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Density and Stability of Morse Functions
on a Stratified Space (*).

ROBERTO PIGNONI (**)

0. - Introduction.

This article comes out of the preparatory work needed in order to extend
to the case of stratified sets (in praticular, of semianalytic sets) the methods
of Morse theory over singular spaces. These methods have been outlined

by Lazzeri in [7]. The first step towards this generalization of Morse theory
consists in giving a qualitative description of a family of generic functions
over a stratified set.

Let X be a closed subset of Rn. A function f : X - R is said to be k-dif-
ferentiable if it is the restriction to X of a k-differenziable function over

the whole of R". By Ck(X, l!8) we shall mean the space of k-differentiable
functions on X, endowed with the Whitney topology. It is a Baire space

[6]. With Co(X, R) we shall label the open subspace of proper functions

in Ck(X, R). 
’

We shall say that a function f in Co(X, R) is stable (i.e. topologically stable)
when there is an open neighbourhood N of f in Co(X, R) such that dg E N
one can find homeomorphisms hl : X - X and ho : R - R which make the

following diagram commutative:

Whenever this happens, it is said that f and g are « topologically equivalent »
or have the same « topological type ».

(*) Lavoro eseguito nell’ambito del G.N.S.A.G.A. del C.N.R.
(**) Istituto Matematico « L. Tonelli », Pisa.
Pervenuto alla Redazione il 6 Luglio 1978.
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The problem arises whether we may find a class of functions which are
an open dense set in Ck(X, R), 3  k  00, and are stable. In this paper we

treat the case which occurs when X is a stratified set. We give sufficient
conditions on the stratification of X for the existence of a class of functions
with the above properties, which can be characterized as the « Morse func-
tions » [1] on the stratification of X. We emphasize (see part 3) that the
property of being a Morse function depends strictly on the particular stra-
tification that has been associated to X.

Theorem 1 shows that density of Morse functions is verified on a stra-
tified space with strongly analytic strata (an analytic submanifold of R’
is said to be strongly analytic if it is also a semi-analytic subset of Ran).

Theorem 2 proves the stability of proper Morse functions with distinct
critical values on a stratified space, when Whitney’s conditions a and b [13]
are fulfilled.

The meaning of the hypothesis in Theorems 1 and 2 is illustrated by
supplying counterexamples in both cases, for more general stratifications.

We shall now state a remarkable consequence of these results.

Let X be a closed semi-analytic subset of Rn. Lojasiewicz [8] has shown
that in this case we have a stratification of X with strongly analytic strata,
satisfying Whitney’s conditions a and b. The stratification introduced by
Lojasiewicz is canonically associated to the space, since it is «minimal

among all possible stratifications with the same properties [10].
In this way we can characterize a generic set of stable functions

in ek(X, R), 3  k  oo, by fixing this stratification of X and taking the
family of Morse functions over it which have distinct critical values.

1. - Some results on C-analytic sets.

Let ARn(Jecn) be the sheaf of germs of analytic (holomorphic) functions
in Rn(Cn). Let A be a set contained in a domain D of R,(Cn): A,(X,) shall
be the restriction of AR,,(JCCn) to D and AA(JCA) its restriction to A.

We shall employ the usual notation (X, Ox) for an analytic space. We
recall that a smooth point of dim k of a real analytic jpace is one for which
there is a nbd. isomorphic to the local model ( U, Au) with U open in Rk;
while a regular point of dim k for an analytic set A c D will be a point in
which A is locally a k-dimensional analytic submanifold of D.

Let D be a domain in Rn. As in [3J, we shall call C-anaZytic a real analytic
set A c D, whenever the following (equivalent) conditions hold:

1) there is a complex analytic subset B of a complex nbd. of D in Cn,
such that B r1 D = A.
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2) A is the locus of zeros of a coherent sheaf of ideals in AD.

3) A is the locus of zeros of a finite set IgI _ (gl, ..., gs) of real analytic
functions defined on all D.

Let (B, D) be a couple made of an open complex nbd. Q of D in C" and
a complex analytic set B in Q; then one defines a germ {Y} over D, which
is the (global) germ of complex analytic set induced by B over D. We say
that (B, Q) is a representative of the germ {Y}. It has been shown [3] that
if A is C-analytic, there is one smallest germ {Y} of complex analytic set
over D, such that, for any representative (A*, D*) of this germ, one has
A* n D = A.

By complexilication of A we shall mean one of the representative couples
of the germ {F}, indicated by (A*, D* ) .

Take a complexification (A*, D* ) of the C-analytic set A. Let 1* be the

sheaf of ideals, in JCD- 9 given in each p E D* by the germs of functions vani-
shing over the germ of A* in p. 1* is a coherent sheaf over D*. Let I*
be the restriction to D of 1*. Take germs ( f1, ... , fr) which generate liD
at a E A.

are germs of real analytic functions in a whose holomorphic extensions are
still vanishing on A* in a complex nbd. of a (for the minimality of the

germ induced by A* over A).

PROPOSITION 1. liD is the tensor product with C (over R) of a real sheaf
of ideals 1 in AD- Moreover, I is the largest coherent sheaf of ideals in AD
that defines A as its set of zeros.

PROOF. It is not hard to show that if I a is the ideal generated by the (1),
then U 7a is the restriction to A of a coherent sheaf of ideals 1 in AD, for

aEA 
_

which liD = Î Q9R C.
Furthermore, one observes that if there was a coherent sheaf of ideals

in AD null over A and greater than 1, one could easily contradict the
minimality of the germ (I) induced by A* ([4], prop. 15). D

A is defined as set of zeros of a family of analytic functions in

D: tgl = (gl, ..., gs).
Let fgl AA be a sheaf of ideals in AA, every ideal being generated by

the germs induced by (gl, ... , gs) in the points of A. I (A) = U Îa is the

restriction of 1 to A. ac-A

We turn our attention to the analytic subspace (A, AAII(A)) of the

space (A, AI{g}A,).
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We will say that (A, AAII(A)) is the space associated to A ; !(A) shall
be called the sheaf of ideals of the space.

Let VrA * be the set of regular r-dimensional points of A* ; VrA* n D =

- YrA* n A is a real analytic submanifold of D, as follows from:

LEMMA 1. Let ff il be real analytic functions in a nbd. of a point b c- R-,
such that the equations f i(z) = 0 define, in a complex nbd. of b, a complex
analytic submanifold M of dim r : then M n R, is a real r-dimensional analytic
submanifold of dim r in a nbd. of b.

PROOF. See [4]. 0

From Lemma 1 we see that, if a E A* n D is a regular point of A*, Îa
is the ideal of the set A, i.e. the ideal of all germs of analytic functions
vanishing on the germ of A at a (for the present and some following remarks
use [12J, Prop. 1 and Prop. 4, Chap. V).

We have thus shown that, if ac is a regular point of dim r of A*, a E A =
- A* n D, then a is also a smooth point of dim r for the space (A, A.All(A)).

LEMMA 2. The complexification of a germ of real analytic manifold in a
point is a germ of complex analytic manifold.

PROOF. Immediate from the definition of complexification of a germ
of real analytic set in a point (see [12j). D

From Lemma 1 and Lemma 2 and the minimality of the (global) germ
{Y} induced by A* over A one has

PROPOSITION 2. dim A = dim A*.

Let dim A = r, and let VrA be the set of regular points of dim r of A.
Let now 8* = A* - VrA*. 8* is a complex analytic set of dim  r [3].

Set 8 = S* n D : S is a C-analytic set of dim  r, containing the sin-
gularities of (A, AAII(A)). A = YrA U S, but it may happen that YrA n
n So 0 [3].

It follows from Lemma 2 that YrA n S is exactly the set of regular
points of dim r in A for which the germ of A* is not a complexification.
One verifies that the germ of A* in a E YrA r) S is not irriducible and

also that YrA n S has empty interior in VrA.
The points of VrA r) S cannot be smooth for the space (A, AAII(A))

since a set of germs (j;., ... , fm ) that generate the ideal Îa of the space in a
point a E YrA n S, generate (with their holomorphic extensions) the ideal 1:
of the set A* in a, but are not sufficient to generate the ideal of the set A
in a (Lemma 2). This shows
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PROPOSITION 3. The smooth points of maximal dimension of (A, .ae.A/Î(A))
are precisely the regular points of A* of the same dimension which lie over A.

An immediate consequence of these considerations is the following as-
sertion of existence of a smooth C-analytic filtration for A :

PROPOSITION 4. Let A be a 0-analytic set with the associated analytic
space (A, AAII(A)). There exists a sequence of C-analytic subsets of A,
{ Aio} r with the following properties :

and for all

2) dim A i &#x3E; dim A i+1;

3) Ai - Ai+l is an open subspace of (Ai, AAtfÎ(Ai)) consisting of all

smooth points of maximal dimension.

2. - Limit planes of real strongly-analytic submanifolds.

If Lr is a differentiable r-dimensional submanifold of Rn, we define

í(Ir): f(p, T) ERn X Gn,r, p E Er, fi is the element of G,,," corresponding to
the tangent plane to Ir in p}.

In the following pages, we shall be primarily concerned with the closure

í(Ir) of this set in Rn X Gn,r.
An element H E Gn’r is called a limit plane of Ir in p E afr if (p, H) E

E í(Ir). When Er, Is are differentiable submanifolds of Rn of dimension
s  r, with Is c aEr (we shall then write: E,  Er), set í(Lr, ES) _
{1, X Gn,r n r(Er)l.

DEFINITION. A subset E of an analytic manifold M is semianalytic if

every point of .lll has a nbd. W such that

with hil, qij analytic in W.
For the properties of semianalytic sets that shall be exploited hereafter

the reader is referred to [8].
Now, let E,, be a strongly-analytic submanifold of Rn of dim r. Take a

point p in the closure of Er . It is immediate that there exists a nbd. U
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of p in which

where f i j and gij are analytic in U and so the A i are C-analytic sets and the
m

V, i open sets in U defined by analytic inequalities. Set Au U Ai : Au
is a C-analytic set containing 1:u. i=l

LEMMA 3. Each Ai can be chosen so that dim A; == dim (Ai n Vi).

PROOF. It follows from the existence of a C-analytic filtration for Ai
(Prop. 4). D

dim A u is equal to max {dim Ail. From now on we suppose all the

sets Ai are taken as in Lemma 3.

LEMMA 4. dim Au = r.

PROOF. Let p c-,Eu. The germ of Au in p contains the germ of 1:u at p,
and the latest is the germ of an r-dimensional analytic manifold. From

this easily follows that dim A u &#x3E; r.
But dim Aur7 too. Since otherwise dim A io r1 TTio &#x3E; r for some io and

then the germ of 1:u at some point q E Aio r1 Y2L would contain a germ of
analytic manifold of dim &#x3E; r. 0

To Aa is associated the space (A u, AA,I!(Au)). Let S(Au) be the subset
of points of Au which are not smooth points of dim r for this space.

S(Au) is a C-analytic set in U of dim C r (Prop. 3 and 4). The semi-

analytic subset of U given by Su == S(Au) n 1:u has empty interior in 1:u
(since otherwise dim S(Au) would be r). If a E Au recall that we have set
I a = ideal of I (AU) in a.

Now we are ready to take the main step towards the proof of the density
theorem: let 1:r be a strongly-analytic submanifold of Rn.

PROPOSITION 5. a) i(1:r) is an r-dimensionaZ semi-anaZytic subset of Rn X Gn,r;

b) if Es, is a strongly- analytic submanifold of Rn o f dim s  r, Es, ,Er,
’ 

then -r(Er, ES) is a semi-analytic subset of dim  r in Rn X Gl,".

PROOF. Take a point p in the closure of 1:r, and U, Au, Su as before.
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is semi-analytic in U ; that is,

with Tij, yij analytic in U.

All the points of Zu - Su are smooth for (A u, A A /!(A u)) : in these points
I (AU) is the sheaf of germs of analytic functions vanishing on Eu.

Now, take a set of generators: {/} == {f1, ..... f,} for 7p. By coherence,
we may take an open nbd. V c U of p in which sections ( f l, ..., f S) asso-
ciated to the germs still generate the ideals of the sheaf i(Au) over
Zv = Zu m V.

If q E TT, given h = (Âl, ..., Ân-r), 1  Â1  ...  Ân-r  s and v = (’VI, ... , ’Vn-r),
1 c vl C ... C vn__r c n, let Da,,(q) be the determinant of the matrix

When q e Zv - Sv = V n (,E, - Su), some D).v(q) must be # 0 (q is smooth).
Take li = (,ul, ... , ,un-r+1), 1  u1  ...  I-"n-r+l  n.

With I-"(i) we shall label the (n - r)-vector that is obtained omitting the
component I-"i in p. Now, Vlz and V2 let’s define the vector

One verifies [13] that the finite set of real analytic vector fields defined
in all V that are obtained in this way, are such that V2, p, vJ..,./q) lies on the
tangent plane to the analytic manifold Zv - Sv in q. Furthermore, the set
of all vJ..p,(q) span the plane (so we see that -r(,Ev - Sv) is an analytic sub-
manifold of dim r in Rn X Gn,r).

Now, let (ce) == {aU, Or = (Or,, - - -, Orr), 1 c al  ...  ar  nj be the homo-
geneous coordinates of an r-plane T(consider the usual embedding of Gn,"
as an analytic submanifold of a real projective space).

A vector w lies on the plane T if and only if the exterior product

that is,
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In this way we see that a set of homogeneous coordinates (ce) shall belong
to a plane T on which va,(q) lies if and only if

that is,

which means that we have (r: 1) ) equations in {x} for each va,(q).
As a consequence of this, if (x, a) E Y X Gn’r, from (1 ) and (2 ) we have

and this expression shows that r(27y 2013 Sv) is a semi-analytic subset in

V x G,.r of dim r.

The closure of this set in V X Gn,r is semi-analytic of dim r ([8], Prop. 1,
p. 76) and coincides with the closure of ’l’(Ev) in V x G,,,-r. The proof of a)
is complete: a subset E of a manifold M is semi-analytic if and only if for
each point y of 3-t one finds a nbd. W of y in M for which W n E is semi-
analytic in W.

To prove b), it suffices to take the points x which belong to the border
of Er: we need to verify that in a nbd. of x the limit planes of Er induce a
semianalytic set of dim  r in Rn X Gn,r. We take V c U, with x E V, as be-
fore. By intersecting the closure of i(Zv - Sv) in V x Gn,r with (E, n V) X G,,r
we get a semi-analytic subset in V x G,,r of dim  r ([8] Prop. 5, p. 82).
This subset is ’l’(Er, E,) r1 V X Gn,r. D

3. - Density theorem.

A stratification E = {E:} of a set X c ll8n is a partition of X into a locally
finite family of differentiable sub manifolds of ll8n, the strata Z((I = dim En.

Moreover, it is required that the frontier condition holds. We shall say
that X is a stratified space if to the set X c lEgn is associated a well deter-

mined stratification 27. Sometimes, for clearness, we shall write {Xl 27}
instead of X.

A Morse f unction over a stratified set X (that is : {X,,El) is a ek func-

tion X R, 2  k  c&#x3E;o, such that:

1) f/1:1. has no degenerate critical points, Vi, j with i &#x3E; 0;
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2) if 1:8  1:r (we shall drop the upper index j from now on), V(p, H) E
E í(1:r, the linear mapping (Df),,: Rn - R does not vanish on H.

These conditions imply that the set of 0-strata of X and of critical points
of f is discrete. As we have already pointed out, the concept of Morse func-
tion is strictly related to the particular stratification that has been fixed for X.

THEOREM 1. Let X be a stratified space in Rn with strongly- analytic strata.
Then, Morse functions over this stratification are dense in ek(X, R), 2 c k c 00.

EXAMPLE. The conclusion of the theorem is false if we drop the hypo-
thesis that the strata are semi-analytic. Take the space X c R , made of
two strata: Zo = {01 and 1:1 = {the spiral defined in polar coordinates by
the equation r = e-0-1. One verifies the following facts [5] :

A) the stratification 1: == {1:0, 1:1} of X satisfies Whitney’s conditions
a and b ;

B) 1:1 is not a semi-analytic subset of llg2.

One sees that there are no Morse functions on this stratification: the

limit planes of Zi in {01 represent all directions in lEg2.

PROOF OF THEOREM 1: 

I) We shall first prove an assertion of existence of Morse functions
over X.

Let f be a ek function over X (2  k  oo).
We embed X in R,+’ with the mapping h : Rn - ll8n+1, h(xl’ ..., xn) ==

== (xl, ... , xn, f (x1, ... , Xn)). h(X) is a stratified space, whose strata are

Ck-diffeomorphic to the analytic strata of X.

PROPOSITION 6. The set of points p in Rn+l for which the function Ltp: R" - R,
L..(x) = 11 p - h(x)1I2 (for the euclidean norm), is a Morse function over X,
is dense and residual in Rn+1.

Proposition 6 is established by means of the following lemmas:

LEMMA 5. Let C1 C Rn+i be the set of points p which are focal points of
some stratum of h(X). Then 01 has Lebesgue measure 0 in Rn+l.

PROOF. See [11]. 0

LEMMA 6. Let O2 C Rn+l be the set of points p for which Lp has differential
(DL,,),, vanishing over some limit plane of some stratum Lr of X, in some point
q E o1:r. Then O2 has Lebesgue measure zero in Rn+l.
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PROOF. Take any two strata E, and E, with Is c aE,.
The main fact we use is Prop. 5; 1(Zr , Is) is a semi-analytic set of dim  r

and so it can be expressed as U Si with Si analytic submanifolds of lEgn x Gn,r
i

of dim Zi  r. Then we may proceed as in the proof of th. 3 in [1]. 0

If p 0 01 U C2 , -Lp is a Morse function over X and so Prop. 6 is proved.

II) Now we shall prove density. Let H be a compact subset of Rn,
and A(K) the set of functions 99 in Ck(X, R) for which one can find an open
set U D X r) K, such that q is a Morse function over X n U.

PROPOSITION 7. A(K) is open and dense in Ck(X, R), k &#x3E; 2.

PROOF. Openness results from the considerations of part 4 of this article.
Let’s see density.

Take any f E Ck(X, R), and define h, 01, O2 as before. Let X be a C°° func-

tion with compact support, X: Rn - [0, 1J, X = 1 over a nbd. of K. Let

C e R ; take p = (81,82’ ..., 8n+l- 0), P 1 01 U O2. g = (Lp - C2)/2C is a

Morse function over X, and by suitably choosing the 8i, C, one has that the
derivatives of y = X - (g - f ) may be taken as small as needed up to any
finite order s [11].

Now set T == f + V; 99 is a Morse function over an open nbd. of X r1 K;
and is as close as needed to f. D

By taking a locally finite compact covering {IT,} of X and observing that
Ck(X, R) is a Baire space, one achieves the proof of the theorem.

Using openness of Morse functions (see part 4) it’s easy to show, with
the aid of small perturbations near the critical points, the following

COROLLARY. Morse functions with distinct critical values (i.e. , I f(Pl) =1=
=A f(p2) if Pl :A P2 are critical points or 0-strata) are dense in Ck(X, l!8) and in.
ek 0 (Xg R) , 2 c k C oo.

4. - Stability of Morse functions.

Let X c R" be any stratified space. Morse functions are an open set in

Ck(X, R), 2 C k c 00.
In fact we can show more than that: let f be a Morse function on X.

Give a family {Ui}iEI of nbd. s of the critical points pz of f in the strata of X,
with Ui m U, = 0 if i =1= j, each Ui being contained in some chart of the
stratum. It is possible to find a convex nbd. N of f in Ck(X, R) such that
every g E N has one nondegenerate critical point qi in each Ui and no other
critical points, and g is a Morse function for X.
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The proof of this involves nothing more than local finiteness of the strata
and the usual methods for showing openness of sets of functions (see [6]
Chap. 2, par. 1).

If f is a proper Morse function with distinct critical values, the nbd. N
may be chosen in such a way that it is made of proper Morse functions with

distinct critical values. Since N is convex, if g E N, it is possible to fix

8&#x3E; 0 so that the function Ft(x) = tg + (i - t) f, t E I = eg 1 -E- s) belongs
to N and so is a Morse function over X.

As t varies, the critical points of I’t: X - R lie on connected differen-
tiable curves xi(t) in Ui X I c X X I. Consider the mapping 0: X x I --&#x3E;-
- R X I defined by Ø(x, t) = (tg(x) + (1- t) f (x), t) = (Ft(x), t). The images
Ci(t) = O(xi(t)) of the curves of critical points are disjoint differentiable

curves in R X I.

From now on suppose the stratification of X satisfies yVhitney’s condi-
tions a and b. In this case we shall show that f and g have the same topo-
logical type. In the next pages we will verify that the sequence

where n is the projection on I, is  LocalZy trivial » [10]. This fact, along with
the connectedness of I, shall give us an equivalence between f and g. We
shall establish in this way the following

THEOREM 2 . Morse functions with distinct critical values are stable in

C§(X, R), 3k 00, whenever X is a stratified space for which hold Whitney’s
conditions a and b.

EXAMPLE. If the stratification does not satisfy Whitney’s conditions,
stability of Morse functions may not occur. Take the « Cayley umbrella »,
X = (z2 = zy2 c OS}.

It is a real analytic subset in 1E86. Stratify it with strata :E2 = {the points
of X which lie on the complex z-axis}, :E4 = X - {the complex z-axis}.

This is a stratification with strongly analytic strata, since the points
of E4 are all the regular points of X. It is not a Whitney stratification

though : condition a is not verified at {O}. For any sequence of points of E4
contained in the complex y-agis the limit planes are normal to E2 in {O}.

Let p be a point # (0) belonging to the complex y-agis. It is readily
checked that the function lp(x) == lip - z ]] 2 is a Morse function over {X, Z) ;
lplEs has a critical point (a minimum) at {O}.

Fix a nbd. N of lp(x) in Co(X, R). Take a function g e N, and take it
equal to i(z) over the ball B = (]]z]] 2 lip - qll}, for some q close to p but
not lying on the complex y-axis. By the preceding considerations, if N is
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narrow g is a Morse function with distinct critical values. YI 2’2 has a mm-
mum near {0}; moreover, for g,.,,,{Ol is a regular point. g and f are not topo-
logically equivalent: it is not possible to find homeomorphisms hl : X - X
and h,,: R ---&#x3E; R that give us the equivalence.

In fact, one should have hl(272) = 272 and hl ( 0 ) = 0 (see Remark 1).
And so, if h, and ho existed, {01 should be a critical point for both functions
([11], th. 3.2 pag. 14).

REMARK 1. The number # of irreducible components of a germ (X, xo)
of a complex analytic set X at x, is a topological invariant.

# is equal to the number of connected components of the set of regular
points of X : Reg X = {X - Sing XI, in a small nbd. U of Xo.

If RegT X is the set of points at which X is a topological manifold (and
this set may not coincide with Reg X, see [2]), we want to see that # is equal
to the number * of the connected components of RegT X.

It could only happen that # &#x3E; *. We shall show that this is impossible
by verifying that X is necessarily irreducible at any point x E Sing X n
r1 RegT X.

There will be a nbd. V of x in X, V c RegT X. Suppose one could
find two irriducible components of X at x, say Xl and X2 , so that

M = IX, - Sing X } W TT U {X2 - Sing X } is a connected manifold of dim 2n.

V n Sing X has topological dim  2n - 2 and it cannot disconnect M.

PROOF oF THEOREM 2. The main technical fact that is needed is the

following result, known as Thom’s second o Isotopy Lemma » [9], [10]:

LEMMA 7. Let X i fi.... X, X, n- Ir be a sequence of C2 manifolds
and mappings; if 0  j  i let A j c X j be a closed (or locally closed) subset of Xj
with a C2 Whitney stratification ;E3 == IEkli, 0  S  dim ;E3.

Suppose fj(Aj) c Aj-l, and that

1) every stratum I.,k of Aj is mapped submersively by fj to a stratum

of A;-1 1

2) Thom’s condition af, [10] is satisfied for pairs of strata in Aj, j&#x3E; 1;

3) every stratum of Ao is mapped submersively by a to Y;

4) fj: Aj -&#x3E;- Aj-, is proper, and so is a: A,, --&#x3E; Y. Whenever all these

conditions are fulfilled the sequence

is « locally trivial » over Y with respect to n.
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We are going to give a stratification of X X I = A1 c X 1 = R" X I and
one of R X I = Ao = Xo in such a way that the resulting sequence of spaces
and mappings satisfies the conditions of Lemma 7. First of all, we remark
that in our case the condition that yr be proper can be dropped. The con-
clusion of Lemma 7 will still be true, since the only purpose of this condition
is to make sure that, when one constructs a suitable lifting (by yr) over Ao
for the unit vector fields 3i... am (m = dim Y) in a chart of a nbd. U of
a point of Y, this lifting results globally integrable in a-’(U) [9], [10]. In

the present case yr is the projection from R X I to I : it is not proper, but a

globally integrable stratified lifting for the unit vector field over I is readily
obtainable, as will be evident from the stratification we shall fix on R x I.

If the stratification of X is Whitney regular, then so is the product stra-
tification X X I. Let’s form new strata in X x 1, by taking the curves xi(t)
of the critical points of the functions I’t(x) as t varies in I.

Analogously, we introduce new strata in R xl by taking the segments
Ø(.Eo, t) (where 1,, is a 0-stratum of X), and the curves of critical values Ci(t).

Since xi ( t ) and C,() are differentiable submanifolds of the strata of X xl
and R X I, the new stratifications (say: {X xl}’ and {R x ll) shall be Whitney
regular.

The new sequence we get, fX x 11’ -&#x3E; {R x 11’ -&#x3E; I, still does not verify
the 1) of Lemma 7. So we must introduce again new strata by taking the
intersections with {X x.11’ of the inverse images Ø-l( 0 i(t)) for each disjoint
curve Ci(t). Let fX xllff be the stratification we obtain.

WHITNEY REGULARITY OF {X xl}": We distinguish two types of strata:

type A ) : in this case E is a stratum of

type B) : Z is a stratum of

I ) Whitney’s conditions hold for all couples of strata of type B ) which
are not curves xi(t), because they are obtained by transversal intersection
of two Whitney stratifications :

and

in a nbd. W of X X I - U xi(t) in Rn x I - U xi(t).
2 ’t

(Transversality results since DO has rank 2 over {X X I - U xj(t)l and 1
on the tangent planes to the hypersurfaces

When a stratum Lr of type B lies in a stratum Lr+l of X X I, Whitney
regularity of the couple

. l- _

is obvious. The only thing
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that is left to verify is the incidence between a stratum of type B) and a
curve xi ( t ) of critical points.

II) If a curve xi (t ) is contained in a stratum M x I of X x I, consider

a stratum

One sees that the couple {xi(t), El verifies Whitney’s conditions by means
of the following Lemma, which shows that {M x Il n {Ø-l( 0 i(t))} is locally
diffeomorphic, in the points of xi(t), to the product of a cone with 1, hence
is Whitney regular.

LEMMA 8. Let dim M = r, with coordinates (x, , ..., xr, t) defined in UZ X I.
Suppose 0 E Ck(X X I, R X I ), 3  k  00. Then there is a change of coordinates
in l!8 X I, and Vto one may find a change of coordinates (xl, ... , xr, t) -

-+ (U1’ 7 Ur 7 t) in a nbd. of xi (to) in Ui x I c M x I, that express ØBMXI in
this nbd. in the form Ø(Ul’ ..., ur, t) = ( ± U2 1 ... U2 r t).

PROOF. One gives charts in Ui X I and R X I that take xi(t) -+ (0 ERr) X I
and Ci(t) -+ (0 E R) xl.

The rest of the proof is patterned on the usual proof of Morse’s Lemma,
adjusted to the case of the function F: M x I ---&#x3E;- R, F(x, t) = Ft(x), for

which we now have I’(0 X I ) = 0. o D

REMARK 2. Lemma 8 shows that if 3  k  c&#x3E;o the critical points of Ft
along one connected curve xi(t) have all the same index. Thus, dg E N the
index of qi coincides with that of the corresponding critical point p i of f.
Of course this does not depend on Whitney’s conditions.

III) Now take two strata Y and Z in the stratification of X : Y  Z,
dim Z = h. Consider a curve xi(t) c Y x I. xi(t) c 0-’(Ci(t)), and the last
is a n-submanifold in a nbd. of X X I. Set17 === 0-1 (Ci(t)) r1 Z X I.

We must show condition b for the incidence of a stratum of Z with xi(t).
Let P,,, c E and Qm E xi(t) be two sequences converging to Q E xi(t), As-

-

sume that lim PmQm = 1 in Rpn, and that the tangent planes T,,, to 17
m

in Pm converge to a limit plane T. Condition b amounts to saying that T D lo
By passing to a subsequence if necessary, we may suppose the tangent

planes Tm to Z X I in Pm converge to a limit T, and the n-dimensional tangent
planes am to Ø-l( 0 i(t)) in Pm converge to a limit a.

T :J l for X X I is a Whitney stratification; a D I since 0- 1 (Ci (t)) is a regular
hypersurface in a nbd. of X X I. Thus I c -r r) a.

What is left to show is that J m r coincides with T = lim Tm . Let v(t)
be the normal vector to the curve Ci(t).
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For any define the linear map

for any vector w in im, where  , &#x3E; denotes the usual scalar product. Then
T. = ker 2p * But (DO)(Q) over i has maximal rank, and by the con-
tinuity of DW, we have that, given

ker 2Q (that is, by definition, an í) = lim ker Âpm === lim T m = T.

THOMAS CONDITION a.: Let us take two strata in X xl, of the

type U = Y x I and V = Z X I with Y  Z. We’ re given a sequence
Pm = (xm , tm ) E V converging to (Yo, to) E U, such that lim ker (DØlv)(Pm) = í.

We may suppose that the tangent planes T,,, to V in (xm, tm) converge
to a limit T, and we call T z the M"-component of this limit (that is, if n*

is the tangent mapping of the projection n: R" X I - Rn, Tz = lim n*(Tm)).

TZ contains the tangent plane to Y at yo .

lim ker lim ker

z has codim 1 in TZ . *
Over z, (D.Fto/Dx)(yo) is 0 for continuity. Then ker (DFt)Dx)(Yo)Cí

since otherwise (DI’to/Dx) (yo) would be null over all Tz, contradicting the
hypothesis that all I’t are Morse functions on X.

The proof that condition a. is verified for all other types of strata in

{X X I}" follows smoothly from analogous or simpler considerations..
By applying Lemma 8, Theorem 2 is now established.
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