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On the Uniqueness of the Cauchy Problem
for Partial Differential Operators
with Multiple Characteristics (*).

MARVIN ZEMAN

Introduction.

We are concerned in this paper with the study of uniqueness in the
Cauchy problem for partial differential equations whose real characteristics
have multiplicity more than one or whose non-real characteristics have

multiplicity more than two. The case where the real characteristics, if any,
are simple and the non-real characteristics, if any, are at most double has
been studied by, among others, A. P. Calderon [1], [2], L. H6rmander [6],
S. Mizohata [11] and R. N. Pederson [16]. In our case there have been

results by P. M. Goorjian [5], W. Matsumoto [10], M. Sussman [18], K. Wata-
nabe [20], K. Watanabe and C. Zuily [21] and M. Zeman [22], [23]. The

basic difference between the two cases is that in our case some condition

has always been imposed on the lower order terms of the equation. These

conditions take into account the counterexamples of P. Cohen [4], A. Plis [17]
and Hormander [8].

In Zeman [22] we assumed that the subprincipal symbol vanishes to
a certain order on the characteristic set. In this paper we will show that

a condition complementary to the above is also sufficient, namely that the
subprincipal symbol does not vanish at all on the characteristic set. This

extends to differential equations having characteristics of arbitrary con-
stant multiplicity the result presented by Matsumoto [10] who dealt only
with characteristics all having the same multiplicity.

(*) ivork partially supported by NSF Grant No. MCS78-01448.
Pervenuto alla Redazione il 13 Marzo 1978 ed in forma definitiva il 10 I.Ju-

glio 1979.



258

As in all of the papers listed above, the proof will involve a Carleman
estimate, a weighted L2 inequality analogous to an Li inequality intro-

duced to the study of uniqueness of the Cauchy problem by T. Carleman [3].

§ 1. - First, recall the problem.
be a linear

partial differential operator of order m and the Pi homogeneous of order i
in x = (xl, ..., xn) e Rn and t e RI. Let Pm(x, t, $, T) be the principal symbol
of P where E Rn and r E R1.

Assume the hyperplane t = 0 is non-characteristic at the origin with
respect to P, i.e., Pm(0, 0, 0, 1) "* 0. The Cauchy problem is to find a solu-
tion v of Pv = f in a neighborhood of the origin with given (say homo-
geneous) Cauchy data on the plane t = 0 : alv = 0, j = Oy ..., 7m-l.

We shall make use of the familiar multi-index notation. See, for in-
stance, Hormander [7]. S’-’ - ($: ]$ ] = 11 is the unit sphere for $ c- R .
L" denotes the class of homogeneous pseudo-differential operators of order y
in the x-variables and S" is its corresponding symbol space. See J. J. Kohn

and L. Nirenberg [9] for more details.

Ly is the class of operators differential in t and pseudodifferential in x,
of order y = a + fl in (x, t), where a is the order of the operator in t and

&#x3E; 0 is the order of the operator in x. S;,t is its symbol space. L§’* is the
class of pseudo-differential coperators of order y in the x-variables whose
symbol space Sxm consists of functions a(x, t, $) of the form ao(x, t, +

(u, v) is the L2 scalar product of u and v ; 11 u 11 is the corresponding L2

norm of u. is the L2 norm in the

x-variables. H- is the Hilbert space with norm given by
where A is the Fourier transform of u.

where ]] lis S is the .gs norm in the x-vari-

ables and (s) is the smallest integer greater than or equal to s.

[A, B] = AB - BA. The letters l.h.s. and r.h.s. will stand for « left-

hand side » and « right-hand side )} respectively. Finally, C will denote any
constant and may vary from line to line.

Since t = 0 is non-characteristic at the origin with respect to P we may
assume that the coefficient of Dt in Pm is 1. It is convenient to make a

local transformation of variable so that the surface t = 0 is transformed

to a convex surface s : t where a &#x3E; 0 is constant. The conditions
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that we impose on the operator P will remain invariant under this change
of variable.

§ 2. - We consider the following type of operator

where we assume the coefficients of Pm and P,,-, are real (see the remark

in § 6) and, for simplicity, C°°. While Pm and P.-, are homogeneous in x

and t, Rm-2 need not be.
The underlying assumption throughout this paper is that the multi-

-olicity of the characteristics is constant: if -r, and Tz are distinct zeros of

Pm(x, t, , 7:) = 0 on I = 1, then I-r, - -r, I&#x3E; E, where s is a fixed positive
number independent of x, t and $. Hence we deal with operators whose

principal symbol Pm(x, t,, r) can be written in the form

where h,(s, t, $) are the characteristic roots of P.
Since Pm has real coefficients the characteristic roots are either real or

non-real, i.e. either Irn h,(r, t, $) - 0 or ]Irn h,(r, t, $) ] &#x3E; s for (r, t, $) e
E Qx S-l, where Q == {(x, t): Ixlf, 0 :t T}, for some f and T.

We are now ready to state the main results. Assume the following con-
dition on the lower order terms :

where P.-,(x, t, , T) is the subprincipal symbol of the operator P defined by

It is a standard fact that P’-,(x,t,,-r) is invariantly defined on the

characteristic set! == {(x, t, $, -r): r = Â;(x, t, $) , rj&#x3E;2}.
We then have the following Carleman estimate.

THEOREM 1. Suppose t = 0 is non-characteristic at the origin with respect
to P (which is described above). Suppose also that condition (A) is satisfied.
Then there exists a constant C independent of u such that for r, T and k-1 suf-



260

f iciently small, the following estimate holds :

Theorem 1 is the basic step in the proof of

THEOREM 2. Suppose the conditions of theorem 1 are satisfied. Then there
is a neighborhood Q’ of the origin containing Q such that if u c- H(m)
satisfies Pu = 0 and u = 0 in ((r, t) : (x, t) E S2’, t C O}, then u == 0 in Q.

PROOF. The proof of uniqueness in the Cauchy problem via a Carleman
estimate is standard. See for instance L. Nirenberg[14].

REMARK 1. Although the assumption that the coefficients of

are real is not necessary, the theorem is not true without any assumptions.
P. Cohen has presented the following example (see L. Hormander [7], sec-
tion 8.9.2) which shows that some conditions on the coefficients of Pm + P,,-,
are necessary for uniqueness in the Cauchy problem to hold: there is non-
uniqueness for the Cauchy problem associated with the operator

for some a(x, t) E C°°(R2).

REMARK 2. For technical reasons, we assumed that condition (A) holds
for all lie such that ri&#x3E;2. However, if some of the non-real roots are at

most double, a weakened version of condition (A) can be shown to be suf-
ficient, namely:

only for those Âi i satisfying

We shall prove this result in a future paper.
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EXAMPLE. Let P(x, t, 7 ax at) = a2 -E-- a(x, t) ax + b(x, t) at + c(x, t) where a
and b are real and (x, t) E R2, Ix I  f, and 0  t  T, for f and T sufficiently
small. In contrast to P. Cohen’s non-uniqueness example (see Remark 2),
we have uniqueness in the Cauchy problem if a(O, 0) o 0. It is worth noting
that if a(x, t) - 0, then uniqueness was already proved in this case. See

Zeman [22], Theorem 2.

§ 3. - The basic idea underlying the proof of Theorem 1 is estimating
llIPulll by replacing the operator P with a product of distinct first order
factors. However, the factorization of P(x, t, $, -r) will be valid only for $
in l: I I &#x3E; B, for some fixed B}. In order to make the proof work in general,
we shall introduce a simplified partition of unity in R".

Since P is restricted to functions whose supports lie in S2, in .Q the

value of Pu is unchanged if the coefficients of P are multiplied by a COO
non-negative cut-off function having compact support and identically equal
to one in some neighborhood of S2. Hence we may assume the coefficients

of P have compact support.
Now choose 01 so that 0,(s) E COO(R’), o :01(S) :1, 0,(s) = 0 for s &#x3E; B + 1

and 01(s) = I for s  B. Let 0,(s) = 1 - 01(s). Choose another C°° non-

negative cut-off function of x having compact support, cp(x), which is iden-
tically equal to 1 in some neighborhood of {.r: Ixl:r}. Now form the func-
tions ipl(x, ) = cp(x)OI(IB) and V,(x, ) = q;(x)02(1B). The operators ’lJlI(x,Dae)
and 1J12(0153, Dx) are properly supported and belong to Lo, and for (x, t) E Q,
u(x7 t) = Vl(x, Dz) W -p V2(x, D,,)u.

Let P(x, t, ax, at) == Pm(x, t, ax7 at) + pm-l(x7 t, ax7 at). First, we shall

estimate IIIPull1 in the two cases: ( a ) for ul = ’lfJI(X, Dx)u where supp Vl(x,) c
c {: IIR + 1-}, (b) for U2 = "P2(X, Dz) u where supp ’lJl2(X, $) c {: II&#x3E;R}.

In section 7 we shall provide the proof in the general case. We need the
following two lemmas.

LEMMA 3.1..Let s, s’ be two real numbers such that s’  s, - nj2 :. s. Then

to every E &#x3E; 0 we can choose T and r so that Illulll,, slilulll,, for uEHs(Q)
where Q = {(x,t): ix I  f, Ot:T}.

PROOF. See F. Treves (theorem 0.41 in [19]).
LEMMA 3.2. Let .R belong to Ev, x t , y  m - 2 + 1 /r, and let 8 be a par-

tial differential operator of order m - 2 with bounded measurable coefficie%ts.
If estimate (2.1) is true for P it will still be true if P is replaced by P + R + S.

PROOF. Standard. The details are left to the reader.

We are now ready to estimate lII.Pulll for case (a). 
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PROPOSITION 3.3. Let ip, be defined as above. Let P(x, t, ax, a,) =
= P m(0153, t, ax7 at) + p m-l(X, t, ax7 at)* Suppose t == 0 is non-characteristic at
the origin with respect to P. Then there exists a constant C independent of u
such that for r, T, k-1 sufficiently small, i

PROOF. Since V,,(x, ) has compact support, then

This allows us to perturb the coefficients of

then

where bj = a, - aj.
We choose d, to be real of order j so that Pm(x, t, ôx, at) has simple

characteristics. We now apply the following result of Calderdn [1], which
dealt with real operators having simple characteristics:

where

(A proof of the estimate in the form we have it can be found in L. Niren-
berg [14].) (3,I) implies that

Hence by (3.2) we have

Choosing k large enough so that k &#x3E; C2 and invoking lemma 3.2 we can
absorb the second term of the r.h.s. of (3.3) into the first term and get

By a variation of lemma 3.2 we can replace Pm(x, t, ax, at) in (3.4) by
P.(x9 ti a.,7 at) + P m-l(X, t, ÔIlJ, Ôt) without affecting the estimate. Hence,
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§4. - We shall now consider the estimate of III-Puill for case (b). The

proof in this case will follow after several preliminary steps. The first step
entails replacing Pm(x, t, ax7 a,) -}- P m-I(X, t, ax, a,) with a product of first

order factors, modulo terms of order m -1- l/r. We shall use a me-
thod similar to that presented by S. Mizohata and Y. Ohya [12], [13] while
studying the well-posedness of Cauchy problem for partial differential equa-
tions with multiple characteristics. 

ao = I, the identity.
where we assume without loss of generality that

where i = V 1. In association with 2, and a, we define 1j and

The a, (and their counterparts A ) are in a sense directional derivatives,
and can be used as derivatives, as displayed in the following lemmas.

(b) Conversely, there exist bi(x, t, Dx) E L§ such that

where

(We use the convention that L1k - I for k c 0. )
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PROOF. Proof is by induction on j. Details are left to the reader.

COROLLARY 4.2. Every operator belonging to L:,t, k ac non-negative integer

COROLLARY 4.3. There exist I such that

where

DEFINITION 4.4. For 1  j  p,

where Ho -,(x, t, , -r) is the principal symbol of

LEMMA 4.5.

PROOF. See Y. Ohya [15], section 3.

COROLLARY 4.6. Suppose condition (A) is satisfied. For rj&#x3E;2,

for (s, t, $) e Ux (R§E(0)), where U is some neighborhood of the origin.

Before we replace P with a product of first order factors, modulo an
operator belonging to Lr::"1-1/T, we shall introduce the module V over L§ ,
which is associated with the operator IIm = 81’ ... 8)P.

V is generated by monomial operators which are formed as follows :

we first describe the operators which generate V(1). They are the operators
aiAIIm/ôiÔj), where aij is an arbitrary properly supported operator in

L;-]/Tj,rj, rii = min (ri, rj). i may equal j. IIm/(ÔiOj) is the operator for-
med by omitting Ôi and Ôj from the product in IIm. Denote this collection
of generating operators as V’ (I) .

V(2) is formed a bit differently from V(1). An operator v2 in V’(2), the
collection of operators generating the module V(2), is of the form ’V2 = bi,2(’VI/Ôi)’
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where vl is some operator in V’(1) and properly supported bz.2 E L-l/f’(,f’(,
 i  P. V(3) is formed the same way as V(2). VS E V(3) is of the form

v,, = bi,,(v,lai), where v2 E VI(2) and properly supported bi,,, E L’-Ilri,,ri. We
go on in this manner to form the module V(4), V(S), ... and their corresponding
generating sets VI(4), V’CS),.... Finally, let V’ == U V/(k). V is the module
generated by the operators in V’. k

Modulo terms belonging to X,t we shall now replace

with a product of first order factors.

PROPOSITION 4.7. Let U2 == ’ljJ2(X, DaJu, where supp
and u E c§F(Q), then under condition

is a member of the module

where

where vi,k E S’, and where in particular,

PROOF.

Hence, we are seeking the roots of

where

Since acm_; (x, t, ) is homogeneous of order m - j,
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Then (4.4) becomes

Let i == Âi + v and solve (4.5) for v. Then

Now multiply out both sides of (4.6):

Then

Hence,

If ri &#x3E; 2 and condition (A) holds, then for lv’l  Eo for a small enough Eo, we
can bound the numerator away from zero since I-LI &#x3E; a,, in Q. Similarly
for lv’l  e, for a small enough 8,, we can bound the denominator away from
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zero since does not vanish at Hence

where then

Since

then

where w is the primitive ri-th root of unity. Using Lagrange’s formula, we have

where

Since for ri &#x3E; 21 P(C; x, t, $’ ) is not zero if C &#x3E; 0 is sufficiently small we have
vi,k(x, t, ’) c- C°°. In particular

Finally, , we put
Hence

If ri &#x3E; 1 and k = 1 we see that V:’1 =1= vL1 since wj-l =1= WZ-1 for j =1= 1.

LEMMA 4.8. Let a(x, t, DaJ be a properly supported operator belonging
to LOk i.e.
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Then there exists constants C and .R independent of u such that

such that supp "P2(X, $) c ($ : )$ ) &#x3E; R), "P2(X, Dx) is chosen to be properly
supported.

PROOF. If we let C == / /l/k then this is just the standard result about
the continuity of classical pseudo-differential operators where a is given as
an asymptotic sum in C.

§ 5. - In sections 5 to 7, we shall assume that U2 is of the form

U2 = "P2(X, Dae)u where supp "P2(X,) c ($ : )$ ) &#x3E; R). In order to simplify the
notation we’ll drop the subscript of U2 and refer to it as u.

Before we proceed with the proof, we will present some technical lemmas,
which we will need when we manipulate the first order factors of TI.

LEMMA 5.1. Let alil be. the operator whose symbol is given by

where ME L;;oo, the class of operators of order - 00, and k =1= 1.
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(c) For any a E Lo,"’ x , b E L1,rtj , there exist c, ¿r E LO,rt1 where ri, = the
greatest common multiple of ri and r,, such that

where M E L- - and i =1= j.
All of the above operators are chosen to be properly supported.

PROOF. Proof of (a) : To solve equation (5.1) we have to find c(x, t, DaJ
and d(x, t, DaJ such that c(x, t, Dx) + d(x, t, Dx) = a(x, t, Dae) and c(x, t, Dae) .

where satisfies the

equation

where h(x, t, Dx) E x is known. The symbol of the l.h.s. of (5.3) is

So solving for d(x, t, Dx) reduces to find d(x, t, ) such that

(where (,)) denotes equality modulo S.
We are able to do this since vi,1- vz 1 0 for (X,t,) CS2XSn-I if ri &#x3E; 1

and I:A k. The proof proceeds in the standard fashion. We leave the de-
tails to the reader. 

PROOF oF (b). The proof is basically the same as the proof of (a). We
leave the details to the reader.

PROOF oF (c). The proof of (c) runs basically in the same manner as that
of (a). The reason we get a stronger result lies primarily with the fact that

ak) s differs from 3 at the first order since Âi(x, t, $) - Ai(Xltl)OO for
(x t, $) E QxRn,,{o} as opposed to what we have in part (a) where Ôk)
differs from 8[ at order 1- 1/ri .
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COROLLARY 5.2:

f or some Hence by
lemma 5.1 (a), there exist a, b c- Lo," such that

for some lVh E L;; 00.

(b) A similar proof to that of ( a ) works for (b).

The next lemma will be used to control the lower order terms that arise

when we permute the factors of 77.

LEMMA 5.3. -Let

have order q. Let Qq(x, t, Dx, Dt) be obtained Irom Q, by an arbitrary permu-
tation of the factors Oi . Then h(x, t, Dx, Dt ) = Qq(x, t, Dae, Dt) - Qq(x, t, Dae, Dt)
is an operator belonging, modulo terms of order  q - 2, to the module S(q)
over L/§&#x3E;* (where f3 == the greatest common multiple of ri, liw), generated
by the (monomial)) operators Q (l/oj) lormed by omitting one factor at a

time Irom Qq.

PROOF. It suffices to carry out the proof for the special permutation

where i can be (but not necessarily) equal to j.
Then

By corollary for some

and some X c- L - -. Thus, modulo terms of



271

order  q - 2,

Hence

The proof is complete once we observe that the last two terms are of
order q - 2.

LEMMA 5.4. lVIoduZo terms in Lr:,t:2, [ft, CPJ E S(m) for any 99 E L/$, where
8(m) is the module associated with the operator ÎÍ (constructed as in lemma 5.3).

PROOF. The proof proceeds very much like that of lemma 5.3. The

details are left to the reader.

§ 6. - We will now state the proposition basic to the estimate of IIIPUIII
in case (b).

PROPOSITION 6.1. Let Oi) = Dt - 21(x, t, DaJ, where Z(x, t, $) is as in

proposition 4.7. Then for T, r and k-i sufficiently small,

where Q = (s, t) : ]s I  f, 0 c t c T), and where C is independent of T, f, k and u.

PROOF. The proof is basically the same as that given by Calderon [1]
in the case where A((s, t, DaJ == 2i(x, t, Dx), See also Nirenberg [14]. The

modifications needed to take care of the lower order terms belonging to

_Ll-llri,,ri can be found in Matsumoto [10].

REMARK. In order to be able to prove Proposition 6.1 some condition
on A’(x, t, Dx ) is needed. (See Remark 2 following Theorem 2). It is primarily
because of this proposition that we assumed that the coefficients of Pm
and P m-l are real. Although this assumption is not optimum (see Niren-
berg [14], section 6 for some alternative conditions), we put this limitation
on Pm and P,,-, for the sake of simplicity.
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Much of the proof of the estimate of IIIPulll in case (b) will be by induc-
tion. In order to keep the notation from being even more cumbersome
than it already is we shall introduce the following f

Recall that

be an operator belonging to L’,t, where

lemma 5.3 I we can associate with this operator the module S(tX). Let S’ (o,)
consist of the operators that generate S(.).

As consequences of proposition 6.1, we have the following lemmas which
are essential to the estimate of IIIPull1 in case (b).

LEMMA 6.2. There is a constant C independent of u such that for f, T, k-i
sufficiently snzall,

PROOF. By proposition 6.1, there is a C such that for k large enough

Hence,

Adding (6.1) over j and y, we have

Since
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Hence,

For k &#x3E; C, we can absorb the term
the r.h.s. and we have:

of the l.h.s. of (6.2) into

which is what we set out to prove.

LEMMA 6.3. Let a = mi + l be defined as above. There exists a constant C

independent of u such that for r, T, k-i sufficiently small, the following esti-
mates hold :

PROOF: Proof of (a). The proof is by induction on a. If x=ly (6.3)
holds by virtue of proposition 6.1. Suppose (6.3) holds for some a&#x3E;l; we’ll
show it also holds for « + 1.

Q.+, - Q.a"+". Hence, by the induction hypothesis,

By lemma 5.3,

By the induction hypothesis we have, as before,

Hence

Now by lemma 6.2,
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Since, we have

Hence, (6.6) leads to the estimate

For k &#x3E; C, we can absorb the term

of (6.7) into the r.h.s. and get

from the l.h.s.

Adding (6.5) and (6.8),

By lemma 4.8, we then have

for any properly supported aI, a2 E L’,". By lemma 5.1(a), this implies that

for any properly supported operators a
ME L;oo.

Hence,

and for some

Since M E L;oo, then by lemma 3.1, for some c, 0  s  17

Hence we can absorb the second term of the r.h.s. of (6.11) into the
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first. Thus we have

By another application of lemma 3.1, lIBulllIX-l  ClllullllXlXlrl. Hence, for
.K &#x3E; C, we can absorb the term Clllulll;-l of the l.h. s. of (6.12) into the r.h. s.
and arrive at the estimate

This completes the induction proof of (a).

Proof of (b). If we let a = r, in (6.3), we have

Since r = max ri = r, (because r,&#x3E;r,&#x3E; ... &#x3E; r,), we see that (6.4) holds

for (X == r I . 
1 - i - v

Before we proceed with the proof of (b), we note that estimates (6.10)
and (6.12) would hold even if we modified the operator Qa by replacing the
terms Ôik) with Ôk), j =1= 1. The proof in this case is precisely the same as
for Q a up to line (6.9). We then apply lemma 5.1(c) instead of lemma 5.1(a).
Estimates (6.10) and (6.12) follow because lemma 5.1(c) is « stronger » than

lemma 5.1(a).
We are now ready to proceed with the proof of (b). The proof is by

induction on a. We suppose (6.4) holds for a, where (X&#x3E;rl; we’ll show this

implies that (6.4) holds also for a + 1.
By the induction hypothesis, since

It can also be shown that if (6.4) holds with Qa, then it also holds with Q«
replaced with the operator Ôl) ... ôr’-l) Ôl ... az + i &#x3E; ; since the two operators
have the same order and the same multiplicities of characteristics :

This implies that
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By lemma 5.3,

Hence

As in the proof of (a), since

by lemma 6.2 and since h§’ e 8, we can remove the term
from the l.h.s. of (6.14) and get:

Adding (6.13) and (6.15) we have

By lemma 4.8, we then have

for any properly supported
to (6.16):

We now apply lemma 5.1 (e)

for any properly supported operators b1 E Zx’rs.+1 and b2 E L,rf,f+l and some
1ft E L;oo. Hence

As in the proof of (a) we can absorb the second term of the r.h.s. of (6.17)
into the first. Thus,
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Applying lemma 3.1 once again, we can absorb the term elilUlII2_ of the
l.h.s. of (6.18) into the r.h.s. and achieve the estimate:

Hence (6.4) is true for all a, rla=;, m.
We will now describe another module Wa over L§, associated with the

operator Qa.
First we’ll describe the operator which generate WB They form the

collection W;V. If we denote Ta = 81’ ... 81’ 8§)( , the members of W:(l) are
TtX!Ôi, bi(TtX!o;), Dt(TtX!ÔiÔj), and bi;(TtX!(ÔiOj), i =F j, where bi is an arbitrary
properly supported operator in L;-l/rt,rt and bij is an arbitrary properly
supported operator in L,rtJ, where rij is the greatest common multiple
of r i and r j .

W:(2) is formed in a similar manner by replacing the operator TtX in the
term of W:(l) with a member of W. We go on in this manner to form
’(3) Wa 4, .... Finally W’ == U W’(k) and TIT. is the module generated by
all the operators in Wl. k

LEMMA 6.4. There exists a constant C independent o f such that f or r, T, k-l
sufliciently small, the following estimate holds :

PROOF. The proof is by induction. It is a fairly long proof. In an at-

tempt to make it more manageable we will give it in a series of steps. As
in lemma 6.3 we will first consider the case a = I r,,, and then the case
a = Mi+l, where 1 c i. 

We’ll show that

Step 1. If l = 2, then applying proposition 6.1, we have:

By lemma 5.3,
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This implies that

Since

and since hî e 8(2)’ we can remove, as in the proof of lemma 6.3, the term
Olllhîull12 from the l.h. s. of (6.21) :

After an application of lemma 4.8, we have

for any properly supported operators a,, a, E L’X,".’. Hence, by lemma 5.1(b)
for any properly supported operators bI E Lx’ri and dI,2 E L;-I/rl,rl there
exist properly supported aI’ a2 E L’," and MI E L;;oo such that

Since the set yY2 consists of the operators bl al and d1,2, (6.22) yields

By lemma 6.3, Hence

Since Mi I
estimate :

for any We thus arrive at the

By another application of lemma 6.3 and since [[[u[[[s[[[u[([(_j, by
lemma 3.1, for k &#x3E; C we can remove the term Clllull12 2 from the l.h.s. of (6.23)
and we have:
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Step 2. We suppose now that (6.20) holds for any I&#x3E; 2; we’ll show it
also holds for I + 1. Since Q, +, == Q, a(’ + 1), the induction hypothesis gives

As in step 1, by lemma 5.3,

where hl+l S and Nl+1 LZ-1
If we examine the operator ail) ... ail-l) ail+l), we see that estimate (6.20)

holds for this operator as well as for Qz. Hence we can show that

As in step 1, since hl’ 1 E 8(, ,), we can apply lemma 6.2 to remove the term
Clllhz+lulll2from estimate (6.25). And applying lemma 6.3 we can remove
the term ClIBuHB;-l.
Hence

Combining (6.24) and (6.26) and applying lemma 4.8, we arrive at the fol-
lowing estimate

for any properly supported a1, a2 E Lx°rl.
Since the operator [ai, WzJ a() E Ll -’, for i == 1, 2 and j = l, 1 + 1, where

[A, j6] represents the commutator of A and B, by another application of
lemma 6.3 we have

Applying lemma 5.1(&#x26;) once again we have

for any properly supported and some
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It is easy to see that the set W;+I consists of the terms
for the appropriate choice of bl and b 1,1 and for wl E -w 1 I .

Therefore,

by lemma 6.3 we can remove the last term from the r.h.s. of (6.27) and get

Step 3. Letting 1 == r, in (6.28) we see that (6.19) holds for a == m, - rl.
we will now assume that (6.19) is true for a = mi i + 1, where i &#x3E;I and l&#x3E;O;
ive’ll show that (6.19) holds also for a + 1. The proof proceeds in a manner
similar to the proof of (6.20).

Since Q,+, - Qa ai + i , b5T the induction hypothesis

As before, by lemma 5.3,

where / E (a + 1) and i E x,t.
Consider the operator ôil)... ôri-l) Ol ... Ol:ll). It differs from Qa by

containing in its product the extra ternl Ol+l) but omitting the term ôrj).
If we examine the set Wa associated with this operator (constructed the
same way as Wa) and compare it with the set Wa associated with Qa, we
can show that

This is because a typical term in Wa when compared to a typical term in Wa
involves one more factor aDt + b and one less factor cai + d, where

a, c E Lo,r",+, b E L;,rt,i+l and d E L;-l/rt,rt. Thus we can show that
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As in step 2, we thus shoiir, using (6.30), that

As in step 2 we can remove the terms CIIIUI112_, +C Ili h" U1112 from esti-

mate (6.31). Combining the new estimate with (6.29) we have, after another
application of lemma 4.8,

for any properly supported a, b E L%,rl,i+1. This leads, after an application
of lemma 5.1(c), to:

for any properly supported operators C E L,ri.i+l and d E L,ri.i+l and some
3I e L§ °°. An argument similar to that used in step 2 then implies that

Hence (6.19) holds for all cx.

LEMMA 6.5. Let V be the module defined it% section 4. There exists a con-

stant C independent of u such that the following estimate holds :

PROOF. Since 77== Qm , lemma 6.4 implies that

After a comparison of the modules Wm and V, it is easy to see that

Therefore the conclusion of the lemma follows.

COROLLARY 6.6. Let T be the operator defined in proposition 4.7. There

exists a C independent of u such that
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§ 7. - We are now finally ready to estimate II/Pulll2 in case (b).

PROPOSITION 7.1. Let ’ljJ2 be defined as in section 3. Let P(x, t, ax, a,) ==
== P m(X, t, ax7 at) + Pm-I(X’ t, Ox, at). Suppose t = 0 is non- characteristic at

the origin with respect to P. Then there exists a constant C independent of u
such that for r, T, k-l sufficiently small we hacve

PROOF. Let U2 = qp,it. By proposition 4.7

Since Qm = II, , if we let a = m in (6.19) we have the estimate

For k &#x3E; C we can absorb the terms ClllU,lll2 m-2+1/r + C III Tu 2 1112 of the l.h.s.
of (7.2) into the r.h.s. and get CIIIPu211’ &#x3E; kll’u211’m-2+1/r.

We are now ready to complete the proof of theorem 1 by showing how
the estimate of 111-Pulll in the two cases (a) and (b) leads to the estimate of
IlIPulll in general, which in turn leads to the estimate of llIPulil.

PROOF OF THEOREM 1.

Hence,
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We shall now estimate

Since

Therefore,

Rearranging the terms of the last inequality,

We shall now estimate the terms in the last two lines of (7.3).
Since P e L’ t and Vi E Lo and since the coefficient of 8§l’ in P is 1,x x t

Hence,

By proposition 4.7,

where T E Lr:,;:l-l/f’ and B E L":,t:2. An examination of the operators T and B
shows that they are both of order m - 2 in t. Hence, [T, y’] E L:’t:2 and

Therefore, (7.3) implies that
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By lemma 5.3, [77, "Pi] E S(m)’ modulo terms belonging to Lr:,;:2. (7.4) there-
fore implies that 

Applying propositions 3.1 and 7.1 and lemma 6.2 to (7.5) we have:

Applying lemma 3.1, and choosing k &#x3E; C, we get
After another application of lemma 3.1, this implies that

Finally, y if we appeal to lemma 3.2, we get the desired estimate:
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