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On the Uniqueness of the Cauchy Problem
for Partial Differential Operators
with Multiple Characteristics (*).

MARVIN ZEMAN

Introduction.

We are concerned in this paper with the study of uniqueness in the
Cauchy problem for partial differential equations whose real characteristics
have multiplicity more than one or whose non-real characteristics have
multiplicity more than two. The case where the real characteristics, if any,
are simple and the non-real characteristics, if any, are at most double has
been studied by, among others, A. P. Calderén [1],[2], L. Hormander [6],
S. Mizohata [11] and R. N. Pederson[16]. In our case there have been
results by P. M. Goorjian [5], W. Matsumoto [10], M. Sussman [18], K. Wata-
nabe [20], K. Watanabe and C. Zuily [21] and M. Zeman [22],[23]. The
basic difference between the two cases is that in our case some condition
has always been imposed on the lower order terms of the equation. These
conditions take into account the counterexamples of P. Cohen [4], A. Plis [17]
and Hormander [8].

In Zeman [22] we assumed that the subprincipal symbol vanishes to
a certain order on the characteristic set. In this paper we will show that
a condition complementary to the above is also sufficient, namely that the
subprincipal symbol does not vanish at all on the characteristic set. This
extends to differential equations having characteristics of arbitrary con-
stant multiplicity the result presented by Matsumoto [10] who dealt only
with characteristics all having the same multiplicity.

(*) Work partially supported by NSF Grant No. MCS78-01448.
Pervenuto alla Redazione il 13 Marzo 1978 ed in forma definitiva il 10 Lu-
glio 1979.
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As in all of the papers listed above, the proof will involve a Carleman
estimate, a weighted L, inequality analogous to an L, inequality intro-
duced to the study of uniqueness of the Cauchy problem by T. Carleman [3].

§ 1. - First, recall the problem.

Let P(x,t, 0,y 0;) = Pn(®,y t, 0y, 0;) + Pm_s(® 2ty 0y 0,) + ... be a linear
partial differential operator of order m and the P; homogeneous of order
in ¢ = (2, ..., %,) € R* and t € R*. Let P,(x,1t, &, t) be the principal symbol
of P where £ R* and 7€ R

Assume the hyperplane ¢ = 0 is non-characteristic at the origin with
respect to P, i.e., P,(0,0,0,1)=%40. The Cauchy problem is to find a solu-
tion v of Pv = f in a neighborhood of the origin with given (say homo-
geneous) Cauchy data on the plane ¢ = 0: ¢/v|,_,=0, j=0,..,m—1.

We shall make use of the familiar multi-index notation. See, for in-
stance, Hormander [7]. Sg~!= {&: |£| =1} is the unit sphere for &€ R".
L? denotes the class of homogeneous pseudo-differential operators of order y
in the z-variables and 8? is its corresponding symbol space. See J. J. Kohn
and L. Nirenberg [9] for more details.

L} ,is the class of operators differential in ¢ and pseudodifferential in z,
of order y = « 4 f in (w,t), where « is the order of the operator in ¢ and
>0 is the order of the operator in . 8! ,is its symbol space. L™ is the
class of pseudo-differential coperators of order y in the x-variables whose
symbol space S'™ consists of functions a(x, ¢, &) of the form a,(x, t, §)|£)” +
+ ay(@, t, &) |E Y™ 4o ay(w, t, £)|E[PTH™ 4 ... where ay(w,t, &) € SO.

(u, v) is the L, scalar product of  and v; |u| is the corresponding L,

T
norm of w. ||ul|? :f|]u][2 exp [k(t — T)*]dt where || is the L, norm in the
0

x-variables. H, is the Hilbert space with norm given by |u|2 =
:f(1+ |E]?)™|6(&) |2 A where 4@ is the Fourier transform of u. |juf|? =
(&) T

=> f[|DI“||§—¢ exp [k(t— T)*]d¢, where |- |, is the H, norm in the z-vari-
r=0 0

ables and (s) is the smallest integer greater than or equal to s.

[4,B]= AB — BA. The letters 1L.h.s. and r.h.s. will stand for «left-
hand side » and « right-hand side » respectively. Finally, ¢ will denote any
constant and may vary from line to line.

Since t = 0 is non-characteristic at the origin with respect to P we may
assume that the coefficient of D" in P, is 1. It is convenient to make a
local transformation of variable so that the surface ¢ = 0 is transformed

n
to a convex surface s:¢ = « Y #; where a > 0 is constant. The conditions
i=1 :
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that we impose on the operator P will remain invariant under this change
of variable.

§2. — We consider the following type of operator
_P(ﬂ?, t7 aw? 8t) = Pm(w? t7 ax: at) ‘I_ Pm_l(wy t; ama at) + Rm—-Z(xy t, am at) ,

where we assume the coefficients of P,, and P,,_, are real (see the remark
in §6) and, for simplicity, C*. While P,, and P,_, are homogeneous in &
and t, R,_, need not be.

The underlying assumption throughout this paper is that the multi-
plicity of the characteristics is constant: if 7, and 7, are distinet zeros of
P,.(x,t & ) =0 on |§|=1, then |r, — 7,|>¢, where ¢ is a fixed positive
number independent of x, ¢ and £ Hence we deal with operators whose
principal symbol P, (z,t, & 7) can be written in the form

4

P, (x,t, & 7) = ﬁ[f—}“i(w’t7 o, Z"'i:'m'9
i=1

i=1

where A,(«,t, &) are the characteristic roots of P.

Since P,, has real coefficients the characteristic roots are either real or
non-real, i.e. either Im A,(«,¢, &) =0 or |[Im A,(x,t,&)|>¢e for (o, &) €
€ 2x 81, where Q2 = {(,1): |v|<7, 0<t<T}, for some 7 and T.

We are now ready to state the main results. Assume the following con-
dition on the lower order terms:

(A) P (0,0, & 7) |, _s007 0 for all €877, if 7,>2,

where P,,_,(,1, & 7) is the subprincipal symbol of the operator P defined by

, P TR PRI
Pm—-l(x} t’ E’ T) - ‘Pm_1+ E(igl axjé—é_ij + ot ot Pm )

It is a standard fact that P,,_,(x,t,& 7) is invariantly defined on the
characteristic set > = {(#, 1, , 7): v = A,(, 1, §), r,>2}.
We then have the following Carleman estimate.

THEOREM 1. Suppose t = 0 is non-characteristic at the origin with respect
to P (which is described above). Suppose also that condition (A) is satisfied.
Then there exists a constant C independent of w such that for #, T and k—* suf-
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ficiently small, the following estimate holds:
(2.1) Bl -2+ < Cll Pull?

for all we O (), where Q = {(z,1): |v|<F, 0<t<T} and r = max r,.
1<i<p

Theorem 1 is the basic step in the proof of

THEOREM 2. Suppose the conditions of theorem 1 are satisfied. Then there
is a neighborhood Q' of the origin containing Q such that if w e H%(2')
satisfies Pu =0 and u =0 in {(x,1): (2,t) € Q',t< 0}, then u =0 in Q.

ProoF. The proof of uniqueness in the Cauchy problem via a Carleman
estimate is standard. See for instance L. Nirenberg [14].

REMARK 1. Although the assumption that the coefficients of

—Pm(my ty am, at) + P’m——l(w7 t? aw? ai)

are real is not necessary, the theorem is not true without any assumptions.
P. Cohen has presented the following example (see L. Hormander [7], sec-
tion 8.9.2) which shows that some conditions on the coefficients of P,, + P,,_,
are necessary for uniqueness in the Cauchy problem to hold: there is non-
uniqueness for the Cauchy problem associated with the operator

P = 0ju + a(x,t)0,u, r an integer >1,

for some a(z, t) € C°(R2).

REMARK 2. For technical reasons, we assumed that condition (A) holds
for all A, such that r;,>2. However, if some of the non-real roots are at
most double, a weakened version of condition (A) can be shown to be suf-
ficient, namely:

(A') 'P':n-—l(O? 0, &, 7) rmro0,07 0 for all fe SZ_I

only for those A, satisfying
(@) r;>2, if A; is real,
(b) r;>3, if A; is non-real.

We shall prove this result in a future paper.
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ExAMpPLE. Let P(z,t, 9,, 0,) = 0 + a(x, t)0, + b(, t)0, + ¢(z, t) where a
and b are real and (x,t) € R?, |x|<#, and 0<i<T, for # and T sufficiently
small. In contrast to P. Cohen’s non-uniqueness example (see Remark 2),
we have uniqueness in the Cauchy problem if a(0, 0) 5= 0. It is worth noting
that if a(z,?) = 0, then uniqueness was already proved in this case. See
Zeman [22], Theorem 2.

§ 3. — The basic idea underlying the proof of Theorem 1 is estimating
llPul] by replacing the operator P with a product of distinct first order
factors. However, the factorization of P(z,t, &, v) will be valid only for &
in {£: |&|> R, for some fixed R}. In order to make the proof work in general,
we shall introduce a simplified partition of unity in Rj.

Since P is restricted to functions whose supports lie in £, in 2 the
value of Pu is unchanged if the coefficients of P are multiplied by a C*®
non-negative cut-off function having compact support and identically equal
to one in some neighborhood of 2. Hence we may assume the coefficients
of P have compact support.

Now choose 0, so that 0,(s) € C°(R}), 0<0,(s)<1, 0,(s) =0 for s>R 41
and 0,(s) =1 for s<R. Let 0,(s) =1 — 6,(s). Choose another C® non-
negative cut-off function of # having compact support, ¢(x), which is iden-
tically equal to 1 in some neighborhood of {«: |#|<#}. Now form the func-
tions y,(#, &) = @(@)0,(|£]) and y(z, &) = @(®)0,(|£]). The operators y,(z, D,)
and y,(z, D,) are properly supported and belong to L, and for (,t) € Q,
w(®@, 1) = ypy(@, D,)u + py(, Dy)u.

Let P(x,t,0,, 0,) = Pp(®, 1, 04, 0;) + Pu_ys(@,t, 04, 0,). First, we shall
estimate |I|Pu||| in the two cases: (a) for u, = v, (%, D,)u where supp y.(z, §) C
c{&: |E|<R 41}, (b) for u, = (%, D,)u where supp y,(x, &) C {£: |§|>R}.

In section 7 we shall provide the proof in the general case. We need the
following two lemmas.

LeMMA 3.1. Let s, 8’ be two real numbers such that s'<< s, — n/2<s. Then
to every € >0 we can choose T and ¥ so that ||u||,<e||ul|, for ue H(Q)
where Q = {(z,1): |x|<F, 0<t<T}.

Proor. See F. Tréves (theorem 0.41 in [19]).

LemMA 3.2. Let R belong to L}, y<m — 2+ 1/r, and let S be a par-
tial differential operator of order m — 2 with bounded measurable coefficients.
If estimate (2.1) is true for P it will still be true if P is replaced by P+ R + 8.

Proor. Standard. The details are left to the reader.

We are now ready to estimate [|Pu|| for case (a).

18 - Adnn. Scuola Norm. Sup. Pisa Cl. Sci.
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PROPOSITION 3.3. Let v, be defined as above. Let P(x, ty Oy, 0;) =
= P, (@&, 0sy 0;) + Pum_s(, 2, 04y 0;). Suppose t = 0 is non-characteristic at
the origin with respect to P. Then there exists a constant C independent of w
such that for #, T, k= sufficiently small, k||y,u||?_,<C l”f)zplum?, for ue CP(£2),
where 2 = {(»,1): [¢|<F, 0<i<T}.

Proor. Since y,(r, &) has compact support, then |b;(z,t, 0,)p,ul <
< O(R + 2)i||p,u| for (z,t) € 2, for any b,(, 1, 0,) € L.

This allows us to perturb the coefficients of P. If P,(w,¢?, 0,,0,) =

= 0} 4+ Y a4, ¢, 0,) 07", then
i=1

(31) Pu= 0P+ Sae,t, 0)007 + 3 (a,— G)0r
i=1 )

=1
= Pm(wy t: ax’ at) + z bi(w7 t, az) a:n—i’
i=1

where b; = a, — d;.

We choose @; to be real of order j so that P,(x,t, 0,, 0,) has simple
characteristics. We now apply the following result of Calderén [1], which
dealt with real operators having simple characteristics:

(3.2) C’{||Pmu1|||2>k]||u1||]2 where u, = y,u, uw e 0°(92).

m—1?

(A proof of the estimate in the form we have it can be found in L. Niren-
berg [14].) (3.1) implies that

IPusfl>> | Pl — € 3 (B + 2)701 370 |12
i=1
Hence by (3.2) we have

(3.3) Cull Pus > Folllw -y — Ca 3 MO7 0, ]l12
j=1

m—1
j=

Choosing k large enough so that k > C, and invoking lemma 3.2 we can
absorb the second term of the r.h.s. of (3.3) into the first term and get

(3.4) Ol Pnunll®> Kl w5, -

By a variation of lemma 3.2 we can replace P,(2,t, 0,,0;) in (3.4) by
P, (z,t, 0,y 0;) + Pp_y(x, 8, 0,y 0;) without affecting the estimate. Hence,

CllPusll*> Klw, I}

m—1"*
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§ 4. — We shall now consider the estimate of IlPu|| for case (b). The
proof in this case will follow after several preliminary steps. The first step
entails replacing P, («,1t, 0., 0;) + Pn_s(®, 1, 0,, 0,) With a product of first
order factors, modulo terms of order <m —1—1/r. We shall use a me-
thod similar to that presented by S. Mizohata and Y. Ohya [12], [13] while
studying the well-posedness of Cauchy problem for partial differential equa-
tions with multiple characteristics. '

We let 0; = D, — A,(x,t, D,), 1<j<p, where

n/2
2@, 1, Do)ule, §) — (—2—17;) f exp [z E14,(a, 1, £)d(E, 1) dE .

0, = I, the identity.
I, = 0307 ... 07, where we assume without loss of generality that

>0 >,
Define I1,_;, by

in101,,_, = i"(P,(,t, D, D,) — IT,) + i»1P,_,,

where ¢ = v/—1. In association with A, and 0, we define 1, and 4;, 0<j<m,
as follows: let 1, = 0, My, = 7y, Mo =1y + Tp_1y ey Bty =17, + 7,3y + ... +
d Vpjiay ey ey =Ty oo 1y =M. _

Let A4, = 0,. For s, + 1<j<ms,,, where 0<k<p—1, Ai(x,t, D,)=
= Jpi(2yt, D), and A; = D, — A(x,t, D,) = 0,_y. (le. Ay= A, = ..=
=A4,,=0,, 1= =Ay iy, =0 1yes Aps hp1 = = Ay =4=0,.)

The 0, (and their counterparts A4,) are in a sense directional derivatives,
and can be used as derivatives, as displayed in the following lemmas.

LEMMA 4.1. (a) For all j>0 there exist a,x,t, D,) € L' such that

J
A;4; ... 40= " ax,t, D)D" 4+ T,, where T, represenis the lower order
i=0
i—1

terms, i.e. Ty = ¢,(x,t, D,)Di™""Y, order ¢;<i.
i=0
(b) Conversely, there exist b,(x,t, D,) € L. such that

i
D: = z b,(w, t, .Da;)Aj__"Aj_"_l I Ao + T2 .
i=0
where
i—1
T, = d®,t, D) A; iz Aj_ iy ... Aoy order d,<i.

=0

(We use the convention that A4, = I for k<0.)
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ProoF. Proof is by induction on j. Details are left to the reader.

COROLLARY 4.2. Every operator belonging to L’;,“ k a non-negative integer
3

can be written as Y, ¢;(@,t, Dy) AxyAs_sy ... Ao+ T, where c,e L and T e Li71.
i=0

COROLLARY 4.3. There exist a,,_,€ L™ " such that

I, 3 = an(%,y ty, D;) + an_s(®, 1, DA, + ... +
+ (@ 8y D) As g oo Ao+ ooi + @Ay .. 4y + T,

where T € L[>,

DEFINITION 4.4. For 1<j<p,

Ly, t, &) = H,‘;_l(az‘, t, & Ay(w, 1, &)
= Op_a(2, 1, &) + am—z(lj(xy 1y &) — zl(my 2 5)) + ..
+ (A —25) o (43— 1),

where IT0_(x,t, & 7) is the principal symbol of 7, _y(x, t, D,, D).
LEMMA 4.5. Lj@,t,&) = Py, _ (0,4, & 7)o ane)-
Proor. See Y. Ohya[15], section 3.

COROLLARY 4.6. Suppose condition (A) is satisfied. For r;>2,

4.1) | Ly, 8, &) | =00 |" 1,  09>0,

for (z,t, &) € UX (REN\{0}), where U is some neighborhood of the origin.

Before we replace P with a product of first order factors, modulo an
operator belonging to L7';*~'", we shall introduce the module V over L,
which is associated with the operator I7,, = 90} ... 077.

V is generated by monomial operators which are formed as follows:
we first describe the operators which generate V. They are the operators
a;;(I1,,/0,0;), where a; is an arbitrary properly supported operator in
LA~V i — min (r;,7,). © may equal j. I1,/(9;9,) is the operator for-
med by omitting 0, and 9, from the product in I7,,. Denote this collection
of generating operators as V'™,

V@ is formed a bit differently from V@®. An operator v, in V'®, the
collection of operators generating the module V', is of the form v, = b, 5(v,/0,),
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where v, is some operator in V'® and properly supported b,, e LLi~"
1<i<p. V® is formed the same way as V@. v,eV'® is of the form
Vg = by 4(,/0;), Where v, € V'® and properly supported b, ,e L.~ """ We
go on in this manner to form the module V@, V®, .. and their corresponding
generating sets V'@, V'® . Finally, let V'=JV'®, V is the module
generated by the operators in V'. k

Modulo terms belonging to Lj;'~'", we shall now replace

P =P, (2,1, 0,y 0;) + Pr_s(, ¢, 05, 05)

with a product of first order factors.

PROPOSITION 4.7. Let u, = y,(@, D,)u, where supp y,(«, &) c {&: |£|>R}
and we CF(RQ), then under condition (A), Pu, = ITu, + Tu, + Ru,, where
TeLy;'~'" is a member of the module V, Re L};?,

IT = oMo ... ... o),
where
0¥ =i(D,— M(x,t, D,)), 1<i<p, 1<j<r,,

(4.2) W, b, &) = M@, 1, &) + S oiy(m, t, 6)|EFH
k=1

where vj, € 8y, and where in particular,
(4.3) 9], (@1, &) — vy (@, 1,E)~ 0 for (2,8, € QX 8F 7 if r,>1 and j£ k.
Proor.

P(w’ ty 0zy 0y) = ™I + "I, , =
=m0y op... 6;» + ity (@, 8y D) + @m_p(2,t, D) A1+ ...].

Hence, we are seeking the roots of

?

(@4) i [ — A7+ vt S @ty 8T — Fys) oo (7 — Fa) = O
i=1

i=1

where a,,_;(,1, &) e 87, _
Since a,,_;(z, t, £) is homogeneous of order m — j,

W i(Ty 15 &) = Qp; (x’ 2] é‘]) IEIM‘,. .
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Let a,._,(z,t, &/|€]) = a,_(2,t,&). Then (4.4) becomes

(4.5) n [(T _ﬂ'j(x7 t 5)]” +am-1 za;n—j(mi 1, &) l&lm—j(r“zi—l) (T *Zo) =0.
i=1 i=1

Let 7 = 4, + v and solve (4.5) for ». Then

(4.6) " |] (Ai—AeF») +zza (@t E)EmI(Ai—sa ) o (A — Ao +-9) .
k=1
k#i

Now multiply out both sides of (4.6):

D
Lhus. = 9" T (A — 2™ + b a(®y £, E) + by o(@y 1, E)92 + .o 9705
k=1

ki

rhs. = + VI Li(®,1,&) 4 Cns(®@y by E)Y + Cns(2y 1, E)v% 4 ... 4 coym?

where b;, ¢;€ 8.
Let v/ = »/|&] and &' = &/|§|. Then

O] TT 1w, 1 ) = Aalms 1y €0+ Dm0 6 €09+ oo+ ) =

= FVTIL@ 1 8) 4 sty €99/ el €007
Hence,
O T, 1 8) = Aay 1, O+ bina (o 6, 9+ + rymorf =

lSl{\/ LLi(w, 8y &) 4 en_s(@, 8, &)9' + ... - ci(@, t, E)(»')»1},

where A'(x,t, &) = M=, t, &), b'(x,t, &) = b(x, ¢, &), ete.
Now let

S m—1
V—1Li+ 2 om0V
Y;azt &)=

l__[ [}-, - }'k]n + z bm rc—.? )j

k#1

If r,>2 and condition (A) holds, then for |»'|<e, for a small enough &,, we
can bound the numerator away from zero since |L;[>o0, in 2. Similarly
for |»'|<e, for a small enough &, we can bound the denominator away from
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zero since [] (A, — ;)™ does not vanish at (,t, &) € R*'x 8. Hence
k#i

[P'; 2,1, £)]Ve C= for |y'|<e where &= min (e, é,). If r, =1, then
¥e 0= for |v'|<e even if L)(0,0,£)=0. Since ()" = (1/|¢|)P(+';2,¢, &),
then

V= e 0 B, 1<j<r,

where w is the primitive r,-th root of unity. Using Lagrange’s formula, we have

V= z Vir(@ 1, ‘S’)(wjl'f'—lln)k’ 1<j<r,,
k=1

where

N 1 [¥(C; @, t, &)]4m
Vviu(@, 1, &) = 2V —1 f I ac

{=n

Since for r,>2, Y({; , t, &) is not zero if { > 0 is sufficiently small we have
vix(®, t, &') € C*°. In particular

via(@, t, &) =

[P(; o, ¢, rf)]”" ar
275\/_—— e

= ¥(0; a, t, él)llﬂ =

[ v=in

T Gi—am|
k#i

Finally, we put » , = w'/~"y,
Hence

”‘j =2+ zvlél(l—k)/n 1<j<r,.
k=1

If r,>1 and k=1 we see that vg,lqévi’l since wi~1s=w'-t for j~1.

LevmmA 4.8. Let a(x,t, D) be a properly supported operator belonging
to LY*, i.e.

a(x, ty &) = ao(w, 1, §) + ay(@, ¢, &) lfl—llk + ay(2, 1, E)I‘El—yk -+

where a,(x,t, &) € 8.
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Then there exists constants C and R independent of u such that

la(@, 8, Do) pou| <Cly,u|  for ue O7(2)

such that supp v.(x, &) c {&: |E|>R}. (v, D,) is chosen to be properly
supported.

ProoF. If we let { = |£|V* then this is just the standard result about
the continuity of classical pseudo-differential operators where a is given as
an asymptotic sum in (.

§5. — In sections 5 to 7, we shall assume that w, is of the form
%, = (2, D,)u where supp w,(, &) C {£: |§[>R}. In order to simplify the
notation we’ll drop the subscript of w, and refer to it as w.

Before we proceed with the proof, we will present some technical lemmas,
which we will need when we manipulate the first order factors of Ir.

LEMMA 5.1. Let 0% be the operator whose symbol is given by
i(v — M@y 1, £) = i(v — M@, 1, €) — 3 v x(@, 1, E)|EF M)

k=1

where A(z,1, &) € 85 and v] (w1, §) € 82.
Then

(@) forany a(z,t, D,)eL; Y™™ b(z,t, D,)e LL~Y"" there ewist c(x,t,D,),
d(z,t, D,) € LY™ such that

(5.1) o(x,t, D,) 0Pu 4 d(z, t, D,) 0w =
= a(x,t, D,)D,u + b(x,t, D,)u + M(x,¢, D,)u,
where M € L, >, the class of operators of order — oo, and k + 1.

(b) For any a'e LY™ and b'e LL~Y™™ there exist ¢, d'e LY™ such that

¢'(z,t, D) 0P u + d'(z, t, D,)0Pu =
= a'(x, 1, D,) 0,4 -+ b'(x, t, D,)u + M'(x,t, D,)u,

where M'e L%, and k # 1.
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(¢) For any ae L%™, be LY™, there exist & d e LY™, where r;; — the
greatest common multiple of r; and r;, such that

(3:2) &, D,)ou + d(z,t, D)o u =
= (@, t, Do) Dyu + b(®, t, Do)u + M (2,1, Do)

where 3 € L%, and i + j.
All of the above operators are chosen to be properly supported.

PrOOF. Proof of (a): To solve equation (5.1) we have to find ¢(x, t, D,)
and d(z, t, D,) such that ¢(x, ¢, D,) + d(z, t, D,) = a(x, t, D,) and c¢(x,t, D,)-
'l’:(wy t, D,) + d(, t, Dx)}*:(xy ¢, D,) = — b(=, t, D,) + M(x, t, D,).

Hence c¢(z, t, D,) = a(x, t, D,) — d(z, t, D,), where d(z, t, D,) satisfies the
equation

(5-3) d(m7 1, Dw)[l:(x’ i -Dac) - }‘f(my t -Da:)] =

= — b(w, t, D,) — a(x, t, D,)A%(=, t, D,) + M(x,t, D,) =
= h(‘”’ ) -Dau) -+ M(wi t7 Dx) ’

where h(z,t, D,) € L1~Y™" is known. The symbol of the Lh.s. of (5.3) is
3 208 dlay 1, DL 1, ) — Koy 1, 6)]

So solving for d(«,t, D,) reduces to find d(zx, ¢, &) such that

(5.4) g% 0Fd(x, t, &)[ D (Ailw, t, &) — (2, ¢, £)) ] ~ bz, ¢, £)

(where «~» denotes equality modulo S, ).

We are able to do this since v}, — »}, 5 0 for (v,1,£) € 2 83 ifr;>1
and I+ k. The proof proceeds in the standard fashion. We leave the de-
tails to the reader.

PROOF OF (b). The proof is basically the same as the proof of (a). We
leave the details to the reader.

PRrOOF OF (¢). The proof of (c) runs basically in the same manner as that
of (a). The reason we get a stronger result lies primarily with the fact that
o differs from o at the first order since A.(x,?, &) — A,(,1, &) 0 for
(@, t, &) € 2 R"\{0} as opposed to what we have in part (a) where o
differs from 0" at order 1 — 1/r,.
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COROLLARY 5.2:

(a) [0, 8] = a(w, t, D,)o + b(z, t, D,)oP + M,, for some a, b e L™
and M, e L; .

(b) [0¥, 0] = e(, ¢, D,) 0 + < (x,t, D,) 0P + M, for some ¢, d e L>™

and some M,e L, ™.

ProoF. (a) [0, 8] = g(x,t, D,) for some ge L:~V“™ Hence by
lemma 5.1(a), there exist a, b € LY™ such that

a(w,t, D)o + bz, t, D,)0P + M, = g(=, t, D,)

for some M, e L, =.

(b) A similar proof to that of (a) works for (b).

The next lemma will be used to control the lower order terms that arise
when we permute the factors of /7.

LEMMA 5.3. Let
Q,(x,t, D,, D) = 8PP ... o) ... o ... 9l

have order q. Let Q,(x,t, D,, D,) be obtained from Q, by an arbitrary permu-
tation of the factors 3. Then h(z,t, D,, D,) = Q,(, 1, D,, D,) — Q,(x, t, D,, D,)
18 an operator belonging, modulo terms of order <q— 2, to the module 8,
over LOF (where p = the greatest common multiple of r;, 1<i<w), generated
by the « monomial » operators Qq/ag"’ formed by omilting one factor at a
time from Q,.

Proor. It suffices to carry out the proof for the special permutation
1 k—1) A(k) A1) n( w,
s = o ... & )82’65.)85.“) v OB
s — ot (k—1) A1) A(k) A(+1 w
5=0oP..0 ’6,.’61.)81. ) ... ol

where ¢ can be (but not necessarily) equal to j.
Then

55— o0 ... oE=V[am, o0t | gl

By corollary 5.2, [0®, 0%] = a(a, t, D,)0® + b(z,t, D,) 0P + M for some
a,be LY (since B>r;) and some M eL;*. Thus, modulo terms of



ON THE UNIQUENESS OF THE CAUCHY PROBLEM ETC. 271
order <q — 2,
s — A (kw1 (F)A@@+1 w 1 k—1 1A 1w
s —5=0" .. 0f=Vg oty  glw 1 o gl—Dpphpl+n) |l
Hence
5 — (1) (k—1) (k) A(1+1) (8w)
§—8=a0y".. 0" V0;"0; "V ... 0y
(1 (k—1) A1) A +1 (8w)
+ bV ... oF VP . gl
k— ! w
+ [o ... oY, a]oP I ... ol
(1 (k—1 DNAal+1 w,
+ [ ... 9% ploholtD L ple)

The proof is complete once we observe that the last two terms are of
order q — 2.

LeEMMA 5.4. Modulo terms in L;"’,_z, (11, @] € 8wy for any @ € LY, where
8y s the module associated with the operator IT (constructed as in lemma 5.3).

Proor. The proof proceeds very much like that of lemma 5.3. The
details are left to the reader.

§ 6. — We will now state the proposition basic to the estimate of Il Pl
in case (b).

PROPOSITION 6.1. Let 0¥ = D, — Ji(w,t, D,), where Ji(x,t,&) is as in
proposition 4.7. Then for T, ¥ and k= sufficiently small,

C
Moll* < WoPull®,  for we C2(2),

where Q = {x,1): |x|<F, 0 <t< T}, and where C is independent of T, 7, k and u.

Proor. The proof is basically the same as that given by Calderén [1]
in the case where Ai(z,t, D,) = A,(w,t, D,). See also Nirenberg[14]. The
modifications needed to take care of the lower order terms belonging to
LL~Yr™ can be found in Matsumoto [10].

REMARK. In order to be able to prove Proposition 6.1 some condition
on Ai(x, t, D,) is needed. (See Remark 2 following Theorem 2). It is primarily
because of this proposition that we assumed that the coefficients of P,
and P,,_, are real. Although this assumption is not optimum (see Niren-
.berg [14], section 6 for some alternative conditions), we put this limitation
on P, and P, _, for the sake of simplicity.
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Much of the proof of the estimate of || Pul| in case (b) will be by indue-
tion. In order to keep the notation from being even more cumbersome
than it already is we shall introduce the following:

Recall that

m = 07" 0% ... 077, where 7,>7,>...>7,.

Let my=0, my =1y, My =1, + Ty e.ym; =1, + 7+ ... +7;. Let Qu =
= ... 8P ... 890}, ... 0}, u be an operator belonging to L, where
a=m;+1, 0<i<p—1, 0<l<ri,. (If i=0, Qu = 0P ...0"u.) As in
lemma 5.3, we can associate with this operator the module §,,. Let S,
consist of the operators that generate §,.

As consequences of proposition 6.1, we have the following lemmas which
are essential to the estimate of [|Pu| in case (b).

LEMMA 6.2. There is a constant C independent of w such that for 7, T, k—*
sufficiently small,

Ollulla-z + ClQull*>% X lls,ull*  for we CF(L2).

858 )
ProoF. By proposition 6.1, there is a C such that for k large enough
Cl|oP oM ... o=V + o) wP> k[0l ... oY~V o+ L o®) u]||®
for 1<j<i, 1<y<r;, and for j =14 41, 1<y<l. By lemma 5.3,
oMW ... o=V L o0 u = Quu + hu + Nlu,

where k] € 8,, and N} e L; >
Hence,

(6.1)  Cllull?_y + ClikIw||* + CllQ.ull*> k[P ... o~ Dof*+V ... o, yull®.
Adding (6.1) over j and y, we have

Cllulli-; + € 3 B wll® 4 CllQuull*>
>k 0. a7V Lo ullP> k3 llsaull® .
iy 8,684
Since k] € 84y, ' ”
S IlP<C 3 sl

8468 ()



ON THE UNIQUENESS OF THE CAUCHY PROBLEM ETC. 273

Hence,

(6.2) Cllulli—e + € 3 lls,ull® + CllQuull*>% 3 lls.ull®.

8568() 3aes('a)

For k> C, we can absorb the term C > ||s,u||? of the Lh.s. of (6.2) into
the r.h.s. and we have: 3568 (a1

Ollwlli—z + ClQauli*>k 3, lls,ull*,

"‘GS'(M
which is what we set out to prove.
LEMMA 6.3. Let o = m; + 1 be defined as above. There exists a constant C

independent of w such that for ¥, T, k—* sufficiently small, the following esti-
mates hold:

(6.3) a)  ONlQuull*>kllullz_y—@_ryr,, i i=0, 1 <a<r,
(6.4) b)  CllQuull®>Fllwllz -2 1sr» if 1<, r<a<m.

ProOF: Proof of (a). The proof is by induction on «. If ¢ =1, (6.3)
holds by virtue of proposition 6.1. Suppose (6.3) holds for some a>1; we’ll
show it also holds for o 4 1.

Q.1 = 9,00, Hence, by the induction hypothesis,

(6.5) CllQus 1 wI*>FNN S P ullz -3 a1y, -
By lemma 5.3,
oW ... oVl oPu = @, u + B 'u + NYFlu,

where h}*'e §(,, and Ni*le L %
" By the induction hypothesis we have, as before,

Olof” ... 8¢~ V8PP > Bl 0P wll3 1 am1ysr, -
Hence
(6.6) OlleclZ_y + B ull® 4+ OlQupywll*> Kl 0P wllZ_ 1~ arypr, -

Now by lemma 6.2,

Ollullz=y + ClQurr®ll> >k 3 lsuyyll® .

35+185 (a41)
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Since k™' € 84, We have

BT ull*> 0 3 llswqqwll®

/
Sa+18(a+1)

Hence, (6.6) leads to the estimate

6.7)  Cllulli_, +C 3 llsasall® + CliQusrull*>

Sa+1%5(a+1)

>k z |”'5'ac+1“"|2 + K| agl)ulllﬁ_l—(a_l)/f, .

a
85+158 (a4 1)

For %> C, we can absorb the term C > |ls,,,%||> from the Lh.s.
of (6.7) into the r.h.s. and get 80415 (1)

(6.8) Ollulli—y + CllQusrwll®>Fll 8P w31 aay, -
Adding (6.5) and (6.8),
Cllullz-y -+ ONlQ 1 ull®>E(l 0P ulE—1— iy, + NV UNE_ 1 amiyy) -
By lémma 4.8, we then have
(6.9)  Ollwlli-y -+ OllQu 1 wll*>Ella, 0% 4 ay o VullZ_s oy,
for any properly supported a,, a, € L>". By lemma 5.1(a), this implies that

(6.10)  Cllullz-; + CllQur ull®*>
>kli[a(@, ¢, D) D: 4 b(@, ty Do) 4 Mullz_;_ay,
for any properly supported operators a € L ™" p e LL~V" and for some

MeL; .
Hence,

(6.11)  Cllulli-; + CllQusrull®> Ellwlli_ s, — Bl MellE_3—amayr, -
Since M € L, *, then by lemma 3.1, for some ¢ 0 << e <1,

W2l — 1 — (e 1370, < EMl el iy, -

Hence we can absorb the second term of the r.h.s. of (6.11) into the
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first. Thus we have
(6.12) Mullz—y + CllQurr®ll®*>Ellwliz—s)y, -

By another application of lemma 3.1, |||u|||a,‘1<C]|]u|[|,x‘_am. Hence, for
K > C, we can absorb the term C||u|2_, of the Lh.s. of (6.12) into the r.h.s.
and arrive at the estimate

Ol Qs 4l > Blll w2, «

This completes the induction proof of (a).

Proof of (b). If we let « = r, in (6.3), we have

ON@y,wll* > Fllwll? —2 4+ 1yr, -

Since r = max r; =, (because 7 >7r,>...>r,), we see that (6.4) holds
for a = rl.lgi@

Before we proceed with the proof of (b), we note that estimates (6.10)
and (6.12) would hold even if we modified the operator Q. by replacing the
terms o with o, j 1. The proof in this case is precisely the same as
for Q. up to line (6.9). We then apply lemma 5.1(c) instead of lemma 5.1(a).
Estimates (6.10) and (6.12) follow because lemma 5.1(¢) is « stronger » than
lemma 5.1(a).

We are now ready to proceed with the proof of (b). The proof is by
induetion on x. We suppose (6.4) holds for «, where a>7,; we’ll show this
implies that (6.4) holds also for o 4 1.

By the induction hypothesis, since Q,,, = @,0%

i+1
(6.13) OllQa1wlI*> Tl O wllGp 1 -
It can also be shown that if (6.4) holds with Q., then it also holds with Q.
replaced with the operator o{V ... o(*~Do® ... 9¢+D; since the two operators
have the same order and the same multiplicities of characteristies:
ONoRY .. 0202y .. O > Blllli-g e

This implies that

oo ... 3"~ 8, ... oL P o ul|®> ko ullZ— g1y -
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By lemma 5.3,
oW . DM | DMy, — Q. u + Biu L N,

where hj'e 8, and Nje L3;%
Hence

(6.14) Cllulli—y + ClBFul® + Cll@usrwll*> Bl O ul|Z gy, -
As in the proof of (a), since

Ollulliss + CliQuorvll*>k 3 llsayqull®

8a+168 (5 19)

by lemma 6.2 and since bt € 8(u1yy, We can remove the term C[|A7 u||?
from the Lh.s. of (6.14) and get:

(6.15) Cllulli—; + CllQusrwll*> Kl ullZ_ sy, -
Adding (6.13) and (6.15) we have
Cllulli—y + Cll@usrll*>E (IO ullE g s yye + N0 I3 41) -
By lemma 4.8, we then have
(6.16)  Cllwlli—y + OllQusrwll*>k(llay 0w + ay 0 ullZ_z41i) 5

for any properly supported a,, a,c LY™+. We now apply lemma 5.1(c)
to (6.16):

Cllwlli-y + CllQasr@ll>>ElIby(@y 8, D,) Dyte + by(@, t, Do) ++ Mull_g e 5

for any properly supported operators b, € LY™** and b, € Ly™*** and some
M e L;>. Hence

6.17)  Ollulli-y + Ol Quryll>>Ellulli_s sy — BNl 5y -

As in the proof of () we can absorb the second term of the r.h.s. of (6.17)
into the first. Thus,

(6.18) Ollullz-1 + CllQusrll*>HllwllZ -y 1 1sr -
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Applying lemma 3.1 once again, we can absorb the term C||u]|3_, of the
Lh.s. of (6.18) into the r.h.s. and achieve the estimate:

Ol Qa1 %l > Bl G 1 43y -

Hence (6.4) is true for all o, ry<a<m.

We will now describe another module W, over LY, associated with the
operator Q.

First we’ll describe the operator which generate W. They form the
collection W({). If we denote T, = 9} ... 93:0;}1, the members of W, are
Ta/0:y by(Ta/0?), Dy(Ta/0;9;), and b.;(Tx/(2,0;), ¢ 5= j, where b, is an arbitrary
properly supported operator in L:~Y™™ and b,, is an arbitrary properly
supported operator in L.™, where r, is the greatest common multiple
of r; and 7,.

W.? is formed in a similar manner by replacing the operator T, in the
term of W.V with a member of W,*). We go on in this manner to form
W, wW.®, ... Finally W, = U W,*, and W, is the module generated by
all the operators in W,. k

LEMMA 6.4. There exists a constant C independent of u such that for 7, T, k—*
sufficiently small, the following estimate holds:

(6.19) CllQaull*>% 2 llwaull®, for we C3(Q).

.
wWLEW

ProoF. The proof is by induction. It is a fairly long proof. In an at-
tempt to make it more manageable we will give it in a series of steps. As
in lemma 6.3 we will first consider the case o« = l<r,, and then the case
a = m; + 1, where 1<1.

I a=1 Qu=Qu=20"..0"u. Well show that

(6.20) OlQullz>% 3 llwullr, 2<l<n.

wEW
Step 1. 1f 1 = 2, then applying proposition 6.1, we have:
ClloPoPull>> k0P wull*  and Ol 8P ull*> k|| ul® .

By lemma 5.3,
P o = oo + B + Y,

where kZ e Sy, and N3 e L'

19 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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This implies that

(6.21)  Cllull® 4 OllB3ull® + CJIoP 0P ull|*> k{0 wll* + [0 ul?} .
Since

Cllull® + Ol o8P ull*>k 3 llsyuli®

saes(g)

and since hfe S, We can remove, as in the proof of lemma 6.3, the term
C||k3u||® from the l.h.s. of (6.21):

Cliwll® + OllQzull®> k{2 ull® + 183 w1%} -
After an application of lemma 4.8, we have
(6.22) Cllwll® + CliQuull*>k{ll[a, 8 + a; 0 u||?}

for any properly supported operators a,, a, € L>™ Hence, by lemma 5.1(b)
for any properly supported operators b, € LY™ and d,,e L.~ there
exist properly supported a,, a, € L¥™ and M, € L;* such that

a, 00w + a,0Pu = b,0,u + dyu + Myu.
Since the set W, consists of the operators b,0, and d, ., (6.22) yields

Ollwll® + CllQeull*>k 3 Mwywll* — kil Myull® .

WyEWy ,
By lemma 6.3, C||Q,u[|*>El|u||}_,, . Hence

Cllull® + CNQuli*>% 3 lwyull® + E(llwlli—ym, — Il My ull®) -

“725W’2

Since M, e L, %, ||lM1u|"2<e||{u|[|f_1,n for any ¢ > 0. We thus arrive at the
estimate:

(6.23) Cllull® 4 CliQxull>>% 2 Nlwaull® .

w2EW'2

By another application of lemma 6.3 and since |]|u|||2<s]||u||lf_1,,l by
lemma 3.1, for k¥ > C we can remove the term C||ul|? from the 1L.h.s. of (6.23)
and we have:

OllQeull2>k 3 llw,ull* -

wzeW’z
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Step 2. We suppose now that (6.20) holds for any 1>2; we’ll show it
also holds for I 4 1. Since @,,, = @,0¢™", the induction hypothesis gives

(6.24) ON@Qyaul®>F 3l (3 Pu)I®.
wEW;

As in step 1, by lemma 5.3,
o ... o Vol VP = o L. oY - BT 4 N,

where hi*' €8, and NV e LLL
If we examine the operator V... 3%~V50*1) we see that estimate (6.20)
holds for this operator as well as for ;. Hence we can show that

(6.25)  Cllulliy + CIEF  uf|® 4 @ ull®>E S Jlw(0Pw)|)? .

wleWi

As in step 1, since hi** e 8y, we can apply lemma 6.2 to remove the term
C||B T ul|® from estimate (6.25). And applying lemma 6.3 we can remove
the term Cllu||?_,.

Hence

(6.26) OllQu11ul>>F% 3 w(@Pw)|® .

w W,

Combining (6.24) and (6.26) and applying lemma 4.8, we arrive at the fol-
lowing estimate

Cll@r1ull®>% 3 llayw,(0Pu) + ayew (8] *Vu)||?

wEW;

for any properly supported a,, a, e L™,

Since the operator [a;, w,]0{’ € L. ", for i =1,2 and j =1,1 + 1, where
[4, B] represents the commutator of A and B, by another application of
lemma 6.3 we have

OllQu1ull*>k 3 [lwa, oPu + a, 08 Du)||®.

wiEW;
Applying lemma 5.1(b) once again we have

Oll@rsyull*>E X by 0w + byyu + My u))?
wEW;
>k E |||w,[b13(1’) + bl,z]’“'mz“ k z l“sz],zuI"2

wlewi

for any properly supported b, € L™ and b, ;€ ;~ """ and some M, ;e L, *.
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It is easy to see that the set W, consists of the terms 1w,(b, 0 + b, )
for the appropriate choice of b, and b, , and for w, € W,.
Therefore,

627 ClQuuullr>E 3 lwaaullt—k 3 [l 0]

’
"1 €W wiEW

Since [[w, M, ull® <ellwlly,, for any & > 0 and sinee O[|Qq.,ul[*> kllull?_,,
by lemma 6.3 we can remove the last term from the r.h.s. of (6.27) and get

(6.28) ONQuuullz>E 3 [lwull®.

jond r
Wi 1€W 4

Step 3. Letting I = r, in (6.28) we see that (6.19) holds for o« = m, = r,.
We will now agsume that (6.19) is true for « = m, + 1, where ¢>1 and 1 >0;
we’ll show that (6.19) holds also for « 4+ 1. The proof proceeds in a manner
similar to the proof of (6.20).

Since Q,., = Q,%", by the induction hypothesis

(6.29) ONlQuir®l=>% 3 o (08 Pu)l .

4
|7
woEW o

As before, by lemma 5.3,
(6.30) oM ... 8N Lo = Quyy + B+ N,

where hj'e S,y and Nj'e Ly,

Consider the operator o{... o0 Do® .. 9% V. It differs from Q. by
containing in its product the extra term 0¢*? but omitting the term o',
If we examine the set W. associated with this operator (constructed the
same way as W,) and compare it with the set W, associated with @, we
can show that

C 2 l@sull*> % [lwaull®.

~
WxEW WLEW o

This is because a typical term in W, when compared to a typical term in w,
involves one more factor aD, -+ b and one less factor c¢d; + d, where
a,ce LO™+, b e L™+ and de LL™Y". Thus we can show that

ofiof ... =0, .. A ulP>E Y (lwaull®

'
WL EW
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As in step 2, we thus show, using (6.30), that

(6.31)  Cllulli_, + CllRwll* 4 ClQu, wli*>% 3 lwa (2 w)]|* .

)
WL EW

As in step 2 we can remove the terms Cljul|Z_, + C||kl‘u||® from esti-
mate (6.31). Combining the new estimate with (6.29) we have, after another
application of lemma 4.8,

ONQusrull>>% 3 llw,[adl™ + b3 DJu)|?

'
wyEW

for any properly supported a, be L%™+. This leads, after an application
of lemma 5.1(c), to:

OllQusrull*>% 3 llwleD: + d + M]ul®

,
WEW o

for any properly supported operators ¢e L%™* and de LL™"* and some
MeL; . An argument similar to that used in step 2 then implies that

OlQasaull>>% 3 llewayaull®.

.
Wot1€W a1

Hence (6.19) holds for all o.

LEMMA 6.5. Let V be the module defined in section 4. There exists a con-
stant C independent of w such that the following estimate holds:

ClTulz=>E S o)l for we C2(RQ).

veV’

PrOOF. Since IT = @Q,,, lemma 6.4 implies that C||[Tul?>k 3 |lw,ul>.
eme;n

After a comparison of the modules W, and V, it is easy to see that

C > llwaull*> 3 llv(w)||>. Therefore the conclusion of the lemma follows.

’ 1
meWm veV

COROLLARY 6.6. Let T be the operator defined in proposition 4.7. There
exists a C independent of u such that

Ol Tu)|>> k|| Tullz  for we 0Z(Q).
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§ 7. — We are now finally ready to estimate [IPul]? in case (b).
PRrOPOSITION 7.1. Let v, be defined as in section 3. Let P(x,t,9,, 0,) =
= P, (2,1, 04, 0;) + Pn_s(2,t, 0, 0,). Suppose t =0 is non-characteristic at

the origin with respect to P. Then there exists a constant C independent of u
such that for 7, T, k=* sufficiently small we have

Ellpolli—oerp< CllPypoull®  for we 63(RQ),

where 2 = {(x,%): [x|<F, 0<t<T}.

Proor. Let u, = y,u. By proposition 4.7
(7.1)  Pu, = I, u, -+ Tu, + Ru,, where TeV and Re Ll .
Since ¢, = I7 , if we let « = m in (6.19) we have the estimate
CllITusll* > Bl 2 4yr -

By corollary 6.6, C||/Tu.||*> k|| Tw*. Hence, C||[Tusl|*>Eljusll}, o), -+
-+ E||Tu,]|?. (7.1) then implies that

(7.2)  Ollugll—zi s + CNTul® + CllPuyll® > Elluelly, o 1jr + Bl Tugl®-

For k> C we can absorb the terms C||uy||Z _5.1) + Cll Tu,l|® of the Lh.s.
of (7.2) into the r.h.s. and get C[|Pu,||®> | wolll2—2 s 1y

We are now ready to complete the proof of theorem 1 by showing how
the estimate of ||Pu|| in the two cases (a) and (b) leads to the estimate of
[lPu]| in general, which in turn leads to the estimate of [|Pu]|.

PROOF OF THEOREM 1.

1Pul* = |y Pu + . Pul?
= |y Pul® + |p.Pu|? + 2 Re (p,Pu, y,Pu)
> Iy Pul? + [y, Pu® — 2| Pu]>.
Hence,

Il Pull*> (Il Pull* +- . Pull?) -
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We shall now estimate ||y, Pul?, i =1, 2.

ll: Pullz = [|Py,u + [P, plull2 > | Py.ull2 — I[P, pilull®.
Since % = iU + P = Uy | U,

LB, pdull2 <P, pdwall® 4 NP, piluwsll® -
Therefore,
Il Pull2> Cl| Pus]|* + Ol Puy®
— CIILP, pilull* — CIP, pilu.|®
— CIILP, palw||* — CNLP, walusl|®.

Rearranging the terms of the last inequality,

(7.3) I Pull2> Clll Pus)2 + O Pus|)?
— ClILP, pilwll® — CILP, yolu|?
— OILB, piJusll® — CIILP, welusll®.
We shall now estimate the terms in the last two lines of (7.3).

Since Pe LT, and y,e LY and since the coefficient of 0" in Pis 1,
[P, p]e L. Hence,

NP, pdull® + NP, wlullz< Ollwli%—, -

By proposition 4.7,
[Py Yilu, = [(ﬁ + T + R), pi]u,,

where T € L77*~" and R € L}7% An examination of the operators 7 and R
shows that they are both of order <m — 2 in t. Hence, [T, y;] € Lj;2 and
[B, ] € L::n,t_z-
Therefore, (7.3) implies that
(7.4) NPull2> ClIiPuil® + Cl| Puylj?
— Oy — Cllwall7—2
— O, wiluwall® — CIU, waluall® -
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By lemma 5.3, [I1, y,] € Sy, modulo terms belonging to L;';®. (7.4) there-
fore implies that

(7.5) Il Pul2> Of| Puy)|® + C||Pu,|
— Clllugll?_; — Clluall?,_,
—C Y snusl®.

3,68 m)

Applying propositions 3.1 and 7.1 and lemma 6.2 to (7.5) we have:

CllPull®> Ell -y + Elluolls g1 + & 2 lspusll®
88 (m)

- Cm“l”|2 -1 C’Illuzlllz —2— 0 2 Illsm%2|l|2 .

8,68 (m)

Applying lemma 3.1, and choosing %k > C, we get C[|Pul)|®>>%|w,l%_, +
+ Ef|wgl|?_g 41, After another application of lemma 3.1, this implies that

CllPul®> i, -2 1r + Flluellfs s 1r

> kllwll—s -
Finally, if we appeal to lemma 3.2, we get the desired estimate:

OllPull>> Hll el -2+ 1 -
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