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Holomorphic Mapping of Annuli in C
and the Associated Extremal Function.

ERIC BEDFORD (*) - DAN BURNS (*)

Introduction.

For a complex manifold £, Chern, Levine and Nirenberg [6] have de-
fined a seminorm on the homology groups H.(2, R) that has the property
of decreasing under holomorphic maps. Thus a holomorphic mapping
f: Q, — Q, is restricted by the norm-decreasing property of its induced
action on homology f«: Hy(2,, R) - H,(£2,, R). In this paper we will show
that for certain domains Q,, 2,C C», f, is an isometry of the homology
groups if and only if f is a biholomorphism. (In fact we will use only the
top-dimensional homology group H,, ;.) In the case where £,, £2,c C are
annuli, this result was established by Schiffer [22] and was extended to the
case of d-to-1 mappings by Huber [12].

We will consider domains £ of the following special form:

Q=D D,, D,cD cCr n>2

(%) D, and D, are strictly pseudoconvex with smooth boundary, D, is
connected and holomorphically convex in D;.

(If £ is multicircular and 0 ¢ Q, then Q is actually a topological annulus.)
The norm of the homology class I' = [0D,] = [0D,] is defined as

(k) N{I'} = sup fdcv/\ (ddev)r—1 = supfdcv/\dd”v/\.../\ddcv
veF ved
r
where the family F consists of ve C*Q), 0 < v <1 which are plurisub-
harmonic and satisfy (ddv)® = ddvA...Add°v = 0. This is a higher-dimen-
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sional analogue of harmonic measure, and it may be shown that this
supremum is achieved by the solution « of (1.1) if u € C2(Q). We will refer
to N{I'} as the norm N{Q} of Q.

THEOREM 1. Let f: Q; — 2, be a holomorphic mapping, with 2, and £,
as above, and let Q,, 2, be Reinhardt (i.e. multicircular) domains. If N{Q,} =
= N{Q,} and the mapping fsx: Hyp_1(2,, R) — Hy,_,(£2,, R) is not zero, then f
18 a biholomorphism.

This theorem is proved by showing that the solution of (1.1) is the
unique function of & which attains the supremum in N{I"}. This technique
was used for Riemann surfaces by Landau and Osserman [17]. In fact the
proof (see Theorem 2.1) yields

THEOREM 1'. Let 2,, 2, be simply connected domains of the form (%),
and assume that the solutions u, and u, of (1.1) on 2, and Q, are of class
C4Q,) and satisfy (1.4). If N{Q,} = N{Q,}, and f: Q, — Q, is a holomor-
phic mapping with f,. 5= 0, then f is a biholomorphism.

The restriction to the class of Reinhardt domains in Theorem 1 arises
because it is not known whether the solution of (1.1) is smooth and satis-
fies (1.4) on more general domains. Another approach to the study of holo-
morphic mappings via a related Dirichlet problem has been described by
Kerzman [16].

If u satisfies (dd°u)*~!s£ 0, (dd°u)” = 0 on a domain D C C», there is an
associated foliation = ¥ (u) on D: each leaf M of ¥ is a Riemann surface,
and uly, is harmonic on M. The foliation & is an important part of the
proof of Theorem 2.1 and seems to be the main feature which distinguishes
the cases » = 1 and »>2. In Section 4, several remarks are made about F.
They center around the observation that if the normal bundle N of ¥ is
given the fiber metric dd°u, then the Ricci curvature of this metric measures
the antiholomorphic twist of &. The reason for studying F in more detail
is Theorem 4.6, which yields

THEOREM 1”. Theorem 1' remains valid if the hypothesis (1.4) is replaced
by the assumption that w; is real analytic on Q;, j=1,2.

In the beginning of Section 4, it is shown that there is a topological
obstruction which prevents the solution of (1.1) from satisfying (1.4) if D,
has more than one component. Some information is also obtained concerning
the real Monge-Ampére equation det (0%u/0x;0x;) = 0.

In order to discuss self maps of domains 2 C C», one may use a continuous
(generalized) solution of (1.1), which is known to exist. Thus it is possible
to show that certain bounded domains £ C C* are holomorphically «rigid »
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in the sense of H. Cartan [5]. For this purpose one may define several semi-
norms N on H,, (R, R) which are similar to that of Chern, Levine and
Nirenberg. Let us suppose that the bounded components of C*\ 2 consist
of K, U...U K; U E where the K; and E are closed and pairwise disjoint.

THEOREM 2. Let 2 be a bounded domain in C», and assume that N is not
identically zero on H,, (2, R) but that N is identically zero on

Hy, ,(QUEK,U..UK;,,R).

The following are equivalent for every holomorphic mapping f: 2 — Q:

(i) f s an automorphism
(ii) fy ¥s imjective
(iii) f4 @s an isometry.

This theorem applies, for instance, to the case where n>2 and at least one
of K; has nonempty interior (Corollary 3.2). Section 3 containg examples
where various norms N are zero (or nonzero) and examples of singularities
which are removable (or not) for plurisubharmonic functions. Rigidity
theorems for plane domaing have been proved by Huber [13] and Landau
and Osserman [17]; these results are more general than Theorem 2 in the
case » = 1. The reader should also compare these results with related results
of Eisenman [8, p. 72].

A different measure on homology classes, which we discuss only briefly,
may be defined in terms of the Carathéodory metric. If y is a k-dimensional
homology class on £2, then ({y} is the infimum of the k-dimensional Hausdorff
measure (with respect to the Carathéodory distance) taken over all chains
representing . Let B” be the unit ball in C» and let K,, K, be compact
subsets that are convex in the Carathéodory metric of B».

THEOREM 3. Let f: B\ K, - B"™\ K, be holomorphic, and assume that
C{0K,} = C{0K,}. If f«+ 0, then f is an automorphism of B~

Examples are given to show that N{y} and C{y} are not functionally
related.

1. — The Cauchy problem for the complex Monge-Ampére equation.

We use the notation d¢=i(@— ) so that dd° = 2i00 and (dd°)» =
= dd°A\...\dd°. Let us summarize some known results (see [4] for details).
The operator (dd¢)* has a continuous extension to the space of continuous,
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plurisubharmonic functions, with (dd°w)" being defined as a measure on 0.
If we consider the class of functions

F'= {ve 0(2), 0 <v<1, v plurisubharmonic and (dd°v)" = 0}

then we may define a seminorm N {y} using (%) with & replaced by the
larger class ' and the integration being taken with respect to a smooth
current representing . In connection with this, one is led to consider the
extremal function # = sup v, where the supremum is taken over the func-
tions v<1 which are plurisubharmonic on £, and satisfy v<0 on £,: (This
function has been studied by Siciak [23] and Zaharjuta [26] in other con-
texts.) The function w thus obtained is Lipschitz continuous and is a
generalized solution of the Dirichlet problem

%  plurisubharmonic
=1 on 080,
=0 on 00,
(ddeu)» = 0.

1.1)

The following estimate holds:

(1.2) N{y}< Ny} =[aupacup (@auy-
Q2

where the integral is interpreted in a generalized sense. The problem (1.1)
has been solved explicitly in several examples and the solution is regular
and satisfies (dd°u)»1 5= 0 in each case (but cf. § 4 on this point). If u € C2(Q),
it follows that equality holds in (1.2) and

(1.3) N{I} = f dou\ (ddou)n1 .
Y

If u e C*(Q) satisfies
(1.4) (ddeu)r = 0,  (ddou)1 5 0

there is further structure associated with #. The (n— 1,n— 1)-form
(dd°w)»! may be integrated by the Frobenius theorem to yield a foliation
F= F(u) of Q by complex manifolds of dimension one (Riemann surfaces).
This foliation has the property that «|; is harmonic on L for each leaf L of &
(see [2] for details). We note that the solution w of (1.1), if it is smooth,
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always satisfies (1.4) in a neighborhood of 90 since it is constant on each
(strictly pseudoconvex) boundary component.

Let 8§ ={2eCr:r(z) =0}, dr+#0 on S, re C*C») be a real hyper-
surface. We will say that S is non-characteristic for a solution u of (1.4) if

(1.5) ' (ddew)- AdrN\der = 0 .

This is equivalent to the condition that each leaf L € & intersects S8 trans-
versally. This leads to uniqueness in the Cauchy problem.

PROPOSITION 1.1. Let us suppose that u, v are C* and satisfy (1.4) in a
neighborhood of S. Suppose that u(z) = v(2) and du(z) = dv(2) for z€ 8, and
let S be non-characteristic for w at 2, € 8. If u, v satisfy (1.4) in a neighborhood
of 2y, 4 = v in a neighborhood of z,.

Proor. We will show that there is an open set W containing #, such that
the foliations F(u) and F(v) concide on W in the following sense: if z eW
and L, L' are the leaves containing z, then the connected components of
LNW and I'W containing 2 are the same. By the non-characteristic
condition, the leaves are transverse to S, and it suffices to show this for
ze S NW.

Thus we suppose that 2 € § "W, and that L, L' are the integral curves
of (ddeu)=1 (respectively (dd°w)»—') which pass through z. Since % — v van-
ishes to second order on 8, it follows that all second partial derivatives of
(u — v) except (u — v),, vanish on S. From the non-characteristic condition
and from (dd°uw)* = 0, we may solve for u,, in terms of all the other se-
cond partial derivatives at z. Thus it follows from (1.4) that (v — v),, = 0
on Wn 8§.

Finally, if $§N S and ' N § denote the foliations of 8 obtained by
intersecting the leaves of & and §' with §, then we observe that these
foliations have normal bundles (ddeu)**Adr and (ddew)"'Adr respectively.
We have seen that for ze § "W, the second derivatives of » and v at z
are equal, and thus the foliations ¥ N § and F'N § have the same tangent
spaces. By the uniqueness theorem for ordinary differential equations,
we see that FNSNW=F"NnSNW. It follows that F and F' must
agree in a neighborhood of 2,, since z€ L N L' implies that L N L’ contains
a curve in §; and L N L' can contain a curve only if L = L',

COROLLARY 1.2. Let the function r defining S be strictly plurisubharmonic,
and set

Q= {zeCr:r(z) <0}.
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If 2,68 =002 and there is a neighborhood W containing z, such that
u,ve C3Q) satisfy (1.4) on WN QO and u(x) = v(2), du(z) = dv(z) for
2€ WN 8, then there is a smaller neighborhood W' containing 2, such that
u=von WnO

PrRoOF. Since § is strongly pseudoconvex at z,, we may make a change
of coordinates such that z, = 0, S is given near 2, by a convex function
Re 2z, = ¢(Im 2, 2,, ..., 2,) >0, and >3 > 0 on the set

(Imz)2 4 |2+ ... + l22=¢.

We claim that for ze 2 such that Rez < d and (Imz)2+ |z.2<e,
u(2) = v(2). To see this, let L be the leaf of F(u) containing 2. Since u
satisfies (1.4) on @, it follows that L may be extended to £ with a con-
tinuous tangent plane. By the maximum principle, It must intersect S in
a point ¢ = ({4, ..., £,) With Re {; < 6 and (Im )2 + |52 + ... + G2 <e.
Since 8§ is strongly pseudoconvex, L can be tangent to § only at an iso-
lated subset of L N §. Thus, moving to a nearby point {’e L N § if neces-
sary, we find a point where § is non-characteristic for . By Proposition 1.1,
it follows that w = v on L.

COROLLARY 1.3 Suppose 2,, Q, are domains of the form (%), and suppose
Q,, 9, have the same inner or outer boundary. If Q,G 2y, if the solution
uy; of (1.1) is C¥Q;) for j=1,2, and if du,Adu, A\ (ddeu,)*15=0, then
N{Q,} > N{Q,}.

Proor. By the norm decreasing property of holomorphic mapping, it
follows that N{@,}>N{Q,}. To show that this inequality is strict, we ob-
serve (cf. equation (3.14) of [4])

N{Q)} = f (%“7) der \ (dder) =1
Ir

where ['={r = 0}, dr 0 on I, the common boundary of 2, and Q,.
Since £, ¢ 2, it follows that Ou,(2)[0r > duy(2)/or for zel'. If the norms
are equal, then it follows that ou,/0r = Ou,/or on I'. By Proposition 1.1 it
follows that 4, = u,, which is impossible since £, 5= 2, and u; satisfies (1.1).
We remark that this will be a special case of Theorem 2.1.
Uniqueness in the Cauchy problem also holds for solutions of

(1.6) (ddeu)r = faV
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with f > 0, and dV is the volume form on C». (In our applications to holo-
morphic mappings, however, we will only be concerned with the case f = 0.)

ProrosITION 1.4. Let u, u'€ C° be plurisubharmonic and satisfy (1.6)
for some f>0. If u(z) = u'(2), du(z) = du'(2) for z€ 8, then v = v’ in @
neighborhood of 8.

ProoF. BSince wu, u' satisfy (1.6), then w = u — »' satisfies
ddwA[(ddeu) 4 (ddew) 2 Add°w’ + ... + (ddu')*1]=0.
Let us write this as

ddwh\w = L(w) =0 .

Since (dd°u)" > 0, it follows that w is a strietly positive form, and so L is
a strongly elliptic operator. It is known (see Nirenberg [20]) that unique-
ness in the Cauchy problem holds for second order strongly elliptic operators
with C* coefficients, and so we conclude that w = 0 in a neighborhood of S.

ProposITION 1.5. Let the function r defining S be real analytic, let @y, ¢,
be real analytic and let f be analytic in a meighborhood of S. If

1.7) dr Nder N\ (@@, + 7))t 5 0
on 8, then there exists a real analytic function w in a neighborhood of S such that

W) =), me@) = i)

for z€ 8 and (dd'u)» = f in a neighborhood of S.

Proor. If we write the solution u = Z(pﬂ'i as a formal power series
i=0
with ¢, analytic on §, then the condition (1.7) allows us to solve for ¢; in

terms of ¢y, ..., @, in the equation
(ddew)" = ('z;ddc(ri(pj)) =f.
i=

The proof that the formal power series converges is a special case of the
Cauchy-Kovalevsky theorem.
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From this, one may obtain special exhaustion functions for pseudo-
convex domains with real analytic boundary.

COROLLARY 1.6. Let Q be a bounded, strongly pseudoconvex domain with
real amalytic boundary in C». Then there exists a function o€ C°(Q) such
that Q = {p < 0}, do# 0 on 02, and (dd°@)" = 0 in a neighborhood of 9L2.

Proor. By Proposition 1.5, there is a plurisubharmonic real analytic
function % defined in a neighborhood of 0Q such that (dd°u)" = 0 and
oufor =1, w = 0 on 0£2. For &> 0 small, we let y(¢) be a convex func-
tion that is 0 for t < — ¢ and such that y'(?) =1 for ¢ > — ¢/2, and thus
o = x(u) — x(0) is the desired function.

2. — A uniqueness theorem and some corollaries.

Here we show that the plurisubharmonic measure (i.e., solution of (1.1))
is the unique function that gives equality in (s%x).

THEOREM 2.1. Let 2 c C» be a domain of the form (%), and suppose that the
solution w of (1.1) is smooth of class C4RQ) N C3(2) and satisfies (1.4). Let
v e C4R2) N C3(2 U 0D,) be another plurisubharmonic function with 0 < v <1,
(ddv)» = 0 and (ddv)*15£0 off of a proper analytic subvariety of Q. If
I' = [0D,] and

2.1) f du A\ (ddeu)n—1 = f o A\ (ddev)r
r r
then w = v.

Let us note some corollaries.

COROLLARY 2.2. Let Q,, £, be annuli (satisfying (%)), and assume that
the harmonic measure u; of Q; is in C4(Q2;) and satisfies (1.4). If f: Q, — Q,
is a holomorphic map with N {fx I} = N{I,}, then f is a proper, unrami-
fied covering of Q, by £,. Further, f has some smoothness at the boundary:
if uy € 0%(0,), then fe C-11(02,).

ProorF. We apply Theorem 2.1 with Q = @,, u = u,, and v = f*u,,
and we conclude that u, = u,(f). Thus f is proper. To see that f is un-
ramified, we use the argument of Kerzman, Kohn, and Nirenberg [16]:
exp (u,) = exp (ug(f)) is a strictly plurisubharmonic function, and if we
compute the complex hessian using the chain rule, we obtain [f'| 0.
Taking further derivatives with the chain rule and using another trick
of [16], we obtain the boundary regularity of f. Let us note that if f is first
known to be smooth at 90,, then Fornaess [10] shows that f is unramified.
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REMARK. If 0, and Q, have O™ boundaries, then Naruki [19] shows
that f is smooth of order m — 4, provided that f is C%,).

A large portion of the proof of Theorem 2.1 is spent proving Lemma 2.6.
Without Lemma 2.6, it is still possible to conclude, in Corollary 2.2, that
u, <uy(f), and thus f is proper.

Theorem 1 is a consequence of the following corollary, since for a
Reinhardt domain satisfying (%) the solution of (1.1) is as smooth as
oD, U oD,.

COROLLARY 2.3. Let 2,, Q, satisfy (%) with n>2, and let the solution u;
of (1.1) satisfy (1.4) and u, € C49,), j =1,2. Let N{Q,} = mN{Q,} with m
an integer. If f: 2, - Q, is a holomorphic mapping, then the degree of f
(i.e. fuI'y = (deg f)T) is an integer 0<deg f<m. If Q, is simply connected
and if degf = m, then m =1 and f is a biholomorphism. In general, if
degf=m =1, then f is a biholomorphism.

ProoF. The degree of f is a non-negative integer since f is a holomorphic
mapping and n>2. Since the norm decreases, degf<m. If degf = m,
then by Corollary 2.2, f is a covering which must be a biholomorphism since £,
is simply connected. Thus m = 1.

We begin the proof of Theorem 2.1 with a sequence of lemmas. If

Q= {ze2: 4+ (u—v) >0},
it will ultimately be shown that Q' = Q~ = 0.

LEMMA 2.4. Let M be a leaf of F(u), the u-foliation. Then M reaches
both the inner and outer boundaries of 2, i.e. M N 0D;5 0 for j =1, 0.

PROOF. M must reach the outer boundary since D, is pseudoconvex
(see [2]). For the inner boundary, let ¢ = inf {u(2): 2 € M} = min {u(2):
zeM}. If ¢>0, let 2’e M be a point such that u(z') =c. Let M’ be
the F(u) leaf through 2. Now M'c M, and so by the maximum principle
w = c¢ on M’, since  is harmonic on M’'. This is a contradiction since M’
reaches the outer boundary, and # comes arbitrarily close to 1 on M’.

LEMMA 2.5. If 2~ =0, then w = v.

ProOF. If u>wv, then v =0 on 9D,, and so Ou/0or>o0v/or>0 there.
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However

au n
fdcu/\ (ddeu)"—1 = (——) der A\ (dder)n—t =
r

or
ov\"
— f dov (ddev) ! = f (5) dor \ (dder)n—1
r

oD,

8D,

where r is any smooth defining function for D,. It follows that uw— v =
= 0 = d(u — v) on 0D,, and so w = v in a neighborhood of 0D, by Propo-
sition 1.1. Since the two foliations F(v) and F(v) must agree near oD,,
it follows by Lemma 2.4 that v = v on £.

LEMMA 2.6. If Qt = 0, then u = v.

PrOOF. If uw<w, then ve C(2) and v =1 on 0D,. Let u: = w/y_e for
&> 0 small, and set

Qe={2e2:0<us<1}={0<u<l—e}, Ie={u=1}.

We will show that

(2.2) f v A (ddev) 1 < f vdew \ (ddew)

r 0

holds. We recall that 0Q = 0D, — 0D, and that duA (ddeu)* is strictly
positive everywhere on 0D,. By (2.1) it follows that » = 0 on 9D,. The
solution of (1.1) is unique (see [4]), s0 w = v on Q.

Let us first establish an inequality

(2.3) f deu \dev A (ddev)i A (ddewe)=i=1
-Qs
< [auepdeo \ (@deo)=2 \ (@)=t + [ (e — o) (ddo) A (@doue)

2, 2
for ¢ > 0. This is obtained by repeated integration by parts:

J‘due/\dcv/\ (ddcfv) i/\ (ddcue)n—i—l
Q5
= fdv/\ dous A\ (ddev)i A\ (ddew,)n—i-1
en
=fd(vd°u5(dd°v)iA (dd“ue)"—i-l) — v(ddev) A (ddowus)
s
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= [[odeus\ (@deo)s \(d@doue) ==t — [o(dden)  (@doue)
002 o5

< f dowe A\ (Ade0) A (ddous) 1 — [o(@dov)i A (ddore)
I, Qg

= [@eo (dds0)=2 \ @)=+ — [o(ddeo)i  (ddeue)—*
[ 2

r

= |uedv A (dd°v) 1A (ddoue)*~ — |v(ddev) A (ddou)—

00, ¢

— f dus A dov \ (dde0)i=1 A\ (ddewe)n— - f (s — )(ddov)’ A (ddowe)™ .

Q. Qs

The inequality arose because v<1 on It, 0<v on 0D,, and deucA (dd°v):A
A(ddeug)»—1 is a non-negative form on I and 0D,.
Since » solves (1.1), we obtain

(2.4) fd°v/\(dd°1))"—1 = |usdwA(ddev) :J.due/\dcfv/\(ddcv)"—l .

I, 002, (oA

By repeated application of (2.3) to (2.4) we obtain

fd”v/\ (ddev)r—1 <fdusA dv\ (ddeug)»1

I'e Qe

+3 f (s0e— 0) (dde0)A (Adoue)™™
i=1
Q¢

n—1

= dvAdue (ddeus)""* + 2 (4e— v)(ddev)i A (dd°ue)"*
i=1

¢ Qs

n—1
= |vdoueA (@doud)1 43 | (we— )(ddov)iA (ddue)"* .
i=1

02, Q.

Thus, in order to prove (2.2) it remains only to show that the limit of the
right hand term is <0 as ¢ —0.
To prove that

lim | (we— v)(ddev)iA (ddoue)™~ <0 ,
e—>0
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we proceed by induction on ¢. The case ¢ = 0 is trivial. First we note that
f(ue— v)(ddv) A (ddoue) =f[(ue— u) + (u — v)] (dd°v)A (dd°me)—*
Qs Qs

< f (e— ) (ddev)i N (ddow s = i{‘; f w(ddev)i (ddowe) ™ .
Q¢

Q¢

Thus it suffices to show that

(2:5) lim ¢ j (ddeo)i A\ (ddowe)=* =0 .
e—>0

For this, we note that

f (ddeus)m=i A (ddev)i — f deo A\ (ddev)—1 \ (ddews) ™

2, 0Q,

< J' o A\ dewe A (ddov)i= A (ddoue)— - [ue(ddov)i A\ (ddows) ™
0, 0,
and thus

0 <J.(1 — ue)(ddoue) A (ddov)?
QU

<Jdu5A dev A (ddev) 1A (ddeue)"?

Qs

i—1
<fd°um (ddeue=r 43 | (ue— v)(ddsv) A (ddue)™= .
i=1

I 2

Assuming, by induetion, that (2.5) holds for ¢— 1, we take {iz%_ of both
sides and get

lim | (1 — wue)(ddou)*—*A (dd”v)i<fd°u/\ (ddeu)—1 .
&—>0
2, r

By monotone convergence, we get

>0
Q,

lm | (1 — w— &)(ddew) A (ddew)i = f (1 — w)(ddew) A (ddov)i < f dew/\ (ddew) 1
(2} r

which implies (2.5), completing the proof.
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Next we discuss the set
8= {220V 0D, u(z) = v(2)}.
LeMMA 2.7. On 8,
(2.6) d(u — V)ANd(u — V)N (ddu)*1 = 0.

Proor. Let z,€ 8 be a point where the expression in (2.6) is strietly
positive. We set u. = (u — &)/(1— 2¢) and

0 = (ddeue)™ ! + (ddeus)"2Addv + ... + (ddw) 1.

An integration by parts and (2.1) gives

2.7) [(1 1 28)"_ 1] NI}

=fd°ue/\ (dd°ue)"‘1-—fdfv/\ (ddev)—1 zfdc(ue —v)A\0e .
r r r

For 1>e>0, y. = {¢€ Q: ue(2) = v(2)} is a compact subset of Q. If we
smooth %, and » with a non-negative smoothing kernel 4%, then the smoothed
function 42 and +° define a compact set 2. By Sard’s theorem, 3’ is smooth
for almost all &. Thus we may replace I" by the smooth cycle y‘z. By as-
sumption, d(u — v)(2,) 5% 0, so that {u = v} is a smooth surface in a neigh-
borhood U containing z,. Furthermore, there are points 2’ c 3° with 2} — z,.
Finally, since  and v are plurisubharmonie, de(u} — 1’)A6? is a nonnegative
form on 32, and

lim |de(ul— v9)A 62> lim fd“(uﬁ—v")/\@ﬁ
0,6—>0 8,60
Ve UNye
= f ac(u — v)\ O, > f as(u — V)N (ddeu)1> 0 .
UN{u=1} UN{u=uv} -
This is a contradiction since the left hand side of (2.7) approaches 0 as
¢ — 0, and so (2.6) holds at z,.

LEMMA 2.8. Let M be a leaf of F(u). If M N Q2+~ 0, then M c Q+.

ProOF oF THEOREM 2.1. This lemma will give a proof of the theorem,
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for by Lemma 2.4, M must reach some point z_e€ 0D,. Thus there is a
neighborhood U of 2z, with UNoD,CSN Q2+ and UN Qc N+ Since
u>w, it follows that d(v — u) =adr on U N dD,. Since drAder A (ddeu)*1>0
on 0D,, it follows from Lemma 2.7 that d(w —v)=0 on U N 0D,. Repeat-
ing now the argument of Lemma 2.5, we conclude that = v on M,
which is a contradiction, proving the Theorem.

ProoOF oF LEMMA 2.8. We will suppose that @~ N M = @ in order to
derive a contradiction. By moving M slightly if necessary, we may assume
that (ddev)*~! vanishes only at an isolated set of points of M. (Recall that
(ddev)"' = 0 is contained in a variety.) Thus we may consider a point
eEMNSN 2N Q such that (ddow(z,))" ' 0. There are two cases
to handle:

(a) d(w— v) 5= 0 at points of § arbitrarily near z,;
(b) d(u— v)= 0 in a neighborhood of z, in §.

For case (a), we consider z;€ 8§ close to 2, such that d(u— v)(2;) # 0,
i.e. 8 is smooth at z;. Let M(z) be the leaf of F(u) containing z. The
condition (2.6) says that the tangent space of M(z) lies ingide the tangent
space of S. Since this holds for all z € § sufficiently near z; that d(u — v) # 0,
and since the foliation F(u) was obtained by integrating the (2n — 2) form
(ddeu)»—1, it follows that in a neighborhood U, of 2;,, M(2) N U,c §. Fur-
thermore, ¥ = » is harmonic on M(z) N U;, and it follows that M(z) N U,
is also a leaf of F(v) since (dd°v)»~1 > 0. Thus M(z;) is a leaf for both F(u)
and F(v) and w = v on M(z;). It follows that « = » on M(z,), which means
that M(z) c 2+, a contradiction for case (a).

In case (b), we want to show that F(u) and F(v) have the same tangent
spaec at z,, i.e. dd‘u(z,) and ddev(z,) have the same kernel. For ae 8, we
let Tan (8, a) denote the tangent cone of S at a, i.e. the cone in R2* gener-
ated by the limits of secants (2, — a)/|¢; — a| with z;€ 8, (see Federer [9],
p. 233.) Let the tangent space T,S be the real linear span of Tan (8, a).
We claim that on a dense set of points ae€ Q' N O, dimg T,8<2n— 2
for z € § in some neighborhood of a point 2, € §. In this case, one may show
(see Federer [9], Lemma 3.3.5) that § is a countably rectifiable (2n — 2)-
dimensional set. This eannot happen in a neighborhood of 2" N O since
a (2n — 2)-dimensional set cannot disconnect Q.

It suffices to show that ker ddeu(z) = ker dd°v(z) for a point ze 8§ ar-
bitrarily close to z,, so we may assume that dim 7, §>2n—1. If
dimp T, 8 = 2n, then ddeu(z,) = dd*v(z), so we assume that T, S has
dimension 2n — 1. Choose coordinates 2; = x; 4+ #y;, 1<j<mn, such that
the set {0/ow;, 0/oy;,, 1<j<m—1, 0/ow,} spans T, 8. Since u—ov=
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= d(u— v) = 0 on 8, it follows that all second derivatives of » and v are
equal at z, except, possibly, the 9%/0y, derivative. If det (u;);<; j<n—1 7 0,
then we may solve for 0°u/dy2 = 06%v/0y2 in terms of the other second partial
derivatives in the equation det (u;) = det (v3) = 0. If det (u;3);<; j<n—1 =0,
then det (v3);<; ;j<n—1 =0, and both F(u) and F(v) are orthogonal to
dz,\dz, at z,. We may now proceed by induction on the space spanned
by {0/0x;, 0/0y;, 1<j<m— 1} to see that dd°w and dd°v have the same
kernel at z,.

Now we observe that if M were a leaf of the 5 (v) foliation, there would
be nothing to prove, since by uniqueness in the Cauchy problem # = v
on M. The foliation F(v) is of class C? and, by the argument above, is
tangent to M at all points of @" N 2~ N M near z,. There are functions
@1y -.oy Pan_s € C? such that the leaves of 5 (v) are given near z, in the form
{#: 1(2) = €1, ..., Pau_s(?) = €s,_,}. It follows that d(e],) =0 on any
point of M N @t N Q. By A. P. Morse’s theorem, the ¢, are constant on
the connected components of M N Q" N 2~. Since one of these components
must have an accumulation point {, e M, it follows that the leaf M'({,)
of F(v) must coincide with M. In other words, M is a leaf for both F(u)
and ¥ (v), completing the proof.

3. — Self maps of bounded domains.

If H,, ,(2, R) has more than one generator, then the results of Section 2
cannot be applied directly (see Section 4). Much can be said, however, if
the domain £ is being mapped into itself. Theorem 2 will be shown to
follow from a theorem of H. Cartan and the fact that the norm XN is de-
fined in the form (x%). We will then discuss some similar norms obtained by
changing the family & and the mapping theorems they provide.

A compact subset B c C* will be said to be negligible for N (or N) if there
is a neighborhood w of E such that the norm N (or X) is identically zero on
H,, ,(wo\F,R). Let us assume that Q is a bounded domain in C» with
H,, (Q,Z) =0, and that K, E are disjoint compact subsets of Q. We
will assume that E is negligible and that K = K, U ... U K, has finitely
many connected components. By Alexander duaiity,

H2n_1(Q\KJ'7 Z) = H”(Kj, Z) = Z?

and without loss of generality, we assume that N{0Q, O\XK,}> 0, for
otherwise we replace F by F U K;.
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Since H,, (2, Z) = 0, the Mayer-Vietoris sequence gives
Hzn—l(-Q’ Z) ~ H2n-—1(Q\E)® Hzn_l(Q\K)

where Q = O\ (K U E). One way of viewing this direct sum is that if
I'e H,, ,(Q\F), then it may be represented by a cycle supported in a
small neighborhood of E which is disjoint from K. Thus we may consider
I'e H,, ,(2). By the class of e.g., 0K in H,, ,(£), we mean the class of a
smooth compact hypersurface in £, bounding a sufficiently small, compact
region in 0.

Now we claim that the closure of 0 in the seminorm N may be naturally
identified with H,, ,(Q\ ). It is easily seen that if I'\e H,, ,(2) and
I'ne H,, ,(Q\E), then

N{I',+ I} = sup T deu/\ (ddow)"— =
uedF '

= sup T, deu (ddeu)—* + T, deu (ddou)— = N{I'} +0 .
ueF'

We will write the induced (finite dimensional) normed space as
A= H,, (2, C)/{G}% Hzn—l(Q\K; C).

Theorem 2 is a consequence of the following

THEOREM 3.1. Let 2 = ON(K U E) where Q is a bounded domain in Cr
with Hy (2, Z) = 0, and let K, E be disjoint compact subsets of . We
assume that E is negligible and that 0 < dim H < oo. If f: Q — Q is a holo-
morphic mapping then the following are equivalent:

(i) f is an automorphism of Q;
(i) f4 1s an isomorphism of H,, (2, R);
(iii) fy: H — H is nonsingular;

(iv) if a subsequence of the iterates of f, {f’}, converges uniformly on
compact subsets to a map F: Q — Q, then F is an automorphism.

(v) fx: H — H is an isometry.
Proor. The implication (i) =- (ii) is obvious.

(ii) = (iii). By the norm-decreasing property of f., it follows that

feHpn 1(N\ZH, R) c H,, ,(Q\E, R) .
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It follows that fy:H — H. Since A is finite dimensional, it is sufficient
to show that f, is onto. If [I"]eH, let I'e H,, (2, R) be a representative.
If I'e H,,_,(2, R) is any preimage under f,, then f,[I"] = [I'], and thus f,
is nonsingular on H.

(ili) = (iv). Let {f'} be the sequence of iterates of f and let F: Q — Q
be a mapping to which a subsequence of the f* converge uniformly on com-
pact subsets of 2. By a theorem of H. Cartan [5], (or see [18]) F is either
an automorphism or the Jacobian determinant of F vanishes identically.
In the latter case, we consider [I']e H and follow its image under fi. Let
I'; be the homology class of 0K; for 1<j<l. Thus there are integers e,;
such that

1
[fir] = ZcH[Pi] .
i=1

We may assume that ¢;;>1 for infinitely many j and that N {0K,} > 0.
Thus there exists a current T, representing 0K, compactly supported in Q
and a function u, € P(O\K,) N C(2\ K,) such that (ddeu,)» = 0 on O\ K,
and T,deu, A\ (dd°u,)»1 = § > 0.

Thus integration by parts yields a bound for infinitely many j:

]
12‘ [eq; Tl dcus A\ (ddeuy)m—?
1 1
> cuf @iy = o, T @@=+ 3o [ (@) 8> 0.
i

i=1
Iy Iy

On the other hand, if T is a current representing I', then F, T = 0 since
the Jacobian determinant of F is zero and the dimension of 7T is (2n — 1).
By uniform convergence,

lIim[f4T] = [F,T]=0,
i
and so

lim f; T deu, \ (ddew,) 1 =0 ,
i

which is a contradiction. Now (iv) = (i), (i) = (v), and (v) = (iii) are
obvious, and this completes the proof.
We will consider the class of functions for j = 0 or 2:

Fi(R) = e C(Q)NP(D):0<v<1 and (ddv)"= 0 on Q}.

26 - 4Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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By Hartogs’® Theorem, a holomorphic mapping F: 2, — 0, extends to
F: 0, - Q,. Thus the family F,(£2,) is mapped into F,(2,) by F*. It fol-
lows that the norm N; defined by (%) with &; replacing & decreases under
holomorphic maps.

A compact subset E c £ without interior is easily seen to be negligible
for the seminorm N,. Theorem 3.1 with N replaced by N, yields

COROLLARY 3.2. Let Q2 = O\ K € C*,n>2,be given where Hy, (2, Z) =0
and int K is nonempty and has finitely many connected components. The
conclusions (i), ..., (v) of Theorem 3.2 are equivalent if H is replaced by H,
(corresponding to N,). In particular (i) < (ii).

Let us recall that a set B c C" is Cr-polar if for each ze E there is a
neighborhood U of 2z and a function » plurisubharmonic on U such that
UNEc {v =— oo} Josefson [15] has shown that if F is polar there
is a function » plurisubharmonic on C" with Hc {v = — oo}.

If K is a compact subset of Qc C» we define

h(K, 2)(z) = sup {v(2): ve P(2),v<0 on K and v<1 on 2}.
It is well known that the upper regularization

h¥(K, Q)(2) = lim sup h(K, 2)(%)
>z

is plurisubharmonic. A funection p on £ is an wpper barrier if it has the
property that if Bc 2 is a ball and u € P(2), u<y on 0B, then <y on B.
In the terminology of Hunt and Murray [14] an upper barrier is (n — 1)-
plurisuperharmonic. If F and Q2 have regular boundaries, then the solution
of the Dirichlet problem for the Laplacian is an upper barrier. A technique
of Walsh [25] yields the following result.

PROPOSITION 3.3. Let 2 € C* be a pseudoconvex open set, and let there
exist o function p € P(2), p <0, such thatcg%p(C) = 0. If there is an upper
barrier v on Q\E such that }1_1)11}: p() =0 andcl_igg})zp(g?) =1, then h(H, Q)
is continuous, and h(E, 2) is 0 on H, 1 on 08.

PROPOSITION 3.4. Let £2 c C be pseudoconver, and let B c 2 be a compact
polar set. If I' is the homology class of 02 in Q\E, then N{I'y Q\E} =
== o{F, Q\E} = O.

Proor. Since £ is pseudoconvex, it has a €2, strictly plurisubharmonic
exhaustion p(z). We may assume that E c {p < 0}, and we may replace 2
by Q={p<0}. Let weP(2), w<0, be such that Fc{w = — oo}.
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For k>0, we set w(k) = {z€Q:w(?) <—k}. Since E is compact and
w(k) is open, there is a smoothly bounded open set U,, Ec U,c w(k).
By Prop. 3.3, h, = h(U,, 2) is continuous. We define

Q) ={ze2:0<MT,, 2)<1}.
By Prop. 3.1 of [4],
N(I, Q(k)) = T(d°h, A (ddeohy)™2)

where T is any compactly supported smooth current representing I". Since
w(k < b, — 1< 0 it follows that the A, converge uniformly to 1 on the sup-
port of 7. Thus 0 = lim N(I', Q(k)) > N(I', Q/B)> Ny(I', Q\E).

COROLLARY 3.5. Let E be a compact polar set in 2, a pseudoconvex subset
of C*. If ue C(2) N P(Q) and (dd°u)* = 0 on O\ E, then (ddu)" = 0 on 0.

ProoF. Let T be a smooth current representing 02 supported away
from E, and let 8 be a current such that b8 = 7. It follows that

T(deu (ddow)) = S(ddeu)> f (ddeu)yn>0 .

E

COROLLARY 3.6. Let E be a compact polar subset of a pseudoconvex domain Q,
then E is megligible for N,.

ProoF. Since H,, ,(2,R) =0, H,, ,(2Q\F, R) is generated by linear
combinations of classes of the form [0K]. But if »e F,(2\ F), then by
Corollary 3.4 (dd°v)» = 0 on £. Thus

f doo \ (ddev)»-1 — f (ddev)» = 0 and so N {oK}=0.

0K K

PropPoSITION 3.7. Let E be a compact subset of C», and let >0 be a
continuous upper barrier defined on a neighborhood o\ E such that %]E% p(l) =0
for ze E. Then

N{oQ, O\E}>N,{09, O\E}> 0

for any bounded open set Q containing E.

ProoF. It suffices to take 2 to be a large ball containing E and to show
that N,{0Q, 2\ E}> 0. Since min (ky, 1) is an upper barrier on C*, for k
large, the continuity of A(H, ) follows from Proposition 3.6. It suffices
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to show

(+) Tach A (ddeh)—1> 0,

where T is a smooth current representing 02 and h = h(E, 2). Since £
is pseudoconvex, it follows that h =1 on 9Q2. Thus Q(6) = {#e 2:1 -0 <

(2)}, is an open set and for 1> ¢ >0, C"™\£2(6) will contain a neigh-
borhood of E. Since 2 is bounded, N,{I', 2(6)} is strictly positive. By
Theorem 3.2 of [4],

N{T, Q(0)} = (1 — 8)—"TdhA(ddh),

and thus () holds.

ExampLEs. Let us take E to be {(@,, ..., #,)€ R*: ax |z;| <1} a totally
real cube in C». To construct an upper barrier for K, we consider the one
dimensional case of the interval [— 1, 1] in the disk of radius 2. There is

a harmonic function @(2) on the set {e C: |¢| <2,2¢[— 1,1]} such that
pe) =1 if |z =2 and ¢([—1,1]) = 0. Now we let P(z) = > @(2,), and
j=1

we observe that @(z) > 0 if z2¢ F and O(E) = 0. Since @ is n-harmonic it
is an upper barrier.

If M is a totally real smooth submanifold of C» of dimension n, we may
construct a similar upper barrier. For fixed 2, € M, there is a neighborhood w
of 2, and a smooth diffeomorphism 7 = (T7,,...,T,) of w " M with an
open subset of R»c C». Furthermore, since M is totally real T may be
made « almost » holomorphic in the sense that 87 will vanish to high order
at w N M. If ¢ in the preceding exqmple is taken to satisfy Adp = —1,

then sufficiently close to w N M, &D(z qu( ,(2)) will be superharmonic,
and thus an upper barrier.

Let us conclude this section by computing the norm of a (2% — 1)-dimen-
sional homology class other than I'= [0D,]. If Q is a Reinhardt domain
of the form Q = O\ (K, U K,) where K,, K, are compact and disjoint, then
K, U K, is not holomorphically convex in 2. If I'= 08, then

N{I', Q} = N{I', \R}

where K is the log convex hull of K, U K, (and it is assumed that & c Q).
Let us compute N{y, 2} where y = [0K,]. The extremal function » which
gives the norm may be computed by looking at the logarithmic image of Q
(see [4] for details). We give here the construction in C2; the C~ case is similar.



HOLOMORPHIC MAPPING OF ANNULI IN C* ETC. 401

In region A, the function is obtained by setting « = 0 on y and v =1
on I" and requiring that « be linear along the straight line connecting the
points on y and I" with equal normal vectors. On the region B, the func-
tion u is defined by = 0 on y and u = 1 on I, u(P) is already determined,

and w is linear on all segments connecting P to y and I. Note that « is not
smooth of class C' at the segment PQ. Thus N{y} = f deuN\ddew is strietly
Y

greater than N{y, Q\Kl}. It remains an open question, however, whether
N{y} can be strictly greater than N{y, ONK,} if Q satisfies ().

4. — Structure of the (plurisub-) harmonic measure.

An obstacle to proving Theorem 2.1 for domains in C* (n>2) with
more than one hole is that solutions of (1.1) will not satisfy (1.4) on Q
(see the first Example below). If the solution of (1.1) is real analytie, the
statements analogous to Theorem 2.1 and Corollary 2.2 remain true (see
Corollary 4.8). Besides using the real analyticity of u, this depends on a
more careful look at the geometric nature of the foliation.

k
ExaMPLE. Let Q2 c C? be defined as 2 = 8\ U S, where § is an open
i=1
ball and §; are disjoint compact balls contained in §. Suppose that u € 02
satisfies (1.1) and (1.4) on Q. Then the foliation F(u) exists everywhere
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on £ and has tangent bundle J. There is a continuous global section
X = A1(0[0z,) + A2(0/02,) of J since H*R, 02) = 0. As was noted in Sec-
tion 1, &(u) (and thus X) is transverse to 02. Again, since H2(Q, 0Q) = 0,
there is a continuous function ¢° on £ such that the vector field
X, = Re (¢° X) is nonvanishing and points inward at points of 002. It fol-
lows that the Euler characteristic of 2 must be zero, and thus Q has only
one hole. Now let us suppose that M is a closed leaf of F(u). Since X, is
tangent to M, it follows that M, too, has vanishing Euler characteristic and
must be an annulus.

In the following example, the outer boundary is not strictly pseudo-
convex, and the foliation is nonsingular.

ExAMPLE. Let

1
QOZ{ZECZ:E<

z,—% r—l— 2, ]2<< 1}

and let f(z,, 2,) = (42, 2,).
It follows that f~1(£0,) = Q is a weakly pseudoconvex domain with two
strongly pseudoconcave holes. The solution to (1.1) is

log (Jes— 32+ [23])

U(Ryy ) = log 4

+1,

and the corresponding leaves are {2, = ¢({ — })}.

Now let u satisfy (1.1) on a set £, and suppose that « satisfies (1.4) on
a smaller open set £'. Let N° denote the normal bundle to the foliation &,
which is defined over £'. Now we will consider the (1,1) form w = dd°u
as a metric on N°, and w" ! = (dd°u)*! is its associated volume form. Let
B = (¢/2)(d2y NdZ, + ... + dz,N\dZ,) be the standard Kéahler form on C», and
let * denote the Hodge *-operator. We recall that if (g;) is a hermitian
metric on a holomorphic vector bundle, then the associated Ricci form is
Ric = dd- log (det (g,5)).

PROPOSITION 4.1. The Ricei form of the metric w is non-negative. In local
coordinates, the function log * (BA (dd°w)**) is subharmonic when restricted to
a leaf of F(u). If the leaf L is locally a portion of the z,-axis then Ric is given
by ddelog * (BA(ddeu)"1) restricted to L.

ProoF. We choose coordinates so that a given leaf is the 2;-axis passing
through 0, and thus on this leaf u; = u; =0 for 1<i, j<n. We use
0/02,, ..., 0/02, as a local basis for N along this leaf, and the matrix H of
the metric has entries

o 0 .
ij=<5z_,’ a—zk>=u,-k, 2<), k<mn.
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It follows that
(4.1) *BA (ddou)—t = (n— 1)!4r1 det H .
Since ddc on the z,-axis is (82/(8z1821)) 2idz, \dz,, it follows that the log-

arithm of (4.1) is subharmonic on the #z,-axis if and only if the Ricci form is
non negative. In general coordinates = {(z), with Kéahler form

02;
d ¢
2<<n (3 Cl)
i

We will compute the curvature 2-form of the hermitian connection of
type (1, 0) on N’ associated to this metric. This is given by 5 = 2(Bdz; Adz,
where

B = (i/2) X a;Ndg;,

~ n
dde log * (BA (dd°u)"~1) = ddc log det H + dd° log ( >

(4.2) B=—H'Hz+ H'H,-H'H;,
the subscripts denoting entry-by-entry differentiation of H. We will show
that B is a negative semi-definite hermitian endomorphism of N°. From
this it follows that Ric is nonnegative since
(4.3) (log (det H)),; = — tr B.
To show that B is nonpositive, we expand the identity
det (uz),;, =0, 1<k, I<n.
On the z,-axis, u;; = uj; = 0, so that if 2<k, I<n, then
0 =det (uz)y, 2<k, I<n

along the z-axis. Carrying out the differentiation, and noting that u; = 0,
u; =0, 1<4, j<n, along the z-axis, one gets

Upy * 7" Uy " Uy

n * .
0 = det (uz)g = 2 det| wg =+ Uy *** Uy

Upgp * " U,
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K 0 © U 0
g | Yize " Uink
Yo 0 Uz * " Ugg Usn
=det | % + > det
: H ne=2 Uprre Uy * " * Upgrg " ° Uenge
Untt
0 Upg * U " Uy |

0 Uiz * " YnFr

=gy det () 4 det | 2

Ui
+ z (— 1)‘+1+"u1§uﬂ—k det (H;;).
r,8=2 ’
Here H,. is the (n— 2) X(n— 2) matrix gotten by deleting the r-th row
and s-th column of H. Thus, the cofactor matrix C(H) of H has s-th-row,
r-th—column entry (— 1)"** det (H,,). Continuing, we get

n n
0= w7 det (H) — 3 w5y (— 1) det (Has) s — 2 (— 1) T ugu,g, det (Hs)

r8=2 r8=2
Thus,
— H;det (H)+ H,-C(H)H; = 4*-C(H)- A ,

where A is the matrix with (4, j) entry wg;;. Multiplying on the left by
det (H)* H-' gives B=— H-*AHA.

Without loss of generality, we may assume that H(0) = I,_,, and thus B<O0,
completing the proof.

ReEMARK. Notice that we have proved more, since the semi-definiteness
of 5 gives Ric =0 iff » = 0. Ric also measures the «anti-holomorphic
twist » of F(u), for which we will give two interpretations. For the first,
let us normalize so that (u;(0)) = I,_,. Then by (4.2) and (4.3),

(4.4) Ric (0) = 2i trace AAde\dz, = 20 3 uuq, 4o N2, .

i k=2

We may parametrize the leaves of F(u) near 0 by letting M(x) be the leaf
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passing through (0, «s, ..., ,) = (0, ). There exists a small 6 >0 and a
funetion

P, o) = (fz(C, yeeey fulGy “))
such that

{leal < 8} N M(2) = {(&, PG, w): 2] < 6} -

We may write

16y o) = o + o 3 phen + i)+ 0o + 0).
=2
Thus the 0#2;/02, slope of M(x) at (0, ) is given by
gﬁ%+ﬁ@+mw.
=2

Since M(ex) is the annihilator of the matrix (u,;), the 0z;/02, slope of M(«)
is also — w;;/u;. With our normalizations,

0 ui’a’(o)) —u
Z\ uz; ]
80 we have
(4.5) Ric (0) = 2¢ Z gf’ (gf") 2\ dZ,
Jk=2

which measures the non-holomorphic nature of F(u) at 0.

A foliation F of £ c C», whose leaves are complex submanifolds of
dimension k is a holomorphic foliation if and only if J = T%%(F)c T%(0)
is a holomorphic sub-bundle. For complex tangent vectors (e J, and
£ e I*1(Q),, & transverse to F, let ¢ and £ denote extensions of £, & to local
vector fields with  in J. The vector [, £]mod (J@® T**(£2)) in N, depends
only on £, & call it £(¢, £). £ is a linear map: JQ N — N, and F is holo-
morphic iff £ = 0. Indeed, J is locally spanned by the vector fields

where the b,; must be holomorphic on leaves of . Locally, we may take
a leaf M of & to be a (2, ..., 2)-coordinate plane, so that N[, is spanned
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by 0/0z, k + 1<l<n. On M, we may take brackets

L, 01 a0 2
[‘f’ﬁi]—,éﬂéz“’ff’a—zx

Hence, £ = 0 if and only if the b,; are holomorphic on Q.
In the case at hand, we may compute along the z,-axis to get

s:(a a): S (= 1)+ det (Hon)u
r,8=2

5575%; 73 lﬁég’
Hence, £ = 0 along the z-axis if and only if all u; = 0 there. This gives:

ProposITION 4.2. The foliation F(u) is holomorphic if and only if
the Riceci form vanishes.

Now we suppose that the solution # of (1.1) is real analytic on Q. The
hypersurface

(4.8) 8 = {r(2o, 21y ..., 2,) = 108 22y + (2y, ..., 2,) = 0}

in C x 2 is weakly pseudoconvex. If M is a complex manifold in 8, and if
7: C X2 — Q is projection, then m(M) is a leaf of F(u) (see [2]). The tech-
nique of the proof of Theorem 4 of Diederich and Fornaess [7] applied to
the surface § yields a method for extending leaves of F(u) over the set
{(ddeu)»1 = 0}.

PROPOSITION 4.3. Let a € Q2 be given, and let u be real analytic and satisfy
(ddew)» = 0, (ddeu)* = 0. Then there exists ¢ > 0 sufficiently small that of M
is a component of F(u) on {|z— a| < e}, there exists a (closed), irreducible
variety M in {jz— a| < &} with M c II.

ProPoSITION 4.4. Let the solution w of (1.1) be real analytic, and let &,
a be as above. Then M\ M 1is a finite subset of {|z— a|<<e}.

PROOF. Since (dd°u)*'s= 0 on M, it follows that M is one-dimensional.
Now ¢(2) = log (*BA(dd°u)"~?) is subharmonic on M, and lim g(s) = — oo
for z,€ M\ M. Thus ¢ is subharmonic on M and M\ M = {p < — oo} =
= M N {(ddw)»* = 0} is a real analytic polar set, which is finite.

PROPOSITION 4.5. Let the solution w of (1.1) be real analytic and C*Q).
Then every leaf of F(u) reaches both the inner and outer boundaries of Q.

PrOOF. Let us suppose that SUp % = Max u = ¢ < 1. Let 2o M be a
point such that wu(2,) = ¢, and let 2; € M be points converging to z,. By
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Proposition 4.3, z; is contained in a variety M, in an e-ball about 2z, = a.
By a theorem of J. E. Fornaess (see [27]), a sufficiently sparse subsequence
of {M ;} may be chosen so that the cluster set is a variety M, and M is of
the form m(M,), where M, is a variety in § of (4.6).

The set E = {z€ Q: (ddu)~—' = 0} is a compact real analytic subset
of 0 since (ddu)*~15£0 on 0D, 0D,. So by Diederich-Fornaess [7], no
component of I is contained in E. Thus M is contained in finitely many
leaves of F(u) with a finite number of points added. Now we may use the
fact that M c M and that E ) I (the set of singularities of the differential
system defining M) is discrete to conclude that %|z;<ec. By the maximum
principle, M C {u = ¢}, but this is impossible by [7].

The proof that M reaches 0D, is a similar argument, following the out-
line of Proposition 2.4, and we omit it.

REMARK. It follows that B = {z € Q: (dd°u)"~* = 0} has real codimension
>2 for any real analytic solution » of (1.1). For if dim F = 2»n — 1, then
H,, \(E, Z,) # 0 and by Alexander duality H,(8*"\ B, Z,) + 0, i.e. E discon-
nects £, contradicting Prop. 4.5.

For the theorem below, a proof may be given which follows the proof
of Theorem 2.1 in its essentials except that Lemma 2.4 is replaced by Pro-
position 4.5 and Lemma 2.8 may be modified to accomodate the changed
hypotheses. We omit the details because too much duplication would be
involved.

THEOREM 4.6. Let u, v satisfy the hypotheses of Theorem 2.1, except that
they need not satisfy (1.4). If u, v are real analytic in Q, and if v satisfies (1.4)
on Q\(Z U E) where Z is a proper analytic variety in 2, and E does not
contain any germ of a complex variety, then u = v.

COROLLARY 4.7. Let Q,, 2,C C* be domains satisfying (*), and assume
that the solution wu; of (1.1) is real analytic on Q; and C® on the inner boundary
of Q; for j =1,2. Let I'; denote the outer boundary of Q,, and let N{I'\} =
= N{IL}. If f: Q, > Q, is a holomorphic mapping, and if f{I1} = ol + y
x#=0 and y is a positive linear combination of imner boundary components
of Q,, then | is an unramified covering of £2,.

Proor. We set u = u, and v = u,(f) and observe that the set where
(ddev)»t = 0 is {|f’| = 0} U f*{(dd°u,)* =0} = Z U E. By Hartogs’ the-
orem, « is a nonnegative integer. Since N{I}} = N{I,} and

fd;uA(ddcu)"“l = acf—!—fdcv/\(ddcv)"‘l )

r, Iy bd
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it follows that ¢ = 1 and y = 0. The rest of the conclusions follow as in
Corollary 2.2.

REMARK. We have not explicitly constructed the solution to (1.1) for
any example of a domain Q satisfying (%) where D, has more than one
component and n>2.

The geometric notions of Propositions 4.1 and 4.2 were motivated by
phenomena which appear more concretely for the real Monge-Ampére equa-
tion and seem to be related to work of Sacksteder [21] and Hartman [11].

If w(w,, ..., »,) satisfies det (u,;) = 0 on a domain D c R, then u satis-
fies (dd‘u)® = 0 on the tube domain D -+ iR". A leaf M of F(u) is a com-
plex line, and the corresponding leaf for the solution on D is M N D.

Let us study the foliation by solving a certain « boundary value » problem.
We will write a point in R* as (v, ..., @y, ¥u) = (@, y). Let A = (a,;)
and B = (b,;) be nonsingular (n — 1) X(n — 1) matrices. We want to find
w(w, y) in a small neighborhood of the interval I = {(0,...,0,%): —1<y<1}
such that rank (u,;) = » — 1 in a neighborhood of I

wn w(w, — 1) = Za,;w,2; + O(|r[*)
- w(,1) = 2b,xx;+ 0(lx|3) .

We may compute the foliation F near the interval I because Vu is constant
along the lines of ¥. Thus §F will contain the segment between (x, —1)
and (&, 1) where

(4.8) & = A-'Bw + O(|o]?) .
Furthermore, since w is linear along this segment, it follows that

u(p(a), v) = 5L ule, — 1) +

1+y
—-2—%((1},1)

where we set
1— 1
(4.9) p(r) = (—2—y)m + (—f)ﬂ)a‘: .

-

From this we may calculate the hessian matrix of «

— —1
(4.10) (a;’;(%’xy)) - (1 Y4t 1_1;—-’/ B—‘) . 1<i, j<n—1.
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PROPOSITION 4.8. Let ue€ C*D) be a function satisfying rank (u,;) =
=mn—1. Let L be a segment of F, and for p € L, let Hess (p) denote the
(m—1) X(n— 1) hessian matriz of u taken in the orthogonal subspace to L
at p. Then the entries of (Hess) ! are linear on L. In particular, det (Hess)
does not tend to zero at either endpoint of L.

Proor. By an affine map, we may assume that the endpoints of L are
(0, 4+ 2). By subtracting a linear function from %, we see that « solves (4.7)
on I. Thus (Hess)~? is linear by (4.10). It follows that (det Hess (0, y))™!
is a polynomial of degree (n — 1), and thus it tends to a finite limit as (0, ¥)
approaches (0, 4 2).

Let us return to the solution of (4.7) and assume that 4 > 0, i.e. u is
convex at (0, —1). We perform a rotation and diagonalize A. Since 4 > 0,
we may perform a change of scale and assume that 4 = I. Thus (4.10)
takes the form

(4.11) Hess (0, y) = ( yI+1+JB)

Performing another rotation in R» 1, we may take B'= diag (4, ..., An_1)-
Thus Hess (0, ), in these new coordinates, is a diagonal matrix whose

j-th entry is ((1—9)/2 4 4,1 + 9)/2)7

PROPOSITION 4.9. Let u be a C® function that satisfies det (u,;) = 0
in a neighborhood of the entire y-awxis. If the matriz (u,-,(())) has rank (n — 1)
and is nonnegative, then (u;;) is constant on the y-awxis.

Proor. By the discussion above a coordinate system may be chosen
o0 that the hessian matrix is diagonalized and the j-th entry is ((1— y)/2 4
+ 2;(1 + 9)/2)~'. Since this is always finite, it must be constant. Thus
Mh=..= =1

REMARK. If the convexity assumption is dropped, then the Proposition
is false. For example, by our previous discussion, there is a function
w(@, y,2) on R® with det (u;)=0, u(0,y,2) = yz, u(l,y,?) = 3(y*— 22,
and with foliation given by lines

Y = Yo— &(Yo+ %)

k2 =zo+w(yo_f %) .

1—
Along the z-axis, Hess (¢, 0,0)"'= [1 f r — w] :
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For a fixed segment L of & it is natural to define a Poincaré map. For
p e L let X be a neighborhood of p in the copy of R*! passing through p,
which is orthogonal to L. By translation, 2’ may be considered to be a
neighborhood of 0 in R»-1, Following leaves of F near L, we have a map
Towa: Zp, = 2y,- Taking f,  to map a neighborhood of 0 in R"* into R,
we see that the jacobian of f, , at p, is (Hess u(p,))~* Hess u(p,). If w is
convex at p,, then this matrix can be diagonalized. If N* is the dual bundle
of N°, then the metric on N* is given by (Hess %)%, and the jacobian of
fow, 18 an isometry.

REMARK. It seems that the complex version of problem (4.7) should
give useful information about solutions of (1.1) and (1.4). Let a real func-
tion a(, 2,) be given with a(0, 0) = a,(6, 0) = 0 and a,;(0, 0) > 0. We want
to find a plurisubharmonic (2, 2,) such that

rank (u;) =1 for |] <1 and |2,| small
(4.12)
small .

w2y, 2) = a(f,2,) for & = ¢ and [z,

Some further restrictions on a(f, 2,) are necessary before (4.12) is solvable,
consider

a(0, 2,) = b(0)([2,* + Re (¢23¢”)) .
Let A(z;) be the unique nonvanishing analytic function on || <1 such
that |4(¢”)|* = b(f). Changing coordinates by 2 = 2,, 2% = A(2,)?, we may
take b(6) = 1. To solve (4.12) we next look for the leaf of the foliation which
passes through (0, {):
M@) = {(z, F(& )1 o <1}
Since #, must be holomorphic on M({),
a0, F(L, 6°) = F + cFe®

must have no negative Fourier coefficients. Thus

F(Cy2) = {— ©la,
and on M({),
uz(zu P, 21)) = Z'(l—— |0|2)
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is constant. We conclude that

0 <uy5(0, 0) = 1— ef2,

80 ¢ is not arbitrary.

5. — Cycles with minimal area.

The Carathéodory metric on a complex manifold £ has the property of
decreasing under holomorphic mappings. To a homology class I' € H, (2, R),
it is natural to assign the number C{I'}, which is the infimum of the area
(in the Carathéodory metric) of all cycles representing I. We will discuss
this for the set 2 = B"\ X, where K is a compact subset of B», the unit
ball in C». In this case, the Carathéodory metric can be written as a Rieman-

nian metrie; at the point (r, 0, ..., 0) € B, we have
dz, |? 2, |dz)?

5.1 I .

(5-1) =Gy T AT

It is well known that this metric (which coincides with the Bergman and
Kobayashi metrics) has negative curvature, and the unit ball is complete in
this metric. A domain w is convex in this metric if its second fundamental
form is nonnegative. This can be checked in specific cases by mapping p € 0Q2
to 0 via some fe Aut (B"), since the second fundamental forms in the
Euclidean and Carathéodory metrics will coincide at 0.

LEMMA 5.1. Let w be a relatively compact subset of B" which is convex
in the Carathéodory metric with dw € C2. Then ow is the representative of the
homology class [0w] € Hy,_y(B™\ w, Z) which has minimal surface area in the
Carathéodory metric.

Proor. Let us define the map R: B\ w — 0w by R(?) € dw and R(z)
minimizes the Carathéodory distance between z and dw. Since B» is con-
tractible and negatively curved in the Carathéodory metric and w is convex,
R is well defined. It is well-known that

dist (R(2,), R(2)) < dist (2y, 2,)

since B" has negative curvature.

Thus it follows that if  is any (2n — 1)-cycle representing ow, then
R(y) has smaller area. Finally, it is clear that y and R(y) are homologous,
so that R(y) and y represent the same class.
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THEOREM 5.2. Let w,, w, be compact subsets of B that are convexr in the
Carathéodory metric. Let us set 2, = B"™\@;, j =1,2, and let : Q, — 0,
be a holomorphic mapping. If C{0w,} = C{ow,}, and if the homology class
f«[0w,] is mon zero, then f € Aut (B»).

Proor. By Hartogs’ theorem, f extends to a holomorphic mapping
f: B» - Bn. Since f,[0w,]5 0, f(dw,) is a nontrivial eyecle in 2,. Since f
decreases area, and since O{0w,} = C{0w,}, it follows by Lemma 5.1 that
f(0,) = Ocw,.

After composing with automorphisms of B», we may assume that
0 € 0w, N dw,, that f(0) = 0, and that

T(2wy)y = T(3w,)y = {Re 2, = 0}.

At the point 0, the Carathéodory and Euclidean metrics agree. If J = f'(0)
is the Jacobian matrix of f at 0, then by the distance decreasing property
of f, |J(v)|< |v| for all vectors v. On the other hand, f preserves the surface
area of 0w, so J is an isometry on {Rez, = 0}. Since J is complex linear,

|det J| =1. Thus J = *) where |A| =1 and W is unitary. Since

w

0o 1
|J(0, ..., 0, ¢)|<|c|, it follows that * = 0. By composing with a unitary
map, f has the properties that f(0) = 0 and f'(0) = I. Thus it follows from
a theorem of H. Cartan (see [18]) that f(2) = 2, which completes the proof.

2
<1}

be an ellipsoid. We will compute the area of 0E(a,b) in the Carathéodory
metric. At the point (r, 0), it is easily seen from (5.1) that

ExAMPLE. Let
E2

E(a, b) ={zEC2:l%i2—|— b

Ay ANdx, Ady,|, = (1 — 7%)~2  and |dz, Ady, Ady,|, = (1— r2)~%,

From this, the surface area at the point (a cos 06", b sin 6¢'”) may be
shown to be
[(1—r2)a2b+ (a*— b%)2(sin 2 0)/2)2]}
do
r(1 — r2)t

do, = 8,(0)do =

where do is the unit of Euclidean surface area on oF and

r = (a® cos? 0 + b2 sin20)} .
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If we perform the dg,dp, integration in do, we obtain the surface area

We

n/2
C(a, b) = (27)2ab |sin 0 cos 68,(0)d0 .

0

observe that as was computed in [4], the norm of the homology class

of 0F is

/2

N(a’ b) _ N{@E’(a, b)} — (2n)2f (COS 7] lOg('l—l + sin 6 log%)"z do .
0

A numerical computation shows that there is no function f such that
N(a, b) = f(C(a, b)) for 0 <a, b<1.
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