
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

ERIC BEDFORD

DAN BURNS
Holomorphic mapping of annuli in Cn and the associated
extremal function
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 6, no 3
(1979), p. 381-414
<http://www.numdam.org/item?id=ASNSP_1979_4_6_3_381_0>

© Scuola Normale Superiore, Pisa, 1979, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1979_4_6_3_381_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Holomorphic Mapping of Annuli in Cn
and the Associated Extremal Function.

ERIC BEDFORD (*) - DAN BURNS (*)

Introduction.

For a complex manifold Q, Chern, Levine and Nirenberg [6] have de-
fined a seminorm on the homology groups H*(Q, R) that has the property
of decreasing under holomorphic maps. Thus a holomorphic mapping
f: QI -+ Q2 is restricted by the norm-decreasing property of its induced

action on homology f*: H*(Qi , R) -+ H*(Q2’ R). In this paper we will show

that for certain domains S2,, Q2 ç Cn, f * is an isometry of the homology
groups if and only if f is a biholomorphism. (In fact we will use only the

top-dimensional homology group H2n-I.) In the case where QI, Q2 c Care
annuli, this result was established by Schiffer [22] and was extended to the
case of d-to-1 mappings by Huber [12].

We will consider domains S2 of the following special form:

(*) Do and Di are strictly pseudoconvex with smooth boundary, , Do is

connected and holomorphically convex in DI.

(If Q is multicircular and 0 rtQ, then Q is actually a topological annulus.)
The norm of the homology class r == [3Do] == [8Di] is defined as

where the family consists of v E 02(Q), 0 C v  1 which are plurisub-
harmonic and satisfy (ddev)- = dd’VA...Addlv = 0. This is a higher-dimen-

(*) Department of Mathematics, Princeton University.
Pervenuto alla Redazione il 7 Aprile 1978.
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sional analogue of harmonic measure, and it may be shown that this

supremum is achieved by the solution u of (1.1) if u E C2(Q). We will refer
to N{T} as the norm Nfs2} of Q.

THEOREM 1. Let f : Qi - [J2 be a holomorphic mapping, with Q, and Q2
as above, and let Q1, Q2 be Reinhardt (i.e. multicircular) domains. If N{QI} ==
= N{,Q,} and the mapping f*: H2n-I([JI, R) - H2n-l(il2, .R) is not zero, then f
is a biholomorphism.

This theorem is proved by showing that the solution of (1.1) is the

unique function of Y which attains the supremum in NJ-VI. This technique
was used for Riemann surfaces by Landau and Osserman [17]. In fact the

proof (see Theorem 2.1) yields

THEOREM 1’..Let ill, , 02 be simply connected domains of the form (*),
and assume that the solutions ul and U2 of (1-l-) on ill and Q2 are of class
C4(Dj) and satisfy (1.4). If N{Q1} == N{Q2}’ and f : 0D, --&#x3E;- Q2 is a holomor-
phic mapping with f* =1= 0, then f is a biholomorphism.

The restriction to the class of Reinhardt domains in Theorem 1 arises

because it is not known whether the solution of (1.1) is smooth and satis-

fies (1.4) on more general domains. Another approach to the study of holo-
morphic mappings via a related Dirichlet problem has been described by
Kerzman [16].

If u satisfies (dd°u)n-1 =A 0, (ddcu)n == 0 on a domain D c Cn, there is an
associated foliation Y= :F(u) on D : each leaf M of Y is a Riemann surface,
and UIM is harmonic on M. The foliation Y is an important part of the
proof of Theorem 2.1 and seems to be the main feature which distinguishes
the cases n == 1 and n&#x3E;2. In Section 4, several remarks are made about F.

They center around the observation that if the normal bundle X of Y is
given the fiber metric ddcu, then the Ricci curvature of this metric measures
the antiholomorphic twist of Y. The reason for studying Y in more detail
is Theorem 4.6, which yields

THEOREM 1". Theorem l’ remains valid if the hypothesis (1.4) is replaced
by the assumption that Uj is real analytic on S2j, j = 1, 2.

In the beginning of Section 4, it is shown that there is a topological
obstruction which prevents the solution of (1.1) from satisfying (1.4) if Do
has more than one component. Some information is also obtained concerning
the real Monge-Ampere equation det (a2UIaX,aXj) - 0.

In order to discuss self maps of domains Q C Cn, one may use a continuous
(generalized) solution of (1.1 ), which is known to exist. Thus it is possible
to show that certain bounded domains Q C Cn are holomorphically  rigid &#x3E;&#x3E;
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in the sense of H. Cartan [5]. For this purpose one may define several semi-
norms Ñ on H2n-l(il, R) which are similar to that of Chern, Levine and
Nirenberg. Let us suppose that the bounded components of Cn"""Q consist
of Ki U ... u .KJ U E where the Ki and E are closed and pairwise disjoint.

THEOREM 2. Let Q be a bounded domain in Cn, and assume that 2Z is not
identically zero on H2n-I(Q, R) but that 2Z is identically zero on

The following are equivalent for every holomorphic mapping f: S2 Q:

(i) f is an automorphism

(ii) f* is injective

(iii) f * is an isometry.

This theorem applies, for instance, to the case where n&#x3E;2 and at least one
of Kj has nonempty interior (Corollary 3.2). Section 3 contains examples
where various norms 9 are zero (or nonzero) and examples of singularities
which are removable (or not) for plurisubharmonic functions. Rigidity
theorems for plane domains have been proved by Huber [13] and Landau
and Osserman [17]; these results are more general than Theorem 2 in the
case n = 1. The reader should also compare these results with related results

of Eisenman [8, p. 72].
A different measure on homology classes, which we discuss only briefly,

may be defined in terms of the Caratheodory metric. If y is a k-dimensional
homology class on Q, then Cfy} is the infimum of the k-dimensional Hausdorff
measure (with respect to the Caratheodory distance) taken over all chains
representing y. Let Bn be the unit ball in Cn, and let Ki, K2 be compact
subsets that are convex in the Caratheodory metric of Bn.

THEOREM 3. Let /: BnBK, -&#x3E; BnBK2 be holomorphic, and assume that
C{aK,l = O{oK2}. If f* =F 0, then f is an automorphism of Bn.

Examples are given to show that N{yl and C{y} are not functionally
related.

1. - The Cauchy problem for the complex Monge-Ampère equation.

We use the notation de = iCa - a) so that dde, = 2iôä and (dd,,)n =

== dde /B ... /B dde . Let us summarize some known results (see [4] for details).
The operator (ddc)n has a continuous extension to the space of continuous,
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plurisubharmonic functions, with (ddw)n being defined as a measure on Q.
If we consider the class of functions

!F’ = fv E C(D), 0  v  1, v plurisubharmonic and (ddev)n = 0}

then we may define a seminorm Ny using (**) with F replaced by thc
larger class f" and the integration being taken with respect to a smooth
current representing y. In connection with this, one is led to consider the
extremal function u = sup v, where the supremum is taken over the func-

tions v  IL which are plurisubharmonic on Qi and satisfy v  0 on S20: (This
function has been studied by Siciak [23] and Zaharjuta [26] in other con-

texts.) The function u thus obtained is Lipschitz continuous and is a

generalized solution of the Dirichlet problem 

The following estimate holds:

where the integral is interpreted in a generalized sense. The problem (1.1)
has been solved explicitly in several examples and the solution is regular
and satisfies (ddcu)n-1 0 0 in each case (but cf. § 4 on this point). If U E C2(s2),
it follows that equality holds in (1.2) and

If u E C2(Q) satisfies

there is further structure associated with u. The (n - .1, n - I)-form
(dd,lu)n-1 may be integrated by the Frobenius theorem to yield a foliation
:F = Y(u) of S2 by complex manifolds of dimension one (Riemann surfaces).
This foliation has the property that UIL is harmonic on L for each leaf L of Y
(see [2] for details). We note that the solution u of (1.1), if it is smooth,
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always satisfies (1.4) in a neighborhood of aS2 since it is constant on each

(strictly pseudoconvex) boundary component.
Let 8 = {z c- C-: r(z) = 0}, dr =A 0 on 8, r E C2(C-) be a real hyper-

surface. We will say that S is non-characteristic for a solution u of (1.4) if

This is equivalent to the condition that each leaf L c- Y intersects trans-
versally. This leads to uniqueness in the Cauchy problem.

PROPOSITION 1.1..Let us suppose that u, v are C3 and satisf y (1.4) in a

neighborhood of S. Suppose that u(z) = v(z) and du(z) = dv(z) for z E S, and
let 8 be non-characteristic for u at zo E S. I f u, v satisfy (1.4) in a neighborhood
of zo , u = v in a neighborhood of zo.

PROOF. We will show that there is an open set -W containing zo such that
the foliations :F(u) and Y(v) concide on W in the following sense: if z EyY
and L, Z’ are the leaves containing z, then the connected components of
L r) -W and Z’ r1 W containing z are the same. By the non-characteristic
condition, the leaves are transverse to S, and it suffices to show this for
z c- S r)-w.

Thus we suppose that z E S r)-W, and that .L, L’ are the integral curves
of (ddeu)n-l (respectively (ddv)n-1) which pass through z. Since u - v van-

ishes to second order on S, it follows that all second partial derivatives of
(u - v) except (u - v)rr vanish on S. From the non-characteristic condition
and from (ddeu)n = 0, we may solve for Urr in terms of all the other se-
cond partial derivatives at z. Thus it follows from (1.4) that (U - v)rr = 0
on -Wr) S.

Finally, if 3;’r) 8 and 5,-’r) S denote the foliations of 8 obtained by
intersecting the leaves of T and :F’ with S, then we observe that these
foliations have normal bundles (dd,,u)n-’Adr and {ddw) nw /B dr respectively.
We have seen that for z c- S (-)TV, the second derivatives of u and v at z
are equal, and thus the foliations n Sand :F’ n S have the same tangent
spaces. By the uniqueness theorem for ordinary differential equations,
we see that Y r) S r) W = 5,"’ n S n -W. It follows that Y and Y’ must

agree in a neighborhood of zo, since z E L n L’ implies that L n .L’ contains
a curve in S; and L n L’ can contain a curve only if L = L’.

COROLLARY 1.2..Let the function r defining S be strictly plurisubharmonic,
and set
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If zo E S == aSZ and there is a neighborhood W containing zo such that

u, v E C3(S2) satisfy (1.4) on W n ,S2 and u(z) = v(z), du(z) = dv(z) for
z E Wn S, then there is a smaller neighborhood W’ containing zo such that

u = v on W’ r1 Q.

PROOF. Since S is strongly pseudoconvex at zo, we may make a change
of coordinates such that Zo = 0, X is given near Zo by a convex function
Re Zl = gg(Im Zl, z2, 7 ..., zn) &#x3E; 0, and q &#x3E; b &#x3E; 0 on the set

We claim that for z c D such that Re Zl  ð and (1m zl) 2 + )znJ2  8,

u(z) = v(z). To see this, let L be the leaf of :F(u) containing z. Since u

satisfies (1.4) on D, it follows that L may be extended to Q with a con-
tinuous tangent plane. By the maximum principle, .L must intersect 8 in
a point’ = (C,, ..., in) with Re ’1  6 and (Im ’1)2 + "212 + ... + )Sn )2  8.

Since S is strongly pseudoconvex, L can be tangent to S only at an iso-
lated subset of L n S. Thus, moving to a nearby point i’ G L r1 S if neces-
sary, we find a point where is non-characteristic for u. By Proposition 1.1,
it follows that u = v on L.

COROLLARY 1.3 Suppose S21, Q2 are domains of the form ( *), and suppose
D., , S22 have the sacme inner or outer boundary. If S211 5 -Q2, if the solution

Ul of (1.1) is C3(Dj) for j = 1, 2, and i f deiiAd°uiA(dd°ui)"-1 # 0, then

N{S2,} &#x3E; N{D2}.

PROOF. By the norm decreasing property of holomorphic mapping, it

follows that N{[Jl}&#x3E;N{Q2}. To show that this inequality is strict, we ob-
serve (cf. equation (3.14) of [4])

where F= {r = 0}, dr 0 0 on F, the common boundary of Ql and S2,.
Since Qi § Q2 it follows that OUl(z)/or&#x3E; OU2(z)/or for z E T. If the norms

are equal, then it follows that 8uif8r = au2/ar on F. By Proposition 1.1 it
follows that u, = U2, which is impossible since Ql =1= il2 and uj satisfies (1.1).

We remark that this will be a special case of Theorem 2.1.

Uniqueness in the Cauchy problem also holds for solutions of
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with f &#x3E; 0, and d V is the volume form on Cn. (In our applications to holo-
morphic mappings, however, we will only be concerned with the case f = 0. )

PROPOSITION 1.4. Let u, u’ E C°° be plurisubharmonic acnd satisfy (1.6)
for some f &#x3E; 0. If u(z) = u’(z), du(z) = du’(z) for z E S, then u = u’ in a
neighborhood of S.

PROOF. Since u, u’ satisfy (1.6), then w = u - u’ satisfies

dd"wA[(ddeit)n-1 + (dd,,u) ,-2 Addeul + ... + (ddcu’)n-1] = 0 .

Let us write this as

Since (ddeu)n&#x3E; 0, it follows that OJ is a strictly positive form, and so L is
a strongly elliptic operator. It is known (see Nirenberg [20]) that unique-
ness in the Cauchy problem holds for second order strongly elliptic operators
with 000 coefficients, and so we conclude that w = 0 in a neighborhood of S.

PROPOSITION 1.5. Let the function r defining S be real analytic, let Qo , Q1,
be real analytic and let f be analytic in a neighborhood of S. If

on S, then there exists a real analytic function u in a neighborhood of S such that

for z E S and (dd°u)n = f in a neighborhood of S.

00

PROOF. If we write the solution u = ’I (piri as a formal power series
;=0

with cpj analytic on S, then the condition (1.7) allows us to solve for ggj in
terms of CPo, ..., ggj-, in the equation

The proof that the formal power series converges is a special case of the
Cauchy-Kovalevsky theorem.
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From this, one may obtain special exhaustion functions for pseudo-
convex domains with real analytic boundary.

COROLLARY 1.6. Let Q be a bounded, strongly pseudoconvex domacin with
real analytic boundary in Cn. Then there exists a f unction O E C°°(SZ) such
that Q = {e  01, de =F 0 on ôQ, and (ddee)n = 0 in a neighborhood of aS2.

PROOF. By Proposition 1.5, there is a plurisubharmonic real analytic
function n defined in a neighborhood of 8Q such that (ddcu)n = 0 and

aular = 1, u = 0 on 8Q. For 8 &#x3E; 0 small, we let X(t) be a convex func-
tion that is 0 for t  - 8 and such that X’(t) = 1 for t &#x3E; - 8/2, and thus
e = X(u) - x(o ) is the desired function.

2. - A uniqtleness theorem and some corollaries. 

Here we show that the plurisubharmonic measure (i.e., solution of (1.1))
is the unique function that gives equality in (**).

THEOREM 2.1. Let Q c Cn be a domain o f the f orm (*), and suppose that the
solution u of (1.1) is smooth of class 04(Q) n C3(Q) and satisfies (1.4). Let

v E C4( Q) n 03(Q u aDO) be acnother plurisubharmonic function with 0  v  1,
(ddcv)n = 0 and (ddev)n-1 =A 0 off o f a proper analytic subvariety of Q. If
F = [ôDl] and

then u = v.

Let us note some corollaries.

COROLLARY 2.2. Let Ql, Q2 be annuli (satisfying (*)), and assume that
the harmonic measure u, of S2 j is in C4 ( SZ j ) and satisfies (1.4). I f f : Qi -&#x3E; Q2
is a holomorphic map with N {f*Fl} = ’N{r2}, then f is a proper, unrami-

f ied covering of Q2 by Q,. Further, f has some smoothness at the boundary :
if U2 C2k(fl2), then f C- Ck-1, -it U2 C- C2k(SG2), then f E Ck-1’1 (SGx).

PROOF. We apply Theorem 2.1 with Q = S2,, n = ul, and v = /*U2,
and we conclude that U.1 = u2( f ). Thus f is proper. To see that f is un-

ramified, we use the argument of Kerzman, Kohn, and Nirenberg [16]:
exp (ul) = exp (u2(f)) is a strictly plurisubharmonic function, and if we

compute the complex hessian using the chain rule, we obtain If’ I =F 0.
Taking further derivatives with the chain rule and using another trick
of [16], we obtain the boundary regularity of f. Let us note that if f is first
known to be smooth at 8Qi, then Fornaess [10] shows that f is unramified.
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REMARK. If SZl and 92, have C- boundaries, then Naruki [19] shows
that f is smooth of order m - 4, provided that f is 04(Ql).

A large portion of the proof of Theorem 2.1 is spent proving Lemma 2.6.
Without Lemma 2.6, it is still possible to conclude, in Corollary 2.2, that
U,u,(f), and thus f is proper.

Theorem 1 is a consequence of the following corollary, since for a

Reinhardt domain satisfying (*) the solution of (1.1) is as smooth as

aD, U 8Di .

COROLLARY 2.3. Let S2,, Sd2 satisfy (*) with n&#x3E;2, and let the solution uj
of (1.1) satisfy (1.4) and Uj E 04(Q,), j == 1, 2. Let N{Ql} = mN{Q2} with m
an integer. If f : S2,, --&#x3E; SZ2 is a hoZomorphic mapping, then the degree of f
(i.e. f* -P, = (deg f ) .r2) is an integer 0  deg f  m. If S2, is simply connected
and if deg f = m, then m = 1 and f is a biholomorphism. In general, if
deg f = m = 1, then f is a biholomorphism.

PROOF. The degree of f is a non-negative integer since f is a holomorphic
mapping and n&#x3E;2. Since the norm decreases, deg f c m. If deg f = m,
then by Corollary 2.2, f is a covering which must be a biholomorphism since .82
is simply connected. Thus m = 1.

We begin the proof of Theorem 2.1 with a sequence of lemmas. If

it will ultimately be shown that Q+ = Q- = ø.

LEMMA 2.4. Let M be a leaf of :F(u), the u-foliation. Then M reaches

both the inner and outer boundaries of Q, i.e. M noD, =F 0 f or j = 1, 0.

PROOF. M must reach the outer boundary since D1 is pseudoconvex
(see [2]). For the inner boundary, let c = inf {u(z): z E M} = min lu(z):
z c- 9}. If c &#x3E; 0, let ze 9 be a point such that u(z’) = c. Let M’ be

the Y(u) leaf through z’. Now M’c 9, and so by the maximum principle
u = c on M’, since u is harmonic on M. This is a contradiction since M’

reaches the outer boundary, , and u comes arbitrarily close to 1 on M’.

LEMMA 2.5. I f Q- = 0, then u = v.

PROOF. If u&#x3E;v, then v = 0 on 8Do, and so aular&#x3E;avlar&#x3E;O there.
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However

where r is any smooth defining function for Do. It follows that u - v =

== 0 = d(u - v) on aDo, and so u = v in a neighborhood of aDo by Propo-
sition 1.1. Since the two foliations :F(1¿) and Y(v) must agree near aDo,
it follows by Lemma 2.4 that u = v on Q.

LEMMA 2.6. If SZ+ = 0y then u = v.

PROOF. If u c v, then v E C(D) and v =1 on 8Di: -. Let us = u/(,-,) for
ê &#x3E; 0 small, and set

We will show that

holds. We recall that 8Q = aDl - aDo and that dcUA (ddeu)n-1 is strictly
positive everywhere on aDo . By (2.1) it follows that v = 0 on 8Do. The

solution of (1.1 ) is unique (see [4]), so u = v on S2.

Let us first establish an inequality

for i &#x3E; 0. This is obtained by repeated integration by parts:
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The inequality arose because vl on Fe, 0 c v on aDo, and dcu,A(ddev)’A
A(ddcu,)n-i-i is a non-negative form on Fe and 8Dn .

Since u solves (1.1 ), we obtain

By repeated application of (2.3) to (2.4) we obtain

Thus, in order to prove (2.2) it remains only to show that the limit of the

right hand term is 0 as 6 - 0.
To prove that
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we proceed by induction on i. The case i = 0 is trivial. First we note that

Thus it suffices to show that

For this, we note that

and thus

Assuming, by induction, that (2.5) holds for i - J , we take lim of both
sides and get 

- 

By monotone convergence, we get

which implies (2.5), completing the proof.
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Next we discuss the set

LEMMA 2.7. On S,

PROOF. Let z, c- 8 be a point where the expression in (2.6) is strictly
positive. We set us = (u - E)/(1- 2e) and

An integration by parts and (2.1) gives

For 2 &#x3E; E &#x3E; 0, , Ye {z E Q: uE(z) = v(z)} is a compact subset of S2. If we

smooth u.., and v with a non-negative smoothing kernel xa , then the smoothed
function 4 and va define a compact set y&#x26; . By Sard’s theorem, ys is smooth
for almost all s. Thus we may replace T by the smooth cycle yf . By as-
sumption, d(u - v)(zo) =A 0, so that {u = v} is a smooth surface in a neigh-
borhood U containing zo . Furthermore, there are points z,,’ c yfl with z,,’ -&#x3E;+ zo .

Finally, since u and v are plurisubharmonic, dc(ufl - vf) A0fl is a nonnegative
form on yE , and

This is a contradiction since the left hand side of (2.7) approaches 0 as
8 --&#x3E; 0, and so (2.6) holds at zo.

LEMMA 2.8. Let M be a leaf of T(u). I f X 0 Q+ 0 0, then M c Q+.

PROOF OF THEOREM 2.1. This lemma will give a proof of the theorem,
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for by Lemma 2.4, M must reach some point z_ E aDo. Thus there is a

neighborhood U of zo with U n aDo C 8 r1 D+ and U n Q c D+. Since

n &#x3E; vi it follows that d(v - u) = adr on U r) aD,,. Since dr /B der /B (dd°u) "-1 &#x3E; 0
on aDo, it follows from Lemma 2.7 that d(u - v) = 0 on U r’1 aDo. Repeat-
ing now the argument of Lemma 2.5, we conclude that u = v on M,
which is a contradiction, proving the Theorem.

PROOF oF LEMMA 2.8. We will suppose that S2- n X =A 0 in order to
derive a contradiction. By moving M slightly if necessary, we may assume
that (ddcV)n-1 vanishes only at an isolated set of points of M. (Recall that
(ddcv),-’ = 0 is contained in a variety.) Thus we may consider a point
zo c- N r) S r) D+ r) S2 such that (ddev(zo))n-l =F 0. There are two cases

to handle :

(a) d(u - v) =A 0 at points of 8 arbitrarily near zo ;

(b) d(u - v) = 0 in a neighborhood of zo in S.

For case (a), we consider zj c- S close to zo such that d(u - v)(zj) =1= 0,
i.e. S is smooth at z,. Let M(z) be the leaf of f(n) containing z. The

condition (2.6) says that the tangent space of M(z) lies inside the tangent
space of S. Since this holds for all z E S sufficiently near Zj that d( u - v) # 0,
and since the foliation Y(,u) was obtained by integrating the (2n - 2) form
(ddeu)n-I, it follows that in a neighborhood Uj of z;, M(z) (’) U; c S. Fur-

thermore, v == u is harmonic on .M(z) r1 Uj, and it follows that M(z) n Uj
is also a leaf of :F(v) since (ddw)n-1 &#x3E; 0. Thus M(zj) is a leaf for both Y(’U)
and Y(v) and u = v on M(z,). It follows that u = v on M(zo), which means
that M(zo) c D+, a contradiction for case (a).

In case (b), we want to show that Si’(u) and :F(v) have the same tangent
spaec at zo, i.e. ddcu(zo) and ddwv(zo) have the same kernel. For a E 8, we
let Tan (8, a) denote the tangent cone of S at a, i.e. the cone in R2n gener-
ated by the limits of secants (zj - a)/Izj - a] I with zi c- S, (see Federer [9],
p. 233.) Let the tangent space TaS be the real linear span of Tan (S, a) -
We claim that on a dense set of points a E lJ+ n {j-, d’MR T,, 8  2n - 2
for z E S in some neighborhood of a point zo E S. In this once may show

(see Federer [9], Lemma 3.3.5) that S is a countably rectifiable (2n - 2)-
dimensional set. This cannot happen in a neighborhood of tJ+ n Q- since
a (2n - 2)-dimensional set cannot disconnect Q.

It suffices to show that ker ddeu(z) = ker ddev(z) for a point z E 8 ar-

bitrarily close to zo, so we may assume that dim Tzo S &#x3E; 2n - 1. If

dimR Tzo S = 2n, then dd°u(zo) = dd°v(zo), so we assume that T, 8 has

dimension 2n - 1. Choose coordinates Z j == x j + iy" , 1 c j c n, such that

the set {ô/ÔXj, ô/ôYj, l,jn-l, alax,,,} spans Tzo S. Since u- v =
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== d(u - v) = 0 on S, it follows that all second derivatives of u and v are
equal at zo except, possibly, the 02/,ðy; derivative. If det (uii)li,in-l =F 0,
then we may solve for 02U/oy; = a2Vlay2 in terms of the other second partial
derivatives in the equation det (uii) = det (vij) = 0. If det (uÜ)li,in-l = 0,
then det (vïj)li,in-l = 0, and both :F(u) and Y(v) are orthogonal to

dznAd£n at zo . We may now proceed by induction on the space spanned
by {a/ox" O/OYj, 1 ,j ,n - I} to see that ddeu and ddcv have the same

kernel at zo .
Now we observe that if M were a leaf of the :F(v) foliation, there would

be nothing to prove, since by uniqueness in the Cauchy problem u = v
on M. The foliation Y(v) is of class C2 and, by the argument above, is

tangent to M at all points of {j+ r1 5- n M near zo . There are functions

. , (p2n-2 E C2 such that the leaves of :F(v) are given near zo in the form
{z: 991(Z) = Cl, ..., f{J2n-2(Z) = C2n-2}. It follows that d( f{Jj 1M) - 0 on any

point of M (1 Q+ n 9-. By A. P. Morse’s theorem, the ggj are constant on

the connected components of M n Q+ (1lJ-. Since one of these components
must have an accumulation point SO e M, it follows that the leaf M’(Co)
of :F(v) must coincide with M. In other words, M is a leaf for both :F(u)
and Y(v), completing the proof.

3. - Self maps of bounded domains.

If H2n-l(Q, R) has more than one generator, then the results of Section 2
cannot be applied directly (see Section 4). Much can be said, however, if

the domain S2 is being mapped into itself. Theorem 2 will be shown to

follow from a theorem of H. Cartan and the fact that the norm N is de-

fined in the form (**). We will then discuss some similar norms obtained by
changing the farnily Y and the mapping theorems they provide.

A compact subset E c Cn will be said to be negligible for N (or N) if there
is a neighborhood w of E such that the norm N (or N) is identically zero on
H2,,,-l(ojBE2 R). Let us assume that f2 is a bounded domain in Cn with

H2n-l(tJ, Z) = 0, and that K, E are disjoint compact subsets of Q. We
will assume that E is negligible and that K = Ki U ... U gl has finitely
many connected components. By Alexander duality,

and without loss of generality, , we assume that lit(8£5, £5uK;) &#x3E; 0, for

otherwise we replace E by E u Ki.
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Since H2n-l(tJ, Z) = 0, the Mayor-Vietoris sequence gives

where Q = fiu(K U E). One way of viewing this direct sum is that if

F E H,.-,(DBE), then it may be represented by a cycle supported in a
small neighborhood of .E which is disjoint from K. Thus we may consider
FE H2n-l(Q). · By the class of e.g., 8K in H2n-l(Q), we mean the class of a
smooth compact hypersurface in Q, bounding a sufficiently small, compact
region in f2.

Now we claim that the closure of 0 in the seminorm N may be naturally
identified with H,,,-,(DBE). It is easily seen that if Fl E H2n-l([J) and
h2 E H2--l(f2BE) , then

We will write the induced (finite dimensional) normed space as

Theorem 2 is a consequence of the following

THEOREM 3.1. Let Q = DB(K u E) where f2 is a bounded domain in C’n
with H,,,-,(D, Z) = 0, and let K, E be disjoint compact subsets of D. We

assume that E is negligible and that 0 C dim 17  00. If Q -&#x3E;. Q is a holo-
morphic mapping then ‘the following are equivalent :

(i) f is an automorphism of S2;

(ii) f* is an isomorphism of H2n-l(Q, R) ;

(iii) f * : n --&#x3E;- 17 is nonsingular ;

(iv) if a subsequence of the iterates of f, {Iil, converges uniformly on
compact subsets to a map F: Q --&#x3E; 12 then F is an automorphism.

(v) f* : H -¿. n is an isometry.

PROOF. The implication (i) =&#x3E; (ii) is obvious.

(ii) =&#x3E; (iii). By the norm-decreasing property of f*, it follows that
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It follows that f * : H --&#x3E;. 17. Since H is finite dimensional, it is sufficient

to show that f * is onto. If [-Pl e 17, let FEH2n-l(Q,R) be a representative.
If .1"E H2n-l(Q, R) is any preimage under f * , then 1*[-Pl] = [.P], and thus f *
is nonsingular on J7.

(iii) =&#x3E; (iv). Let {/I) be the sequence of iterates of f and let F : Q - 15
be a mapping to which a subsequence of the converge uniformly on com-
pact subsets of Q. By a theorem of H. Cartan [5], (or see [18]) I’ is either
an automorphism or the Jacobian determinant of I’ vanishes identically.
In the latter case, we consider [F] c- J7 and follow its image under f * . Let

Fj be the homology class of aKj for 1jl. Thus there are integers Cii

such that

We may assume that c.,j &#x3E;I for infinitely many j and that R{aK,l &#x3E; 0.
Thus there exists a current Tl representing a.g1 compactly supported in Q
and a function u, E P(DBK.,) n C(DBK,,) such that (ddeu,)n = 0 on Q"’X1
and TldcullB(ddcul)n-l = 6 &#x3E; 0.

Thus integration by parts yields a bound for infinitely many j :

On the other hand, if T is a current representing t, then F* T = 0 since
the Jacobian determinant of F is zero and the dimension of T is (2n - 1).
By uniform convergence,

and so

which is a contradiction. Now (iv) =&#x3E; (i), (i) =&#x3E; (v), and (v) =&#x3E; (iii) are

obvious, , and this completes the proof.
We will consider the class of functions for j = 0 or 2:

26 - An.n. Scuola Norm. Sup. Pisa Cl. Sci.
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By Hartogs’ Theorem, a holomorphic mapping F: S2, -&#x3E;,Q, extends to

.F’: Gi --&#x3E; Q2. Thus the family :Fj (S22) is mapped into 3;-,(,Ql) by F*. It fol-

lows that the norm Ni defined by (**) with :Fj replacing :F decreases under
holomorphic maps.

A compact subset E c f2 without interior is easily seen to be negligible
for the seminorm N2. Theorem 3.1 with N replaced by N2 yields

COROLLARY 3.2. Let Q = f2B,BK Cc C-, n -&#x3E;- 2, be given where H2n-l(Q, Z) = 0
and int ..K is nonempty and has finitely many connected components. The

conclusions (i), ..., (v) of Theorem 3.2 are equivalent if 17 is replaced by H2
(corresponding to N2). In particular (i) =&#x3E; (ii).

Let us recall that a set E c Cn is Cn-polar if for each z E E there is a

neighborhood U of z and a function v plurisubharmonic on U such that
U r1 E c Iv = - oo}. Josefson [15] has shown that if E is polar there
is a function v plurisubharmonic on Cn with .E‘ c Iv = - 00}.

If K is a compact subset of Q c Cn, we define

It is well known that the upper regularization

is plurisubharmonic. A function V on D is an upper barrier if it has the
property that if B c Q is a ball and u E P(S?), u  V on aB, then u  ip on B.
In the terminology of Hunt and Murray [14] an upper barrier is (n - 1 )-
plurisuperharmonic. If E and S2 have regular boundaries, then the solution
of the Dirichlet problem for the Laplacian is an upper barrier. A technique
of Walsh [25] yields the following result.

PROPOSITION 3.3. Let Q Cc Cn be a pseudoconvex open set, and let there

exist a function p E P(S2), p  0, such thatc!lIJbp(,) = 0. If there is an upperc-,of2

barrier V on S2BE such that li m 1jJ(’) = 0 a"d,19lpY1&#x3E; - 1, then h(E, Q)
is continuous, and h(E, Q) is 0 on E, 1 on aD.

PROPOSITION 3.4. Let Q c C" be pseudoconvex, and let E c S2 be a compact
polar set. I f t is the homology class of aD in SZBE, then Ñ{r, QUE) =
N,,{-P, QUE) = 0.

PROOF. Since .Q is pseudoconvex, it has a C2, strictly plurisubharmonic
exhaustion p(z). We may assume that E c fp  0}y and we may replace 12
by Q = {p  0}. Let w c- P(Q), w  0, be such that E c {W = - co}.
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For k &#x3E; 0, we set a)(k) {z c-,Q: w(z)  - kl. Since E is compact and

0,)(k) is open, there is a smoothly bounded open set Uk E c Uk c w(k).
By Prop. 3.3, hk = h( Uk, Q) is continuous. We define

By Prop. 3.1 of [4],

where T is any compactly supported smooth current representing t. Since

w/k  h, - 1  0 it follows that the hk converge uniformly to 1 on the sup-
port of T. Thus 0 = lim R(I, Q(k)) &#x3E;Ñ(r, Q/E) &#x3E; No(1-’, S2BE).k--&#x3E;

COROLLARY 3.5. Let E be a compact polar set in Q, a pseudoconvex subset
of C-. If u E C(f2) n P(Q) and (ddeu)n = 0 on Q/E, then (ddcu)n = 0 on f2.

PROOF. Let T be a smooth current representing 84ii supported away
from E, and let S be a current such that M = T. It follows that

COROLLARY 3.6. Let E be a compact polar subset of a pseudoconvex domain Q,
then E is negligible for No.

PROOF. Since H2n-l(Q, R) = 0, H2n-l(Q,BE, R) is generated by linear
combinations of classes of the form [aK]. But if v E Yo(QUE), then by
Corollary 3.4 (ddlv),, = 0 on D. Thus

PROPOSITION 3.7. Let E be a compact subset of Cn, and let 1p&#x3E; 0 be a
continuous upper barrier defined on a neighborhood coBE such that lim 1p(’) = 0C-Z

for z E E. Then 

for any bounded open set Q containing E.

PROOF. It suffices to take Q to be a large ball containing E and to show
that N,{aS2,,QBE} &#x3E; 0. Since min (ky, 1) is an upper barrier on Cn, for k
large, the continuity of h(E, Q) follows from Proposition 3.6. It suffices
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to show

where T is a smooth current representing 8Q and h = h(E, Q). Since Q

is pseudoconvex, it follows that h = 1 on aS2. Thus Q(b) = Iz c- S2: 1- - 6 
 h(z)l, is an open set and for 1 &#x3E; 6 &#x3E; 0, Cn""-Q(ð) will contain a neigh-
borhood of E. Since S2 is bouncled, N,,fF, Q(b)) is strictly positive. By
Theorem 3.2 of [4],

and thus (+) holds.

EXAMPLES. Let us take .E to be {(X,, ..., xn) E Rn: max Ix, I  1 } a totally
real cube in Cn. To construct an upper barrier for E, we consider the one
dimensional case of the interval [- 1, 1] in the disk of radius 2. There is

a harmonic function gg(z) on the set {z c- C: lzl  2, z 1, 1]} such that
n

gg(z) == ] if Izl = 2 and Q([- 1, 11) - 0. Now we let O(z) (p(zj), and
; = i

we observe that O(z) &#x3E; 0 if Z rt E and Ø(E) = 0. Since 0 is n-harmonic it

is an upper barrier.

If M is a totally real smooth submanifold of C" of dimension n, we may
construct a similar upper barrier. For fixed zo E M, there is a neighborhood a)
of zo and a smooth diffeomorphism T = ( T 1, ..., T n ) of co r1 M with an

open subset of Rn c CB Furthermore, since M is totally real T may be
made « almost » holomorphic in the sense that aT will vanish to high order
at co r) M. If 99 in the preceding example is taken to satisfy 4q _ - _1,

n

then sufficiently close to cv r1 M, O(z) gg(T,(z)) will be superharmonic,
and thus an upper barrier. 

;=1

Let us conclude this section by computing the norm of a (2n - I)-dimen-
sional homology class other than T = [aDo]. If S2 is a Reinhardt domain

of the form S2 = DB(Kl U .K2) where g1, K2 are compact and disjoint, then
gl U .K2 is not holomorphically convex in S2. If T = as2, then

where K is the log convex hull of Kl U K2 (and it is assumed that .K c Q).
Let us compute N{y, Q) where y = [ôKl]. The extremal function u which
gives the norm may be computed by looking at the logarithmic image of Q

(see [4] for details). We give here the construction in C’2; the Cn case is similar.
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In region A, the function is obtained by setting u = 0 on y and u = 1
on T and requiring that u be linear along the straight line connecting the
points on y and .r with equal normal vectors. On the region B, the func-
tion u is defined by ei = 0 on y and u = 1 on T u(P) is already determined,

and u is linear on all segments connecting P to y and 1-’. Note that 2c is not
smooth of class C’ at the segment PQ. Thus Nfy} -fdcuAdd,,u is strictly

Y

greater than Nfy, Q""X1}. It remains an open question, however, whether
Nfy) can be strictly greater than Nfy, SZB.K1 if Q satisfies (

4. - Structure of the (plurisub-) harmonic measure.

An obstacle to proving Theorem 2.1 for domains in Cn (n&#x3E;2) with
more than one hole is that solutions of (1.1) will not satisfy (1.4) on Q
(see the first Example below). If the solution of (1.1) is real analytic, the
statements analogous to Theorem 2.1 and Corollary 2.2 remain true (see
Corollary 4.8). Besides using the real analyticity of u, this depends on a
more careful look at the geometric nature of the foliation.

EXAMPLE. Let S2 c C2 be defined as where S is an open

ball and S, are disjoint compact balls contained in S. Suppose that u E C2
satisfies (1.1) and (1.4) on Q. Then the foliation Y(u) exists everywhere
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on ,Q and has tangent bundle 3. There is a continuous global section

X = ).,1(3/oz1) + a,2(a/az2) of 3 since H2(Q, aS2) = 0. As was noted in Sec-
tion 1, :F(u) (and thus X) is transverse to 3Q. Again, since H2(S2, a,SZ) = 0,
there is a continuous function eie on Q such that the vector field

Xo = Re (elo X) is nonvanishing and points inward at points of a,s2. It fol-

lows that the Euler characteristic of Q must be zero, and thus Q has only
one hole. Now let us suppose that M is a closed leaf of :F(u). Since Xo is
tangent to M, it follows that M, too, has vanishing Euler characteristic and
must be an annulus.

In the following example, the outer boundary is not strictly pseudo-
convex, and the foliation is nonsingular.

EXAMPLE. Let

and let f(zl, Z2) _ (zi, z2).
It follows that f-l(Qo) = S2 is a weakly pseudoconvex domain with two

strongly pseudoconcave holes. The solution to (1.1 ) is

and the corresponding leaves are iz 2 = c(zi - ])).
Now let u satisfy (1.1) on a set S2, and suppose that u satisfies (1.4) on

a smaller open set Q’. Let X denote the normal bundle to the foliation F,
which is defined over Q’. Now we will consider the (1, 1) form 0) == ddcu
as a metric omN’, and con-1 = (cldcu)n-1 is its associated volume form. Let

B == (ij2)(dzl/Bdzl + ... + dzn n dzn) be the standard Kähler form on Cn, and
let * denote the Hodge *-operator. We recall that if (giJ) is a hermitian

metric on a holomorphic vector bundle, then the associated Ricci form is
Ric = ddc log (det (g,2

PROPOSITION 4.1. The Ricci form of the metric OJ is non-negative. In local
coordinates, the functions log * (f3/B (ddeu)n-l) is subharmonic when restricted to

a leaf of :F(u). If the leaf L is locally a portion of the zl-axis then Ric is given
by dde log * (f3 /B (ddeu)n-l) restricted to L.

PROOF. We choose coordinates so that a given leaf is the zl-axis passing
through 0, and thus on this leaf ul, = uil = 0 for I  i, j  n. We use

a/az2, ..., a/azn as a local basis for N along this leaf, and the matrix H of
the metric has entries
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It follows that

Since ddc on the zl-axis is (a2l(aZ., 2idzlndzl, it follows that the log-
arithm of (4.1) is subharmonic on the zl-agis if and only if the Ricci form is
non negative. In general coordinates’ == c(z), with Kahler form

We will compute the curvature 2-form of the hermitian connection of

type (1, 0) omN’ associated to this metric. This is given by 27 = 2iB dzi Ad£1
where

the subscripts denoting entry-by-entry differentiation of H. We will show
that B is a negative semi-definite hermitian endomorphism of X. From
this it follows that Ric is nonnegative since

To show that B is nonpositive, we expand the identity

On the z,-axis, ui-f .- uij = 0, so that if 2 c k, Z c n, then

along the z-axis. Carrying out the differentiation, and noting that Uil == 0,
Uti == 0, 1  i, j  n, along the z,-axis, one gets
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Here HAA is the (n - 2) X (n - 2) matrix gotten by deleting the r-th rowr’s

and s-th column of H. Thus, the cofactor matrix C(g) of H has s-th-row,
r-th-column entry ( - l )’’ +s det (Hr, s ) . Continuing, we get

r,

Thus,

where A is the matrix with (i, j ) entry ufi,. Multiplying on the left by

Without loss of generality, we may assume that H(o) = In_i , and thus B c 0,
completing the proof.

REMARK. Notice that we have proved more, since the semi-definiteness

of q gives Ric = 0 ilT q = 0. Ric also measures the «anti-holomorphic
twist » of Y(u), for which we will give two interpretations. For the first,
let us normalize so that (UÛ(O)) - In_l. Then by (4.2) and (4.3),

We may parametrize the leaves of Y(u) near 0 by letting M(a) be the leaf
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passing through (0, IX2, ..., «n) = (0, IX). There exists a small 6 &#x3E; 0 and a

function

such that

We may write

Thus the 8z;j8zi slope of jM’(oc) at (0, 0153) is given by

Since M(a) is the annihilator of the matrix (ujk), the azlaz, slope of M(a)
is also - uÛ/uij. With our normalizationSy

so we have

which measures the non-holomorphic nature of f(u) at 0.

A foliation f- of Q c Cn , whose leaves are complex submanifolds of

dimension k is a holomorphic foliation if and only if 3 = Tl,O(:F) c Tl,o(,Q)
is a holomorphic sub-bundle. For complex tangent vectors c E jZ and
$ E TO,I(D),.,,, $ transverse to Y, let" and ( denote extensions of C, $ to local
vector fields with" in J. The vector [t, ’E] mod ( j@ TO,’(D)) in JY’x depends
only on (, $, call it C(’, $). C is a linear map : 3 Q JV - JW, and F is holo-
morphic iff C -= 0. Indeed, 3 is locally spanned by the vector fields

where the bu must be holomorphic on leaves of Y. Locally, we may take
a leaf M of Y to be a (Zl, ..., zk)-coordinate plane, so that XIM is spanned
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by k + 1  1  n. On M, we may take brackets

Hence, E = 0 if and only if the bij are holomorphic on S2.

In the case at hand, we may compute along the zi-axis to get

Hence, E = 0 along the zl-axis if and only if all ui,-, = 0 there. This gives :

PROPOSITION 4.2. The foliation Y(u) is holomorphic if and only if
the Ricci form vanishes.

Now we suppose that the solution u of (1.1 ) is real analytic on Q. The
hypersurface

(4.6) S = fr(z,,, zl, ..., zn) = log Zo Zo + U(ZI, ..., zn) = 0 f

in C X Q is weakly pseudoconvex. If .M is a complex manifold in S, and if
n: C x 0 -&#x3E; Q is projection, then n(M) is a leaf of Y(u) (see [2]). The tech-

nique of the proof of Theorem 4 of Diederich and Fornaess [7] applied to
the surface S yields a method for extending leaves of :F(u) over the set

{( ddeu )n-l = o}.

PROPOSITION 4.3. Let a E Q be given, and let u be real analytic and satisfy
(ddcu)n = 0, (ddeu)n-1 # o. Then there exists 8 &#x3E; 0 sufficiently small that if M
is a component of Y(u) on {lz - a  ê}, there exists a (closed), irreducible

variety M in {Iz- a I  ê} with Me M.

PROPOSITION 4.4. Let the solution u of (1.1 ) be real analytic, and let E,

a be as above. Then .mBM is a finite subset of { (z - a I  8}.
PROOF. Since (ddeu)n-l =F 0 on M, it follows that M is one-dimensional.

Now T(z) = log (*flA (ddcu)n-1) is subharmonic on M, and limq(z) == - 00
z-&#x3E;zo

for zo E M/M. Thus 99 is subharmonic on M and MBM = {q;  - oo} ==
-H n {(ddeu)n-l = 0) is a real analytic polar set, which is finite.

PROPOSITION 4.5. Let the solution u of (1.1) be real analytic and C2(Q).
Then every leaf of Y(u) reaches both the inner and outer boundaries of Q.

PROOF. Let us suppose that sup u = max u = c  1. Let zo E M be a
M M

point such that u(zo) = c, and let zi E M be points converging to zo . By
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Proposition 4.3, Zj is contained in a variety Mj in an s-ball about zo = a.

By a theorem of J. E. Fornaess (see [27]), a sufficiently sparse subsequence
of {Mj} may be chosen so that the cluster set is a variety .M, and ll is of
the form n(Ml), where liti is a variety in ,S’ of (4.6).

The set E == {z E Q: (ddcu)n-l == O} is a compact real analytic subset
of Q since (a7CIcn)n-1 =A 0 on aDo U oDl. So by Diederich-Fornaess [7], no
component of M is contained in E. Thus lit is contained in finitely many
leaves of Y(w) with a finite number of points added. Now we may use the
fact that M c !Fl and that Enlff (the set of singularities of the differential
system defining lVl ) is discrete to conclude that u Ii  c. By the maximum
principle, Me {u = c}, but this is impossible by [7].

The proof that M reaches aDo is a similar argument, following the out-
line of Proposition 2.4, and we omit it.

REMARK. It follows that E = {z E Q: (ddca+)"-1 = 01 has real codimension
&#x3E;2 for any real analytic solution u of (1.1). For if dim E = 2n - 1, then
H2n-l(E, Z2) =F 0 and by Alexander duality 170(,S2nBE, Z2) * 0, i.e. E discon.
nects S2, contradicting Prop. 4.5.

For the theorem below, a proof may be given which follows the proof
of Theorem 2.1 in its essentials except that Lemma 2.4 is replaced by Pro-
position 4.5 and Lemma 2.8 may be modified to accomodate the changed
hypotheses. We omit the details because too much duplication would be
involved.

THEOREM 4.6. Let u, v satisfy the hypotheses of Theorem 2.1, except that

they need not satisfy (1.4). I f u, v are real analytic in Q, and if v satis f ies (1.4)
on QB(Z U E) where Z is a proper analytic variety in Q, and E does not
contain any germ of a complex variety, then u = v.

COROLLARY 4.7. Let S2,, S2, C Cn be domains satisfying (*), and assume
that the solution uj o f (1.1) is real analytic on Qj and C3 on the inner boundary
of Q; for j = 1, 2. Let Tj denote the outer boundary of S2j, and let Nf-r,} =
N{F,}. If f : S2, -&#x3E;* S2, is a holomorphic macpping, and if /*{F ,} = ah2 + y
rx =F 0 and y is a positive linear combination o f inner boundacry components
of S22, then f is an unrami f ied covering of S2,.

PROOF. We set u = u, and v = u2( f ) and observe that the set where

(ddw)n-1 = 0 is ft 1/1 = 0} U f-it(dd,,u,)n-l == 01 = Z U E. By Hartogs’ the-
orem, « is a nonnegative integer. Since NIT,,) = Nfr2} and
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it follows that DC = 1 and y = o. The rest of the conclusions follow as in

Corollary 2.2.

REMARK. We have not explicitly constructed the solution to (1.1) for
any example of a domain S2 satisfying (*) where Do has more than one
component and n&#x3E;2.

The geometric notions of Propositions 4.1 and 4.2 were motivated by
phenomena which appear more concretely for the real Monge-Ampere equa-
tion and seem to be related to work of Sacksteder [21] and Hartman [11].

If U(Xl, ... , xn) satisfies det (Uij) = 0 on a domain D c Rn, then u satis-
fies (ddeu)n = 0 on the tube domain D + iR". A leaf M of Y(u) is a com-
plex line, and the corresponding leaf for the solution on D is M n D.

Let us study the foliation by solving a certain « boundary value » problem.
We will write a point in Rn as (X,, ..., Xn-l, Yn) = (x, y). Let A = (acij)
and B = (bij) be nonsingular (n - 1) x (n - 1) matrices. We want to find

u(x, y) in a small neighborhood of the interval I = {(O, ..., 0, y) : - 1 YI}
such that rank (uij) = n - 1 in a neighborhood of I

We may compute the foliation Y near the interval I because Vu is constant

along the lines of F. Thus F will contain the segment between (x, - 1)
and (x, 1 ) where

Furthermore, since u is linear along this segment, it follows that

where we set

From this we may calculate the hessian matrix of u
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PROPOSITION 4.8. Let u E C2(D) be a f unction satisfying rank (Uij) =
n - I - Let L be a segment of :F, and f or p E L, let Hess (p) denote the

(n - :f) x (n - 1) hessian matrix of u taken in the orthogonal subspace to L
at p. Then the entries of (Hess)-.’ are linear on L. In particular, det (Hess)
does not tend to zero at either endpoint of L.

PROOF. By an affine map, we may assume that the endpoints of .L are
(0, :1: 2). By subtracting a linear function from u, we see that u solves (4.7)
on I. Thus (Hess)-’ is linear by (4.10). It follows that (det Hess (0, y))-l
is a polynomial of degree (n - 1), and thus it tends to a finite limit as (0, y)
approaches (0, =b2).

Let us return to the solution of (4.7) and assume that A &#x3E; 0, i.e. n is
convex at (0, - 1 ) . We perform a rotation and diagonalize A. Since A &#x3E; 0,
we may perform a change of scale and assume that A = I. Thus (4.10)
takes the form

Performing another rotation in Rn-l, we may take B’= diag (Âl, ..., Ân-l).
Thus Hess u(O, y), in these new coordinates, is a diagonal matrix whose

j-th entry is ((1- y)/2 + Â,(l + y)/2)-1.

PROPOSITION 4.9. Let u be a C2 function that satisfies det (Uij) = 0
in a neighborhood of the entire y-axis. If the matrix (’Uii(O)) has rank (n - 1 )
and is nonnegative, then (Uij) is constant on the y-axis.

PROOF. By the discussion above a coordinate system may be chosen
so that the hessian matrix is diagonalized and the j-th entry is ((1- y)/2 +
+ AI(l + y)/2)-1. Since this is always finite, it must be constant. Thus

Àl = ... == Àn-l = 1.

REMARK. If the convexity assumption is dropped, then the Proposition
is false. For example, by our previous discussion, there is a function

u(x, y, z) on R3 with det (uij) -= 0, n(Og yg z) == yz, u(l, y, z) = t(y2 - Z2), ,
and with foliation given by lines

Along the x-agis, Hess
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For a fixed segment L of F it is natural to define a Poinear6 map. For

p E .L let E be a neighborhood of p in the copy of Rnm passing through p,
which is orthogonal to L. By translation, m may be considered to be a
neighborhood of 0 in Rn-1. Following leaves of F near L, we have a map
Ipl1)2: };’Pl - ZmP. Taking f1)I1)2 to map a neighborhood of 0 in Rn-1 into Rn-1,
we see that the jacobian of f’Pl1)2 at PI is (Hess u(p,,))-l Hess u(p2). If u is

convex at pl, then this matrix can be diagonalized. If JY’* is the dual bundle

of N’, then the metric on n* is given by (Hess u)-1, and the jacobian of

fPlP2 is an isometry.

REMARK. It seems that the complex version of problem (4.7) should

give useful information about solutions of (1.1) and (1.4). Let a real func-

tion a(O, z,) be given with a(O, 0) = a2(8, 0) = 0 and a,2(0, 0) &#x3E; 0. We want

to find a plurisubharmonic u(zl, Z2) such that

Some further restrictions on a(0, z2) are necessary before (4.12) is solvable, ,
consider

Let A (z1) be the unique nonvanishing analytic function on ]zi]  1 such
that IA(eiO) 12 = b(O). Changing coordinates by zi = Zl’ z; = A (z1 ) z2 we may
take b(8) = 1. To solve (4.12) we next look for the leaf of the foliation which
passes through (0, C) :

Since U2 must be holomorphic on M(C),

must have no negative Fourier coefficients,. Thus

and on M(C),
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is constant. We conclude that

so c is not arbitrary.

5. - Cycles with minimal area.

The Caratheodory metric on a complex manifold Q has the property of
decreasing under holomorphic mappings. To a homology class r E Hz (Q, R),
it is natural to assign the number C{T} which is the infimum of the area
(in the Caratheodory metric) of all cycles representing r. We will discuss
this for the set S2 = BnBK, where K is a compact subset of Bn, the unit
ball in Cn. In this case, the Caratheodory metric can be written as a Rieman-
nian metric; at the point (r, 0, ..., 0) E Bn, we have

It is well known that this metric (which coincides with the Bergman and
Kobayashi metrics) has negative curvature, and the unit ball is complete in
this metric. A domain w is convex in this metric if its second fundamental

form is nonnegative. This can be checked in specific cases by mapping p E as2
to 0 via some f E Aut (Bn), since the second fundamental forms in the

Euclidean and Caratheodory metrics will coincide at 0.

LEMMA 5.1. Let w be a relatively compact subset of Bn which is convex
in the Caratheodory metric with a(o E C2. Then ao-) is the representative of the
homology class [ow] E H2n-1(Bn"",w, Z) which has minimal surface area in the
Caratheodory metric.

PROOF. Let us define the map R : BnB,co --&#x3E; 8cv by R(z) E 8cv and R(z)
minimizes the Caratheodory distance between z and 3co. Since Bn is con-

tractible and negatively curved in the Caratheodory metric and co is convex,
R is well defined. It is well-known that

since Bn has negative curvature.
Thus it follows that if y is any (2n - I)-cycle representing aco, then

R(y) has smaller area. Finally, it is clear that y and R(y) are homologous,
so that .R(y) and y represent the same class.
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THEOREM 5.2. Let WI’ W2 be compact subsets of Bn that are convex in the
Carathiodory metric. Let us set Qj == B nBCo,, j = 1, 2, and let f : S2, -&#x3E; Q2
be a holomorphic mapping. I f O{OWl} == Cf ao),}, and if the homology class
f*[ôwl] is non zero, then f E Aut ( Bn) .

PROOF. By Hartogs’ theorem, f extends to a holomorphic mapping
Bn ---&#x3E; Bn. Since f*[ÔWl] # 0, f (ao-),) is a nontrivial cycle in S2,. Since f
decreases area, and since C{a(o,} = C{aoj,}, it follows by Lemma 5.1 that
f( (aoj,) = ao),.

After composing with automorphisms of Bn, we may assume that

o E a(o, n ao,),, that f (0) = 0, and that

At the point 0, the Caratheodory and Euclidean metrics agree. If J = f’(0)
is the Jacobian matrix of f at 0, then by the distance decreasing property
of f, IJ(v) I  (v for all vectors v. On the other hand, f preserves the surface
area of 3m, so J is an isometry on {Re z,,, = 01. Since J is complex linear,

det J I = 1. Thus J == U * where 121 = 1 and U is unitary. Since
0 2

IJ(O, ..., 0, 0) I Icl, it follows that * = 0. By composing with a unitary
map, f has the properties that f(O) = 0 and f’(0) = I. Thus it follows from

a theorem of H. Cartan (see [18]) that f (z) = z, which completes the proof.

EXAMPLE. Let

be an ellipsoid. We will compute the area of aE(a, b) in the Caratheodory
metric. At the point (r, 0), it is easily seen from (5.1) that

From this, the surface area at the point (a cos Oo"I’ll, b sin Oe42) may be
shown to be

where dC1 is the unit of Euclidean surface area on aB and



413

If we perform the dcpldcp2 integration in da, we obtain the surf3,ce area

We observe that as was computed in [4], the norm of the homology class
of aE is

A numerical computation shows that there is no function f such that

N(a, b) = f(C(a,b)) for 0  a, bCl.
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