a result of W. D. Barcus and M. G. Barratt [2],
used in its simplest case II2(N) = 0, there is only one homotopy class of
extensions of such maps to the 2-cell, so that qo and ~i are relatively homo-
topic.

PROOF OF THEOREM (1.2). We shall use a direct method of the calculus
of variations, in the framework of the space L’(M, N).

Recall [15, lemma 9.4.10.d] that if 99 E L’(M, N), in any chart (x, y) of

M, 9,ix=xo is continuous in y except maybe for xo in a set of measure zero.
R. Schoen and S.-T. Yau have shown in [19] that the image of a closed

contractible curve of M by 99 is contractible if this image is continuous.

They use this to define the action (which will mean here: up to homotopy)
of an L’ map on a closed curve a by the common image (up to homotopy)
of almost all curves parallel to oc in a tubular neighbourhood.

Since our maps are fixed on 8M, this defines also an action of 99 on any
of the curves Pi that we consider, as the common homotopy class of images
of curves composed of a segment of C., a curve parallel to fli and a segment
of Ca , the segments being necessary to build curves with same endpoints.

The proof follows then as in [14] and [19]: consider a minimising sequence
for E in the class of L’ maps with value ip on 8M and inducing on loops a;
and paths Pi the action induced by the given homotopy class. By [15, lem-
mas 9.4.14-15-16], a subsequence converges in N) to a map q;,

equal on aM, with Moreover, on almost each curve
(in the sense of measure as above), a subsequence converges uniformly
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[12, proof of lemma 1.4] and induces therefore the same action on a~

and Hence, it minimises the energy in every small disk of (for the
Dirichlet problem induced by its trace on the boundary of the disk), and
is C°° in M° and CO on M, by the regularity results of C. B. Morrey [14].
By lemma (2.2), it is in the given homotopy class.

The regularity results along aM are local and were obtained in [9] (see [8]
for complete statements). 

(2.3) REMARK. As in theorem (1.5) for the Neumann problem, we could
state an exitence theorem for II2(N) =F 0, the homotopy classes being replaced
either by the data of [~*], or by that of the action on III (M) and the curves ~.

3. - The Neumann problem for harmonic maps.

The proof of theorem (1.5) now reduces to known ingredients. We write
it in a way avoiding any use of boundary estimates.

Consider the class of L’ maps from M to N inducing the given class of
homomorphisms y on 1Ii , without any restriction on the boundary. N being
compact, a minimising sequence for E in that class is a bounded set in N)
and we obtain as above a minimum q of the energy, smooth and harmonic
in M° .

Consider now any point P E aM and a coordinate (half) disk around P.
By a conformal change of metric, we can see it as a flat half disk D+ =
= y) : x2 -~- y2  1, x ~ 0~, in such a way that D+ n = D+ r1 {0153 = 0}
and P = (0, 0).

By conformal invariance of the energy [5, (10.2)], q; minimises E (for the
flat metric) among all maps coinciding with q on D+ r1 (r2 + y2 = 1~.

We then extend to a map §5 defined on the whole unit disk D in R2
by setting ip = on D+ and §5(z, y) = x, y) on DBD+. By standard
patching properties, q5 E N).

Moreover, ip minimises E among all maps y such that = Indeed,
if it didn’t, there would exist a map 1jJ with Vl,,D = and  E(§5).
The same would be true for y restricted to D+ or to DBD+, say to the former.
The map equal to q on and y on D+ would then be in the given class
of N) and have energy smaller than the minimum-a contradiction.

§5 is therefore smooth and harmonic in DO. Since the normal derivative

is the same along aM for the original metric or the conformally equivalent
one (the angles and the tangent being preserved), and since §5(z, y) = §5(- x, y)
we get = 0 along the boundary and is a solution of the Neumann
problem.
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If II2(N) = 0, the homotopy classes are in bijective correspondence with
the conjugacy classes of homomorphisms on Ih and theorem (1.5) implies
theorem (1.4).

REMARK. The fact that = 0 for the minimising map can also
be deduced from the variation formula [5, (12.11)]

since X is not restricted in any way on aM.

4. - On the unicity of harmonic maps.

We first show by an example that the solutions of the Dirichlet and
Neumann problems need not be unique in their relative homotopy classes.
By using a somewhat artificial metric, we obtain in fact a continuous family
of solutions.

Let M be the cylinder [0, II] X RI2IIZ endowed with its flat metric and
Euclidean coordinates (w, y). For 0  b  a, denote by Na,b the cylinder

equipped in coordinates (u, v) with the metric

and consider Na,b as a band isometrically embedded in a torus N.
As noted in [12, § 3], a map g~ : X ---&#x3E; Na,b of the form y) = (u, v) =

= (I’(x), y) is harmonic iff d2Fldx2 + F = 0 and the solutions are of course
given by y) = (c ~ cos (x + d), y) where c takes any value in [- a + b,
a - b].

For d = - II/2, these solutions satisfy g~(o, y) = y) = (0, y), so that
they are all solutions of the same Dirichlet problem.

For d = 0, they are all solutions of the Neumann problem.
In both cases, the hypothesis of the existence theorems (1.2) or (1.4)

are satisfied.

On the other hand, we note the

(4.1) PROPOSITION. If the sectional curvature of N is non-positive,
the Dirichlet problem of theorem (1.2) admits only one solution in each
homotopy class. If the curvatures of N is strictly negative, the Neumann
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problem of theorem (1.4) admits only one solution with image not reduced
to a point or a geodesic in each homotopy class.

As noted in [5], the first statement follows immediately from the proof
of the corresponding theorem of P. Hartman in the boundaryless case [6].
For the Neumann problem, the statement can be reduced to the boundaryless
case by doubling the surface .M and defining an extension of the map on
the double as in § 3.

5. - Minimal surfaces of given boundary.

Since the energy is invariant by conformal transformations of the surface M,
it suffices to define on M a conformal-or a complex -structure in order to
define its harmonic maps. To obtain a minimal map, we shall use the fol-

lowing version of a classical result, which can be proven exactly as in the
boundaryless case [17].

(5.1) LE3nfA. Let 99: M - N, h be a map extremising the energy for all
variations of the conformal structure on the surface M and all deformations of
the map in a relative homotopy class (in the sense of def. (1.6)). Then 99 is

harmonic and conformal in and is therefore a minimal branched immersion.

To get such an extremal, we shall use three more lemmas.
Analogously to lemma (2.2), we have:

(5.2) LEMMA. Let 99, and CPt: M - N be two continuous map8, mapping
each 0 i monotonically on such that CPt restricted to the of n.

cellular decomposition is homotopic to 990 restricted to the same space, in such

a way that along the homotopy (Pt( 0 i) c Fi. Then and cpt are relatively homo-
topic in the sense of de f inition (1.6).

From now on, we shall suppose that the genus p of M (number of tori
in the connected sum decomposition) is greater than zero or that b ~ 3.
The case p = 0, b = 1 is that of a disk, and existence in the unique homotopy
class (since II2(N) = 0) is classical. The case p = 0, b = 2 can be proven
as those that we consider, by using a flat torus instead of the closed surfaces
here below.

(5.3) LEMMA. Any orientable surface with boundary, with or b&#x3E;3,
equipped with a conformal structure can be doubled as a closed Riemann surface

endowed with a conformal involution i interchanging M and the closure



100

of and whose fixed points constitute a.lVl. When lit is equipped with
its Poincaré metric (unique metric of curvature - 1 compatible with the con-
formal structure), i is an isometry and the Ci’s are closed geodesics.

See e.g. [1, chap. II, § 1.2].

(5.4) LEMMA. Let N be a homogeneously regular Riemannian manifold
and (1 ~ i c b) a family of disjoint Jordan curves in N. There is a strictly
positive number K smaller than or equal to the following quantities :

1) the length of all non-homotopically trivial curves;

2) the length of all curves with an endpoint on Fi and the other on 
for 

3) the length of all curves with endpoints on Tj and not homotopic to a
point through curves with endpoints on 

Indeed, since N is homogeneously regular, any non-homotopically trivial
curve has length greater than or equal to and in the two other classes

of curves described in the lemma, a direct method of the calculus of varia-
tions yields a minimising geodesic of positive length.

PROOF OF THEOREM (1.7). Consider a minimising sequence for E,
where each tk is a conformal structure on M and a harmonic map with

respect to t,~, such that (p,ic, converge as Fréchet curves to and belonging
to the given relative homotopy class, up to a small deformation in a neigh-
bourhood of 8M, bringing the image of Ci by on J~.

We want to show that both (tk) and admit converging subsequences.
By continuity of E with respect to (tk) [18, lemma 4.2] and lower semiconti-
nuity of E with respect to the limit will realise a minimum of E.

For each k, consider first the double of .lVl, tk with its conformal structure tk
and Poinear6 metric as in lemma (5.3). Define an L’ on by = ~k
on lVl and cp,L = 99k 0 i on E Li (lVl, N) and is bounded inde-

pendently of k.
By the image of almost all non-homotopically trivial curve is con-

tinuous, L2 and of length bounded below by K &#x3E; 0. Indeed, observe that
any such curve in J~ has one of the following properties:

1) it is contained and non-homotopically trivial in or J0BM,
2) it intersects two Ci’s,

3) it is homotopically equivalent to a multiple of Ci ,

4) it contains an arc with endpoints on Ci, non homotopic to a point
through arcs with endpoints on Ci .
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In each case, the injectivity of and lemma (5.4) imply that the length
of the image of the curve is ~ .K.

From lemma 3.1 and the proof of theorem 3.1 of [19], it follows that the
sequence of conformal structures 1, is contained in a compact subset of the
moduli space of so that a subsequence converges to a conformal struc-
ture on .1fl, inducing one on .M by restriction.

From now on, we shall calculate the energies with respect to this limit t,
which, by compacity, will simply modify the inequalities in consideration
by fixed constants.

The sequence is a bounded set in N), so that a subsequence
converges weakly to an L’ limit cp, with E(99) lim and such that

c Fi. On almost each curve, a subsequence converges uniformly.
Following the proofs of lemmas 9.3.2 and 9.3.3 of [15], we shall show

that the restriction of the maps to each Ci converge uniformly to a conti-
nuous and monotone limit.

For a boundary curve Ci - C parametrised by a coordinate q + 211kg
and a Jordan curve F, there exist by the properties recalled in § 1
two sequences of maps f1c: R - R and F1c: R --~ N such that 99klO(n) =
= (Fk) is a sequence of continuous periodic maps converging uni-
formly to F, (f1c) a sequence of monotone continuous functions such that

2013 ~ is periodic of period 21I and a subsequence converges in L2

and almost everywhere to a function f in such a way that epla = Fof.
We first show that f is continuous.
Suppose, on the contrary, that for a value f+(q) ~ f~(q) (where f +

and f - denote right and left limits).
Let D, denote the disk of radius r centred at q, yr its boundary in M

and yr the arc For any 99k and a.e. r small enough, yr ) has
length&#x3E; K since it is homotopically non-trivial in N.

If f +(~ ) - f -(r~ ) ~ 21I, and for suitable r, the length of
arcs 99k(Yrf) must tend to a positive value.

If f +(r~ ) - f -(r~ ) = 217, = but as the length of tends

to zero, the length of tends again to a positive value. More precisely,
for any ð &#x3E; 0 small enough, there is an integer ko such that for the

length of is greater than d &#x3E; 0 for a.e. r such that 62  r  6. There-

fore, in polar coordinates (r, 6) in D , we have, using the flat metric:

Since is bounded, this is impossible for 6 -~0 and the limit f is continuous.
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The sequence of continuous and monotone functions converges a.e.

to a continuous and monotone function f. This convergence must be uniform.
Indeed, Vê &#x3E; 0, ~ ~ such that 0 C ,u C ~ implies -E- p) - f (?7)  8.

We can then choose [417/6] numbers 77i in an interval containing [0, 2II]
(in which we want to show convergence) such that ?7i  + 3 and

--~ f (~ i ) . For the given 8, there is therefore a number ko such that

implies Then, for any q, say such 
 ?7i+,, we have 

’

and similarly for /(7y) - 
The sequence converges therefore uniformly on each C . With the

interior convergence as above, this implies that the characterising properties
of lemma (5.2) are preserved at the limit 99. As 99 minimises E among all
maps satisfying those properties, it is smooth in and continuous on M.

By lemma (5.2), it belongs to the given homotopy class.
The regularity results along aM are due to E. Heinz and S. Hildebrandt [7].
To prove that 99 minimises the area, we can essentially follow [15] or [19].

Let e : be a Riemannian embedding and -e its composition with
the multiplication by E in RQ.

Suppose that there is a map y, relatively homotopic to T with A(1p)  
The is an embedding for 8 &#x3E; 0,

and for the induced conformal structure t on M we have 8e) =

[5, (10.3)]. For we can choose E such

that + 3 so that E¡(1p) 8e)  A (V) + 3  
. E,(99), contradicting the minimising property of 99 for the energy.

(5.5) REMARK. If II2(N) =F 0, the hypothesis of lemma (5.2) describe

classes of maps containing a minimal surface, as in remark (2.3).

6. - Minimal surfaces and the Neumann problem.

Suppose that 99: M - N is smooth, harmonic, conformal and satisfies
= 0. Then, along a, the tangential derivative is zero by conformality

and cp is constant. Steps 2 and 3 of the proof of theorem (3.2) of [11] show
then precisely that 99 must be constant, as successive derivations of the con-
formality conditions show that all its derivatives vanish at a point.



103

BIBLIOGRAPHY

[1] W. ABIKOFF, The real anatytic theory of Teichmüller space, Springer Lecture
Notes 820 (1980).

[2] W. D. BARCUS - M. G. BARATT, On the homotopy classification of the extensions
of a fixed map, Trans. Amer. Math. Soc., 88 (1958), pp. 57-74.

[3] R. COURANT, Dirichlet’s principle, conformal mapping and minimal surfaces,
Pure Appl. Math. III, Interscience (1950), Springer-Verlag (1977).

[4] J. DIEUDONNÉ, Elements d’analyse, tome 3, cahiers scientifiques, fascicule 33,
Gauthier-Villars (1970).

[5] J. EELLS - L. LEMAIRE, A report on harmonic maps, Bull. London Math. Soc.,
10 (1978), pp. 1-68.

[6] P. HARTMAN, On homotopic harmonic maps, Canad. J. Math., 19 (1967),
pp. 673-687.

[7] E. HEINZ - S. HILDEBRANDT, Some remarks on minimal surfaces in Riemannian
manifolds, Comm. Pure Appl. Math., 23 (1970), pp. 371-377.

[8] S. HILDEBRANDT - H. KAUL - K.-O. WIDMAN, An existence theorem for har-
monic mappings of Riemannian manifolds, Acta Math., 138 (1977), pp. 1-16.

[9] S. HILDEBRANDT - K.-O. WIDMAN, Some regularity results for quasilinear el-

liptic systems of second order, Math. Z., 142 (1975), pp. 67-86.
[10] L. LEMAIRE, Applications harmoniques de variétés à bord, C. R. Acad. Sci.

Paris, A 279 (1974), pp. 925-927.
[11] L. LEMAIRE, Applications harmoniques de surfaces riemanniennes, J. Diff. Geom.,

13 (1978), pp. 51-78.

[12] L. LEMAIRE, Harmonic nonholomorphic maps from a surface to a sphere, Proc.
Amer. Math. Soc., 71 (1978), pp. 299-304.

[13] W. H. MEEKS - S.-T. YAU, The classical Plateau problem and the topology of
three-dimensional manifolds, to appear in Arch. Rational Mech. Anal.

[14] C. B. MORREY, The problem of Plateau on a Riemannian manifold, Ann. of
Math., 49 (1948), pp. 807-851.

[15] C. B. MORREY, Multiple integrals in the calculus of variations, Grundlehren
Math. 130, Springer-Verlag (1966).

[16] J. SACKS - K. UHLENBECK, The existence of minimal immersions of 2-spheres,
Bull. Amer. Math. Soc., 83 (1977), pp. 1033-1036.

[17] J. SACKS - K. UHLENBECK, The existence of minimal immersions of 2-spheres,
Ann. of Math., 113 (1981),pp 1-24.

[18] J. SACKS - K. UHLENBECK, Minimal immersions of closed Riemann surfaces,
to appear.

[19] R. SCHOEN - S.-T. YAU, Existence of incompressible minimal surfaces and the
topology of three dimensional manifolds with non-negative scalar curvature, Ann.
of Math., 110 (1979), pp. 127-142.

[20] E. H. SPANIER, Algebraic topology, McGraw Hill (1966).
[21] G. SPRINGER, Introduction to Riemann surfaces, Addison-Wesley (1957).

D6partement de Math6matiques
Université Libre de Bruxelles
Boulevard du Triomphe
1050 Bruxelles - Belgique


