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Versal Deformations

for Two-Dimensional Pseudoconvex Manifolds.

HENRY B. LAUFER (*)

Let M be a strictly pseudoconvex manifold with a one-dimensional
exceptional set A. Let O be the holomorphic tangent sheaf to M. The

general Kodaira-Spencer [11] theory shows that H1M, (9) corresponds to
first order infinitesimal deformations of if and that H2(M, 0) represents
the obstructions to formally extending deformations to higher order.

Hl(M, O) is finite dimensional since .M‘ is strictly pseudoconvex [1].
H2(M, O) = 0 essentially because A is one-dimensional. But it is

known [6], [5] that there is no finite-dimensional deformation theory
for if if one keeps track of the boundary. So in order to stay within the

Kodaira-Spencer framework, given a deformation of if and a compact
set K in M, we shall only worry about the deformation near K. Then M
has a versal deformation (o: k --&#x3E;. Q with Q a manifold of dimension

dim H1(.M, O) in case either (i) ..M- is of arbitrary dimension and is a suffi-
ciently small neighborhood of A (Definition 1, Theorem 2 and Theorem 5
below) or (ii) .M is of dimension two (Theorem 8 below). The existence of cv
was proved for arbitrary Stein .M’ by Andreotti and Vesentini [2]. Open-
ness of versality holds (Theorem 3 and Theorem 8 below).

Some applications of this paper are given in [16] and [17]. In [17], the
dimension two analogue of [7] and [23, Theorem 2.1 and Proposition 2.3]
is proved, i.e. if all of the fibers of a deformation are isomorphic, then the
deformation is trivial.

Most of the results of this paper have been announced in [15].
Much of the research for this paper was done at Purdue University.

The author thanks Purdue University for its generous hospitality.

(*) The author is an Alfred P. Sloan Fellow. This research was also partially
supported by NSF Grant MCS 7604969A01.
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DEFINITION 1. Let M be a strictly pseudoconvex manifold. A special
cover U = {Uil, O:i:m, is a finite cover of M such that each Ui is Stein
and such that Ui r1 U3 r1 Uk = 0 for i 0 j 0 k. ( - denotes closure in M.)

THEOREM 2. Let M* be a strictly pseudoconvex manifold with a one-
dimensional exceptional set A. Then there is a strictly pseudoconvex neigh-
borhood M of A, a special cover U of M, and a deformation w : c.ÂL --+ Q of
M = (0-1(0), with Q a manifold, such that the Kodaira-Spencer map e,,: QTo--+
--+ Hl(M, O) is an isomorphism. co may be chosen to be a 1-convex holomor-

phic map.

PROOF. We first construct a larger cover Z = IVil, 0  i  m. Let

the Vi, 1  i  m, be small balls in local coordinates for M* centered about
the singular points fsil of A. Choose Vi U Vi = 0 for i:A j; closure is in M*.
Should a connected component of A be non-singular, also choose such a TTi
about some points si in the component. So we get points si, Iim,
lying in all irreducible components Ak of A. Let S = u si, 1 C i C m. Let

T c U Vi, 1 C i C m, be a closed neighborhood of S in A. We choose Vo to
be a Stein neighborhood of A - T as follows. Each A, - S is an open
Riemann surface and thus Stein [9, Theorem IX. C. 10, p. 270]. Let flc be
a C°° strictly plurisubharmonic function on Ak - S such that fi,(z) --&#x3E; o0

as z - S, Z E A’l. By [18, Satz 3.3, p. 275], there is a neighborhood Wi,
of Ak - S in .M* such that fk has a Coo plurisubharmonic extension, also
denoted by fk, to Wk. Let g be a C°° function defined in a neighborhood W
of the connected component A’ of A containing Ale such that g = 0 on A’,
g &#x3E; 0 off A’, g is plurisubharmonic on W, and g is strictly plurisubharmonic
on W - A’. Let N be sufficiently large so that f k(z) C N -1 for z E Ak - T.
Then for r a sufficiently large real number, VO,k = {z E W n Wklfk(z) +
-f- rg(z) C N} is a Stein neighborhood of Ai - T. Moreover, for large r

the various Vo,k will be disjoint. Let Vo == u VO,k, all k. Then V n 7, n
m Vk = 0 for i 0 i =A k-

Let M,, be a strictly pseudoconvex neighborhood of A contained in U Vi,
0  i  m. Replace {V,} by {Vi n M1, which we will also denote by
{Vi} ===}B. Since Z is a Leray cover of M1, Hl(M1, O) .. Hl(N(}B), e).
Let 01, ..., On be vector fields on {Vi n Vjl which represent a basis of

H’(Ml, 0). If MI D M, also a strictly pseudoconvex neighborhood of A,
then the restriction map H1(.lVll, 0) -+ .H1(.lVl, 0) is an isomorphism [13,
Lemma 3.1, p. 599]. So {Okl will also be a basis for H1(lVl, e) for M smaller
than M, and for refinements U of Z.

Using just the specialness of the cover 3, we shall construct M via co-
ordinate patches. These patches will be modified in the course of the con-
struction. Let Z’= t V’I, 0  I  7n with V’Cc Vi be a refinement of }B. Given
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any compact set K in .M1, we may choose B’ to be a cover of K. Now
let - denote closure in Mi. Let K = M. Take an initial Q to be a poly-
disc of dimension n = dim Hl(M1, 0). Start with patches V; X Q, 0 c i c m.
We must give the gij, the transition functions for A. For each small
t = ( tl , ..., tn) in Q, integration along t101 +... + tnOn for time 1 gives a

map hiAt): V2r1 V’ --;, Vi r) V,. Restrict Q to these small values of t and

define an initial gii: (YZ n v’) x Q - (Vi n V;) xQ by gij = (hiAt), t). There

will be no compatibility conditions to verify for these changes of coordinates
since no three coordinate patches intersect. However, for these changes of
coordinates to define a manifold and in particular to insure that the space
is Hausdorff, w e still must modify the domains and ranges of the gij.
Let B be the set of non-interior points of V’ - V’. Then the points of

V’ x Q which might not be separated from points in Yi X Q (which are not
identified by gij) lie in B xQ. -F3 is disjoint from the compact set

C = ( TT i - V,’) r) Vj n K. Let D be a neighborhood of C such that D is
compact and D n 13 = IJ. Then for small Q, hij(B xQ) n D = IJ. So far,
gij maps (V’ n V’) x Q c V’ x Q biholomorphically to an open subset Rij
of Vi X Q. Rij lies near to ( Yi r1 V’) x Q, as a subset of Tr2 X Q. In the cover
for M, replace Vi x Q by the subset [f(Vi’ Vj) u D} xQ] u -Rij = Ti.
This modifies V’ X Q only near Vj and makes Hausdorff the space (V’ x Q) u Ti i
with points identified under gij.

Since TTi r1 Vj n Yk = 0 for i k, the construction of the above

paragraph leaves Vi n V, and V, n Yk unchanged. Thus to complete the
construction of coordinate patches for fl, we look at an unordered pair
(i, j), i =A j. VVe favor one element of the unordered pair, say i, and form Ti
as in the previous paragraph. This changes the range of gij and the domain
of gji = [gijl-l to Rij. We then consider a different unordered pair and
repeat the construction of the previous paragraph. After considering all

unordered pairs, we have a Hausdorff space M’ and a projection map
cv’ : Mt’ -&#x3E; Q which shows that X’ is a family of deformations of M’ === (W’)-l(O).
K c M’.

M, the interior of K, is the desired strictly pseudoconvex manifold.
Let Ui = M n Vi. U = tuil is then a special cover. Let m be a neigh-
borhood of .M in m’ such that A n ((o’)-’(O) = M. Then, after possibly
shrinking Q, (o = A is the desired deformation. By construction, po: QTO
H’(M, 0) is an isomorphism. Recall [19, Satz 1, p. 547] :

Let yr: Z - S be a holomorphic mapping of complex spaces with strictly
pseudoconvex special fiber X = n-I(so), so E S fixed. Then for every compact
set K c X, there exist open sets U c Z and V c S, with K c U, so E V, n(U) c V,
such that a U : U ---&#x3E;- V is a 1-convex map.
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We shall use this result several times in this paper. In particular, w can
be chosen to be 1-convex. This completes the proof of the Theorem.

THEOREM 3. Let a): A-* Q be a de f ormat2on of a strictly pseudoconvex
mani f old Mo oj-’(O) which has a special cover U. Let eq be the tangent
sheaf on M, cv-i(q). Suppose that w is 1-convex, Q is a manifold and
Q.: QTo --+ Hl(Mo, eo) is siirjective. Then eq: QTq ---&#x3E;. H1(_lVIQ, eq) is surjective for
all small q.

PROOF. Let 0 be the sheaf of germs of vector fields on ,AL which lie in
the direction of the fibers. Let w;(e) be the first direct image sheaf of 0
under the map w. Then w;(e) is a coherent analytic sheaf on Q [21,  Main
Theorem (i), p. 213].

Using w, we may shrink M along the fibers and not change any map e,
for small q. Then, as in the proof of Theorem 2, we may use [18] to extend
the special cover U on .M to a special cover on the shrunken M. Without
loss of generality, w e may thus assume that M has a special cover. Then

cv§(Y) = 0 for r&#x3E;1 and Y any coherent sheaf on M. In particular, (0’(5,-)
is 0-flat. 0 is locally free and so is (o-flat. Let mq be the ideal sheaf of q E Q.
Then [22, Proposition 2.2, p. 208] HI(M,, 0,) w;(e)jm(IW;(e). Let ’G

be the tangent sheaf on Q. Then the Kodaira-Spencer map [11 e: 13 ---* a)’(O)
is a map of coherent analytic sheaves. Since oTo ~ 13/mo 13, the given hypo-
thesis that po is surjective says that po: 13/mo l3- mj§(S)/mocv§(S) is surjec-
tive. By Nakayama’s Lemma, O is surjective at 0. Then e is surjective
near 0 by coherence. Then e, is surjective for q near 0.

To deal with non-reduced parameter spacos, we need the following easy
strengthening of [2].

THEOREM 4. Let .lVl be a Stein manifold and w: M---&#x3E; S a deformation of
lVl = Mo === w-1(O) with S a possibly non-red11ced analytic space. Then given
any compact set K c M, there is a neighborhood M11 or K in M such that

(olA, is a trivial de f ormat2on.

PROOF. w is given to be locally trivial. As in [9, p. 266-269], w e may
use a C°° strictly plurisubharmonic exhaustion function on .M to write

M = U M(i) 1  i  oo, with M(,) c M?I-i&#x3E;, M(l) a strictly pseudoconvex Stein
manifold, and M(,+’) = X(,) U N(l) with N(i) a Stein manifold near which o)
is a trivial deformation. we may assume that GJ is a trivial deformation

near M(l).

We can now prove the theorem by induction on i. The case i = 1 is

given. lVlci+1&#x3E; = M(,) U Nc2&#x3E;. After shrinking a little, we may assume by
induction that o-) is trivial near M(l) and Nc2&#x3E;. Then near jf(l+l), (0 may be
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defined by giving just one transition map g12: Ul r1 U2 - Ui n U2 with
U, -- M X S and U2 -- N(i) X S. Shrinking N(i+’) a little more, we shall

extend m to a (non-singular) ambient neighborhood d of 0 E S. The the-

orem will then follow from the original formulation in [2].
To extend w, let M"CM’G MI&#x3E; and N"GN’GN?&#x3E; with M", .lVl’, N" and

N’ Stein. Then for T a sufficiently small neighborhood of 0 in S, g12 restricts
to give a map (h12(s), s) : (M" n N") x T --* (Mo N’) x T. Here, in the do-
main of h12 , we are using the product structure on U2 . In the range of h12 ,
we are using the product structure on Ul . hI2(0) is the inclusion map. So

that h12(s) may be given by a set of functions, embed the Stein manifold
M’n N’ in Cn for some n. By [9, Theorem VIII, C. 8, p. 257], there is a
neighborhood Y of M’ n N’ in C’n and a holomorphic retraction map

e: V ---&#x3E;- Mr) N’. Let the initial ambient neighborhood 4’ of 0 in S be

Stein with .A’ n T a subvariety of 4’. Then the functions defining h12(s)
extend to functions on (M" r1 N") x A’. By restricting to a smaller neigh-
borhood .1", we may assume that the image of the extended h12(s) lies in V.
Composing with e gives (fl2(8)1 8): (M" r) N’) xdff -* (Mx N’) xjff. Since

f12 ( o ) _ hI2(O) is the identity map onto its image, f 12 {s ) is a biholomorphic
map onto its image for all sufficiently small s E d". Proceeding as in the
proof of Theorem 2, we may shrink M(i+’) a little more and form the desired
deformation which extends w. This completes the proof of Theorem 4.

THEOREM 5. Let M be a strictly pseudoconvex manifold with a special
eover U. Let eo be the tangent sheaf to M. Let a): A ---&#x3E; Q be a deformation
of M = .lVlo = w-1(O) such that Q is a manifold and Q,,: QT,, ---&#x3E;- H’(M,,, Oo) is

surjective. Let Â: R, - S be any de f ormation of M = Mo = Å-l(O) with 8 a
possibly non-reduced analytic space. Then, given any compact set K in M,
there are neighborhoods Jli and jtl of K in M and R respectively, neighbor-
hoods QI and 81 of 0 in Q and 8 respectively, and a holomorphie map
f : /Si --+ Q1 such that (t) It, = ccy : Jt1 --+ Q, and 2 1 A, = Ål: j{,I ---&#x3E;. Si are defor-
mations with li induced by f. If eo is also injective, then the tangent map of f
at the origin is uniquely determined.

PROOF. Shrinking .M and U a little, we may assume by Theorem 4
that ), is trivial near 0 on each Ui . As in the proof of Theorem 4, we

may shrink .M further and extend ), to a non-singular ambient neighborhood 4
of 0 in S.

So, without loss of generality, we shall now assume that S is non-singular.
Let the transition maps for 2 be given by giAs), s E S. Let the transition

maps for w be given by hij(q), q c- Q. Let U" cc U’cc Ui be two refinements
of U. Choose Q, and S, small so that hij(q)ogij(s) = kij(q, s) : i r1 j--+
&#x3E; Ui n U) is well defined for (q, s) E Q1 x Sl. Then, as in the proof of The-
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orem 2, the kij may be used to construct a deformation -r: "J -&#x3E; B of a slightly
shrunk M. B is a Cartesian product Q, X S, of neighborhoods QI and S,
of 0 in Q and S respectively. Above 0 x S,, -r coincides with ),. Above

QiXO, T coincides with 0). Let 13 be the tangent sheaf of B. Let Q’G be the
subsheaf of 13 of germs of vector fields on B in the QI directions. Choose

[19, Satz 1, p. 547] -r to be a 1-convex map. Then, by the proof of The-
orem 2, QQ: Q’G is surjective near 0 X 0 = 0. Let 1’1, ..., vn be vector

fields on B such that vl(0 ), ... , vn(0 ) project onto a basis of To. Since QQ
is surjective near 0, we may modify vl, ..., Vn by sections of o’6 and assume
that e(vi) = 0 in T;(e) for all i and small B. Then, for sufficiently small B,
to(vi) = 0 in HI(T-’(B), 0). Then, by the nature of e, for each i there exists
a vector field Oi on z-1(B) such that at each point b of -r-’(B), -r* maps

0,(b) to vi(-r(b)). Let (tl, ..., tn) be near (0, ... , 0 ). Then, integrating along
tl 61 + ... + t,,O,, and tl v1 +... + tnvn for time 1 and for small (tl , ..., tn )
gives a Cartesian product structure ’y -- JIX S, with a projection map
a) x id: A x S, --* Q, x 8, which shows that M is a deformation of a slightly
smaller M. There is also an automorphism of B = Q1 X S, near 0 X 0 which
shows that r and (o x id are equivalent deformations. )A,: Jt ---&#x3E;- S, is a sub-

space of -r:y --&#x3E;- B. Projecting’Y onto A via the Cartesian product structure
gives the desired map f : S, - Ql.

This concludes the proof of Theorem 5 except for the last sentence.

But the tangent map of f at the origin just agrees with the infinitesimal
Kodaira-Spencer map in this case.

Let M be as in Theorem 5. Then HI(M, 0) = 0. [19, Satz 5, p. 562]
says that under such circumstances we can form its simultaneous-blow-

down subspace T of Q, as in Definition 9 below. The versality result of
Theorem 5 implies versality for deformations of germs of M near A. Blow
down M to V. Let p be the singular point of V. Then [19, Satz 7, p. 562]
says that the simultaneous blow-down over T is versal for deformations

which can be simultaneously resolved.

The following corollary about the rigidity of exceptional curves of the
first kind is known. For example, use [10, Theorem 3, p. 85], which says
that A lists above S, and [19, Satz 2, p. 547], which says that one can

simultaneously blow down near the lifting. We shall use it to strengthen
our results in the two-dimensional case.

COROLLARY 6. Let M be a two-dimensional manifold. Let A be a sub-

manifold of M which is a compact Riemann surface of genus 0 with A.A = -1.
Let 2: M --* S be a deformation of M == Â-l(O). Then in ac neighborhood of A
in A, ), is the trivial deformation.
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PROOF. It suffices to see that for any small strictly pseudoconvex neigh-
borhood N of A in M, H1 (N, 0) = 0.

Since A is in fact an exceptional curve of the first kind, HI(N, e) can
be directly computed via a Leray cover to give 0. Or, one may use [8, Satz 1,
p. 355] and [14, (3.9), p. 85].

PROPOSITION 7. Let .M’ be a strictly pseudoconvex two-dimensional mani-
fold. Let A be the exceptional set. Then there are a finite number of points
p i E .M’ - A such that the manifold M’ obtained from .M- by quadratic trans f or-
mations at the p i can be written 1V1’ = U, u U2 with U’1 and U2 open Stein
subsets of M’.

PROOF. Let .M* be a strictly pseudoconvex manifold w ith Mcc -il-[* and
also with the same exceptional set A. Let 7 be the ideal sheaf of A. By
[12, Lemma 4.10, p. 61], we can find a divisor D on A with Ai-D ar-
bitrarily negative for all irreducible components A i of A. Let 3 be the

ideal sheaf corresponding to D. Then, by [12, Lemma 6.19, p. 117] (and
its proof in case A lacks normal crossings), for the Ai, D sufficiently nega-
tive, H’(M*, aJ) = H1(lVl*, (t2J) = 0. Then T(M*, J) ---&#x3E;. 1-’(1V1*, 3/33) and

T(M*, aj) _ r(M*, aj/a2 3) are surjective. Then we can find fi, 12 c-
E r(M*, J) such that ( f 1 ) - D and ( f 2 ) - D contain no A i and also if

p E supp ((11) - D) r1 supp ( ( f 2) - D) n M, then p 0 A and p is a point of
normal crossing for (fl) - D and (f2) - D. There are only a finite number
of such Pi. Let M’ be obtained from M by quadratic transformations at

the Pi. Let DI and D2 be the proper transforms on .M’ of (fl) - D and
(f2) - D respectively. Let Ui = M’- supp Di, i = 1, 2. Then U, and l72
are the desired Stein subsets of M’. One may construct the needed holo-

morphic functions on the Ui by considering f 3/ f i , with fa E F(X*, 3) or

f, E F(M*, 33). Then Ui is holomorphically convex and the fa/fi i will give
local coordinates. This concludes the proof of Proposition 7.

THEORELVI 8. Let .M be a strictly pseudoconvex two-dimensional mani-
jold. Then there exists a deformation a): m ---&#x3E; Q of .M = w-I(O) such that (o
is 1-convex, Q is a manifold and the Kodaira-Spencer map eo: QT,, --&#x3E; H’(X, Oo)
is an isomorphism. Let JtIq = w-I(q). Q,: QT, --&#x3E;. H1(.1VIQ, Oq) is surjective for
all small q E Q. Let ).: Jt -&#x3E;- S be any deformation of M = Mo = W1(0 ) witlz
S a possibly non-reduced analytic space. Then, given any compact set K in
111, there are neighborhoods u1LI and Jtl of K in A and Ri, respectively, neigh-
borhoods Q, and 81 of 0 in Q and S respectively, and a holomorphic map
f:S,--&#x3E;Ql such that WIeM.,l === co1: I fl i - QI and ÂB jtl = Àl: I JLi - s1 are de f or_
mations with )A1 induced f rom, (Ùl by f. The tangent map of f at 0 is uniquely
determined.
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PROOF. For any coherent sheaf 5 on M, Hl(M,:F) is determined by
small neighborhoods of the exceptional set. If N is a small holomorphically
convex neighborhood of an exceptional curve of the first kind, then

H’(N, 0) = 0. Hence quadratic transformations off the exceptional set have
no effect on H1(1V1, O).

To construct w, let .M* be a strictly pseudoconvex manifold with
MeM*. Let M*’ be obtained from M* by a finite number of quadratic
transformations and have a special cover (Proposition 7). 7c: X*’---&#x3E; M*.

By the proof of Theorem 2, there is a deformation m’ : A’-&#x3E; Q of M’= n-l(M)
with e’: QTo --&#x3E; H’(X’, 0) an isomorphism and (o’ a I-convex map. By
Corollary 6, the exceptional curves of the first kind in M’ which are the
result of quadratic transformations in M have neighborhoods on w hich 0/
is a trivial deformation. Simultaneously blow down the exceptional curves
of the first kind in these neighborhoods. This gives a deformation (o: fl - Q
of M. m is 1 -convex. po is an isomorphism by the observation of the previous
paragraph. el’ is surjective for small q by Theorem 3. U Aa’, with Aa the
exceptional set in Mq, is the subvariety of A’ where the Remmert reduction
is not an isomorphism [19, p. 553]. Hence for small q, M) is obtained from
Mq by quadratic transformations off the exceptional set. Then also Oq is

surjective for small q.
Consider ),: llt -&#x3E; S, a deformation of -Y-1. ), is locally trivial. So we may

perform quadratic transformations simultaneously on all M s, s small, to
get a deformation À’: Jt-* S of lVl’. Then by Theorem 5, with K’= n-’(K)7
we get fl§, Jt’7 Qi , , 81 and f : 81 --&#x3E; Q, for A’. Simultaneously blowing down
the exceptional curves of the first kind on A’ and 1Jl[ yields the desired jMji
and j{,1. This completes the proof of Theorem 8.

We now wish to blow down a deformation w: 3l Q of if. if == Mo =

=,W-1(0). We essentially follow ideas and work of Riemenschneider [19]
and of Artin and Schlessinger [4], [3, especially Theorem 4, p. 341 ]. Choose w)

to be 1-convex. M, = w-I(q) is an open manifold of dimension two, so

H2(lVlq, 0) = 0 [22]. Then [19, Satz 5, p. 558] says that there is a maximal
reduced subspace T of Q near 0 such that, letting A = o-)-’(T), the family
Wa == W I A: A --+ T simultaneously blow s down to a flat deformation na: &#x3E; - T
of the blow down V =: X,, a a -’(0) of lVl. T c Q I dim H I (N, 7 0)
dim H1(lVlo, O)}.

DEFINITION 9. Let co: fl - Q be a 1-convex deformation of j1!l === Mo ===
== o)-’(O). Let the reduced space T be given by T = {q E Qldim H1 (lVlq , (9) =
= dim H1(.Mo, , O)}. Then T is the simultaneous - blow - down subspace
of Q.
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THEOREM 10. Let M be a strictly pseudoconvex two-dimensional mani-
fold with exceptional set A. Let w: M --&#x3E;- Q be as in Theorem 8. Suppose
that M is the minimal resolution o f the normal two-dimensional analytic
space V. Let T be the simultaneous-blow-down subspaee of Q. Then the blow-

down na: X, --* T of w over T is the unique de f ormation of V which is versal
for deformations with reduced parameter spaces that can be simultaneously
resolved, i.e. given any deformation n: ’g --&#x3E;- S o f Y = Xo = ’Jl-l( 0) with S

reduced such that n may be simultaneously resolved and any compact set K c V,
then there exist neighborhoods Xl and 1J1 of K in X and 1J respectively, neigh-
borhoods T, and 81 of 0 in T and S respectively, and a holomorphic map
f : S, --&#x3E; Ti such that na I Xi: a;, --* Tl and ’Jl1 = ’Jl11Jl: "J., --* S1 are deformation
with ’JlI induced by f. The induced map f* on the Zariski tangent space of S
at 0 to the Zariski tangent space of T at 0 is unique.

For all points t E T -sufficiently near to 0, na is versal near t except for the
uniqueness of the map f * .

If X,’, open in X, has n’ == na IX": X,’--* T a deformation with V’ = (n)-’(O)
being a strictly pseudoconvex neighborhood of the singular points of V, then -,r’ b
is the unique deformation of V’ which is versal for de f ormations with reduced
parameter spaces which can be simultaneously resolved.

PROOF. Let A : R -&#x3E; S be a simultaneous resolution of :T. Then R = ),-’(0)
is a resolution of V -c-’(O). Suppose that Ai c R is an exceptional curve
of the first kind. Then by Corollary 6, we can simultaneously blow down Ai
and nearby exceptional curves of the first kind and still have a deformation
of the blown down R. Thus, without loss of generality, we may assume
that R is the minimal resolution of V. Since minimal resolutions are

unique [20], [12, pp. 87-88], R i M. Let To: M --&#x3E; V be the resolving map.
Apply Theorem 8, using the compact set -ro l(K). We need that f(Sl) c T.
But since A may be simultaneously blown down, for s E S, dim H1(Rs, 0) =
== dim Hl(M, 0). Hence f(s) E T. The first paragraph of the Theorem now
follows by letting Xl and 1JI be the blow downs of tÂLl n w-l(T1) and R
respectively. (The uniqueness of ’Jla is proved in the usual way from the
uniqueness of f * . )

The second paragraph of the Theorem follows from Theorem 8 and the
above argument, which proved the first paragraph.

Let M’= To l(V’). Let If’ be a compact set in M’ with A c K. By
[19, Satz 1, p. 547], there is a neighborhood A’ of _K’ in A and a neigh-
borhood Q’ of 0 E Q such that w’ == m)Jl’: A’---&#x3E; Q’ is a 1-convex map.
Since in A the union of the exceptional sets of Mq is the subvariety of JL
where the Remmert reduction is not an isomorphism [19, p. 553], Mq = w-l(q)
and .Ma = (W’)-I(q) have the same exceptional set for all small q. Then
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[13, Lemma 3.1, p. 599] the restriction map HI(M,, 0) -&#x3E; HII(M’, 0) is
an isomorphism for all small q. Thus wand w’ have the same simultaneous-
blow-down subspace T of Q for small q. This concludes the proof of The-
orem 10.
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