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Embeddability
of Real Analytic Cauchy-Riemann Manifolds (*).

ALDO ANDREOTTI (**) - GREGORY A. FREDRICKS (***)

The local and global embeddability problems for Cauchy-Riemann (C-R)
manifolds are as follows:

(I) Which C-R manifolds are locally isomorphic to a generic sub-
manifold of Cn’

(II) Which C-R manifolds are globally isomorphic to a generic sub-
manifold of some complex manifold

It is well-known (see Rossi [10]) that real analytic C-R manifolds are
locally embeddable as in (I). In § 2 we prove that real analytic C-R mani-
folds are also globally embeddable as in (II). This is a generalization of the
theorem of Ehresmann-Shutrick (see Shutrick [12]) on the existence of

complexifications-a theorem which was also proven independently by
Haeiliger [8] and by Bruhat and Whitney [4]. It also improves a result
proved by Rossi [11]. In § 3 we give a notion of domination of real analytic
C-R structures and prove a sort of functorial property concerning their com-
plexifications. In the last section we prove a result about the convexity of
the complexification which is a generalization of a theorem of Grauert [6].

1. - Preliminaries.

The two best references for the material presented in this section are [1]
and Greenfield [7]. We will use the word « manifold » to mean an infinitely
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(***) Texas Tech. University, Lubbock, Texas.
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differentiable paracompact manifold and the word «submanifold to mean
a subspace of a manifold for which the inclusion map is an embedding.

For each m-dimensional manifold M, let T(M) 0 C denote the com-

plexified tangent bundle of jtf so that

if (x, U) is a chart of M with p E U. A Cauehy-Riemann (C-R) structure of
type 1 on M is an l-dimensional complex subbundle A of T(M) 0 C such that

(a) A r) A = {o} (zero section), and

(b) A is involutive, i.e. [P, Q] is a section of A whenever P and Q are
sections of A.

Note that the zero section of T(M) 0 C defines a C-R structure of type 0
on M. This trivial C-R structure is called the totally real structure of M.

Observe from the definition of a C-R structure that 0  1  m/2 and also
that if A is a C-R structure of type 1 on M, then so is A.

Note also that condition (a) above is equivalent to the condition that

if p E M and P, Q E Ap with re P = re Q then P = Q. Thus we can define

a complex structure on the 21-dimensional subbundle re A of T(.M), i.e. a

bundle map J : re A ---&#x3E; re A with J2 = - I, by defining J on re Ap as follows:

A C-R manifold is a pair (M, A) where A is a C-R structure on M. The
C-R manifold (X, A) is said to be of type (m, 1) if M is an m-dimensional

manifold and A is a C-R structure of type l. A C-R manifold (M, A) is called
real analytic if M is a real analytic manifold and, for each chart (x, U) of
the real analytic atlas of M, there exist complex-valued vector fields PI, ..., Pi
such that

We will now examine in detail the C-R manifold (X, HT(X)), where X
is an n-dimensional complex manifold and HT(X) is its holomorphic tangent
bundle. Note that if (z, U) is a (holomorphic) chart of X and p E U, then



287

so that each P E T(X) 0 C1J can be written uniquely in the form

Such a P is called hotomorphic and an element of HT(X)’P if all the b i are
zero. Similarly, such a P is called antihotomorphic and an element of AT(X),
if all the ai are zero. Defining the holomorphic and antiholomorphic tangent
bundles, , HI(X) and AI(X), in the natural way, we see that HI(X) is

an n-dimensional complex subbundle of I(X) 0 C with

Now HI(X) r1 AI(X) = fO} and it is easy to see that J?T(Z’) is involutive.
Hence (X, HT(X)) is a C-R manifold; in fact, a real analytic C-R manifold.

Henceforth, a complex manifold X will be considered to be a C-R mani-
fold with C-R structure HT(X). When there is no ambiguity we will simply
write X for (X, HT(X)). We remark, however, that it is customary to take
AI(X) as the C-R structure on X.

We will now give a detailed description of how a submanifold of a com-
plex manifold can « inherit » a C-R structure. Since the two defining proper-
ties of a C-R structure are essentially local, we begin by considering a real
submanifold M of Cn of (real) dimension m. Fixing p E M there exists a
sufficiently small neighborhood U of p in Cn and 2n - m smooth functions

such that

If U is sufficiently small we can also find local parametric equations of M
on U, i.e. a set of n smooth functions

defined on an open set D c Rm such that
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If N is a real analytic submanifold of Cn the functions 1, and f!Ji described

above can be chosen to be real analytic.
Let F(M) denote the sheaf of germs of smooth, complex-valued func-

tions on Cn which vanish on M. If U and ti i are as defined in (1.2) then

where 8 is the sheaf of germs of smooth, complex-valued functions on Cn.
If U and Ti are as defined in (1.3) then

The holomorphic tangent space to M at p E M is now defined by

Note that HI(M, Cn)1J is a complex vector space, and set

PROPOSITION 1.4. The fuaction l(p) is an upper semicontinuous func-
tion of p along X which satisfies

PROOF. From above F(M),, = 81)(/1’ ..., and hence

if and only if P(Ij) = 0 for j = 1, ..., 2n - m. Thus l(p) is the dimension of
the subspace of vectors a = (al, ..., an) e Cn such that

Hence

and we see that l(p) is upper semicontinuous since the rank of a matrix of
smooth functions is lower semicontinuous. Moreover, the rank of the above
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matrix is less than or equal to 2n - m and hence X(jp) &#x3E; n - n. Since the

functions fi are real-valued we see that, in self-explanatory notation,

From (1.2) (b) it follows that

so that rkô(!)/ô(z»!(2n- m) on U and consequently that l(p)m/2.
A submanifold M of Cn is said to be generic at p E M if l(p) = m - n.

PROPOSITION 1.5. 1f is generic at p E M (and hence in a neighborhood of
p E M by proposition 1.4) i f and only i f one of the following conditions is satis f ied.

PROOF. The first statement follows from the proof of proposition 1.4.
For the second statement note that fioq; = 0 on D for j = 1,..., 2n - m
so that

f or j = ly..., 2n - m and k = 1, ..., m. Thus

defined by

are m linearly independent, complex-valued tangent vectors at p which
span T(M)&#x26;C,. Moreover

19 - Ann. Scuota Norm. Sup. Pisa Cl. Sci.
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is an element of HI(M, C-), if and only if

Consequently

and (b) now follows.

REMARK 1.6. From the preceding proof we see that the complex-valued
vector fields q*(8j8ti), ..., q;.(o!otm) are defined on q;(D) c M and span

T(M) 0 C’ at each point of gg(D). We also see that

Hence if I(q) = 1 (a constant) for all q in a neighborhood of p in M, we
can find smooth (or real analytic if the cp/s are real analytic) complex-valued
functions c2k for i = 1, ..., I and k = 1, ..., m which are defined near p in M
so that the vector fields

span J?T(ify Cl,) at each point of .lVl near p.
We now consider N to be an m-dimensional submanifold of an n-dimen-

sional complex manifold X. Let F(M) denote the sheaf of germs of smooth
real-valued functions on X which vanish on M and define

for each p E M. Set l(p) = dimc HI(M, X)1). Note that the complex struc-
ture J determined by HI(X) as in (1.1) is defined on re HT(X), = T(X), by

where (z, U) is a chart of X with p E U, zj = xj -t- iyj and ai, &#x26;, E R. Now,
for each p E M, we see that re HI(M, X),, = T(M)1) n JT(M), and that
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Hence re HI(M, X), is the maximal complex subspace of T(X)p (with
complex structure J) contained in T(M)f) and T(M)f) -)- JT(M)p is the

minimal complex subspace of T(X), containing T(M),. Moreover,

PROPOSITION 1.9. I f l(p) is constant and equal to 1 on M, then Hll’(M, X)
is a C-R structure of type 1 on M. Moreover, if M is real analytic, then
(M, BrT(if, X)) is a real anatytic C-R manifold.

PROOF. From the definition of J?T(if, X) we see that HT(M7 X) r)
HT(X, X) = {o} and also that a complex-valued vector field P is a sec-
tion of HT(M, X) if and only if it is holomorphic and satisfies PF(M) c F(M).
It thus follows that if P and Q are two such vector fields, then so is [P, Q].
From remark (1.6) we see that we can choose a real analytic, local basis for
HT(M, X) if M is real analytic.

If HI(M, X) is a C-R structure of type 1 on X we say that .ll inherits
a C-R structure of type 1 from X. When there is no ambiguity we will write
HT ( M) for the inherited C-R structure HI(M, X). Note that Rn c Cn in-

herits the totally real structure from C’n and that every real hypersurface
in Cn inherits a C-R structure of type n - 1 from Cn.

We remark again that, classically (as in the study of tangential Cauchy-
Riemann equations), one considers AT(M) = HI(M) as the inherited C-R
structure on M.

An m-dimensional submanifold M of an n-dimensional complex mani-
fold X is generic if it inherits a C-R structure of type m - n from X. A generic
submanifold of X will always be considered to be a C-R manifold with its
inherited C-R structure from X.

Two C-R manifolds, (M, A) and (N, B), are said to be isomorphic
if there exists a diffeomorphism ’tp: M -+ N such that ’tf’.A = B, where
’tp*: T(M) 0 C -+ T(N) @ C is the natural map induced by y. Note that

two isomorphic C-R manifolds are necessarily of the same type.

PROPOSITION 1.10. If M is an m-dimensionat submanifold of X which
inherits a C-R structure of type I f rom X, then (M, HT(M)) is locally iso-

morphic to a generic submanifold o f C--l. If M is real analytic the local iso-
morphism is also real analytic.

PROOF. Since the result is local, consider X to be a submanifold of Cn
and fix p E M. Recall from (1.7) and (1.8) that T(M)f) + JT(M)f) is the

minimal complex subspace of T(Cn)f) containing T(M)f) and that it has

dimension m - l. Let n,. and J’l2 be complex planes of dimensions m - l
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and n - m + I respectively, , for which

Define A: Cn -+ Cm-l by projecting Cn onto a,, parallel to 7t2 and then
identifying a, with Cmw by some biholomorphic map. Then A is holo-

morphic and, by (a) and (b), there is a sufficiently small neighborhood W
of p in M on which T == A lw is a diffeomorphism (real analytic if M is real
analytic) onto its image. Suppose now that z = (Zl, z.) are holomorphic
coordinates on Cn and w = (W,, ..., Wm-l) are holomorphic coordinates

on Cm-1, and that

are the equations of the holomorphic projection A: C’ - C--i. Also as-

sume that, after possibly choosing a smaller "W, the smooth functions

(real analytic if M is real analytic) ggi: D --&#x3E;- C for i = 1, ..., n give local
parametric equations of M on an open set !7 in Cn, as in (1.3), for which
UnM= W. Thus

gives parametric equations of -rTV on T U C Cm-Z and we see by the con-
struction of T that

Since this rank is maximal we conclude from proposition 1.5 that r’W is
a generic submanifold of C--l. Since A is holomorphic we have that

and hence A*HT(Cn) c HT(C--’). Since r* = Â.IT(W)@C we now conclude
that

In fact we have equality in the preceding line since r: ’W-*,rW is a dif-
feomorphism and 1’W is a generic submanifold of C--l so both are C-R
structures of type I on rW. Thus (W, HT(W)) and (-rW, HT(iW)) are iso-
morphic and the proof is complete.



293

The local embeddability problem can be stated as follows.

(I) Given a C-R mani f old (M, A) can one find, for each p E M, a neigh-
borhood U of p in M and an embedding r: U -+ Cn such that ’t’U is a generic
submanifold of Cn and -r.(Aiu) = HT(’t’U)’

Note that if (M, A) is of type (m, 1) then n = m - I.
As we remarked earlier, (I) is solvable for real analytic C-R manifolds.

Indeed, one can prove (see [2])

THEOREM 1.11. If (M, A) is a real analytic C-R manifold, then (I) is

solvable with real analytic embeddings -c.

Note that Nirenberg [9] has given an example of a C-R structure of
type one on a neighborhood of the origin in R3 for which (I) is not solvable.

We now turn to the global embeddability problem which is the fol-

lowing :

(II) Given a C-R manifold (M, A) for which (I) is solvable, can one
f ind a complex manifold X and an embedding r: M -+ X such that rM is a
generic submanifold of X and T.A = HT(’t’M)?

Note again that if (M, A) is of type (m, 1), then X is a complex mani-
fold of dimension m - 1.

We now define a complexilication of the real analytic C-R mani f otd (M, A)
to be a pair (X, -r) where X is a complex manifold and ’t’: M -+ X is a real

analytic, closed embedding such that -rM is a generic submanifold of X and

’t’.A = HT(’t’M). In the next section we will prove

THEOREM 1.12 : (a) Each real analytic C-R mani f oZd has a complexilica-
tion. (b) If (X, ’t’) and ( Y, 0-) are two complexilications of the real analytic
C-R mani f old (M, A), then there exist neighborhoods U of rM in X and V
of aM in Y and a biholomorphic map h : U - V such that the diagram

commutes. Moreover, h is uniquely defined if TI is sufficiently small and con-
nected with aM.
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Thus (II) is solvable for real analytic C-R manifolds and the germ of the
complexification of (M, A) along M is unique. The totally real case of

theorem 1.12, i.e. the case when A is the totally real structure of M, is the
theorem of Ehresmann-Shutrick (see Shutrick [12]) which was referred to
in the introduction.

2. - Global embeddability of real analytic C-R manifolds.

Before proving theorem 1.12 we would like to collect some results con-
cerning real analytic C-R manifolds.

PROPOSITION 2.1. Suppose that X = (p(D) is an m-dimensional, generic,
real analytic submanifold of Cm-l with real analytic parametric equations

There exist neighborhoods D of D in Cm and W of .M in Cmw such that the
map cp: D -* M extends to a holomorphic, open, surjective map 99: fj -* W
with the property that

where Wk = tk + is; for k = 1, ..., m give holomorphic coordinates on 1).

PROOF. The functions ipi(Wl’ ..., wm) = cpj(tl + is1, ..., tm + ism) are holo-
morphic in a neighborhood D of D in Cm and

since M is generic and qJi extends C{Ji. Hence the above matrix has max-

imal rank on a neighborhood of D in Cm which we take to be D. The map
qJ: 15 - C--l defined by the functions qJi is thus holomorphic and of maxi-
mal rank. It is therefore open and we can take W = qJD to complete the proof.

PROPOSITION 2.2 (Tomassini [13]). If M is as in proposition 2.1 and
f: M - C is a real analytic f unction with f * : HI(M) - HI(C), then there
exists a holomorphic function F defined in a neighborhood W of M in Cm-l
which extends f. Moreover, if FI and F2 are holomorphic extensions of f de-
f ined on neighborhoods Wi and W2 of M in C--’, then Fl = T’2 on every

neighborhood of M in Cm-i which is connected with M and contained in Wl r1 W2 .
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PROOF. By proposition 2.1 we can select a neighborhood D of D in
C- so that Cl = ipl, ..., Cm-z = .-, are part of a system of holomorphic
coordinates (Cl, ..., C.) on D. Since focp is real analytic we can find a holo-
morphic function G on D (sufficiently small) such that G = f ogg on D.
Since for each P E I(M) 0 Cywe have

we see that the condition f.: HT(M) -* HT(C) is equivalent to the con-
dition

or equivalently

From the proof of proposition 1.5 the latter condition is in turn equivalent
to the condition

whe%ever p E M and b E Cm satisfying

Thus dggi A... Adv.-,Ad(fogg) = 0 on D, or d’l/B.../Bd’m-z/BdG = 0 on D.
Since

we see that the holomorphic functions aGI aC, for k = n - I + 1, . - ., m
vanish on D and hence on D (assuming D is connected with D). Thus G

is independent of ’m-l+l, ..., ’m and so G factors through §3, i.e. there exists
a holomorphic function F defined on a neighborhood W of X in Cm-1 such
that G = Fo§3. Now FIM = f and the unicity of F follows from the above
considerations.

Since the restriction of a holomorphic map is real analytic and maps
holomorphic tangent vectors to holomorphic tangent vectors we have

COROLLARY 2.3. I f .Fl and F2 are holomorphic functions de f ined on open
sets WI and W2 in Cm-l and Fl = F2 on a generic submanifold M of C--’,
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then Fl = h’2 on every neighborhood of M in C--l which is connected with M
and contained in Wl r1 W2.

We now establish theorem 1.12 (b), i.e. the unicity of the germ of the
complexification of (M, A) along M. From corollary 2.3 it suffices to prove
this result locally. Fixing p E M we apply proposition 2.2 to the compo-
nents of aorl: 7:M -+aM near 7:(p) to obtain a holomorphic function h
which extends yo-r-1 near 7:(p). Similarly, we also obtain a holomorphic
function g which extends roar-’ near a(p). Now goh is a holomorphic func-
tion in a sufficiently small neighborhood U of r(p) in X and goh is the

identity on U f1 7:M. Assuming that U is connected with 7:M we conclude
from corollary 2.3 that goh is the identity on U. Similarly , hog is the

identity on the neighborhood V = h(U) of d(p) in Y which is connected

with Y(M) and thus h is the desired biholomorphic map. The unicity of h
follows from another application of corollary 2.3.

The proof of theorem 1.12 (a) is established by a construction similar
to that given by Bruhat and Whitney [4] in the case of the totally real
structure. (See also [3].)

Let (M, A) be a real analytic C-R manifold of type (m, X) and let

n = m- 1.

PART 1. We can find three locally finite open covers of M with the same
index set I, say {V}, {} and {T’} such that

For each i c I we can find local complexifications of T i by theorem 1.11,
i.e. there exist real analytic isomorphisms (p,: T’ --* Ti, where T, is an

m-dimensional, generic, real analytic submanifold of C- and

We now set

The isomorphism

extends by proposition 2.2 to a biholomorphic map "PH: Tii-+ Tii of a neigh-
borhood Tii of Tj in Cn to a neighborhood -Tij of I;, in Cn. We can assume
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that 1’;,; is empty if Tij is empty and that 1Jli; = y§ . For every ordered pair
(i, j) we can select open sets Uti in PH such that Ui; cc Tij, 1Jlii Üii = Üji and

where the bar denotes the closure of the set. Since Vi r) vii (r, o Ui)
is a compact subset of Uj we can choose open sets W¡,; C Pii such that
Wii cc Vii’ IVi, ::-- ’f/Jii(Wji) and

The subsets Vi - Wii f and y;;(V; r1 Uji) - Wii of Ti are compact and dis-
joint, and therefore contained in disjoint open sets 21ii and 13;,; of C"

respectively, so we have

We now choose A i open in Cn such that

and

The last condition can be satisfied since there are only a finite number of
j E I such that Tij is nonempty.

Since A r) Clij is compact and contained in PH we have

By (2.4) and (2.6) we have

and hence

PART 2. For any point x E Uz there exists an open set [7,(x) in Cn con-
taining x and satisfying the following five conditions:

(1) E7,(x) c Vii for every index j such that x E Uj.
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(2) Ùi(0153) c Bii U Wii for every index j such that 0153 E 1pii(Vj n Uii).
(Compare (2.5).)

(3) Ùi(0153) (11pij(Ãi (1 Vji) is empty for every index j such that

pi1(0153) í V.

(4) Vi(0153) c 1pij(Vii (1 Vik) (11pik(Ùki n Ukj) for every pair of indices

( j, k) such that x E Uij (1 Uik (i.e. p-l(0153) E Ui (1 U;(1 Uk).

(5) - 1pik°1pki on Ùi(0153) for all ( j, k) as in (4).

The conditions (1), (2) and (4) are satisfied because the number of in-
dices involved is finite. Condition (5) is satisfied on Uii (1 Uik and hence
in a neighborhood. Condition (3) is trivially satisfied if Ùii is empty. Other-

wise there are at most finitely many j’s such that Ùii is nonempty and

pi (0153) í v; implies 0153 í 1pij( Vj (1 Uji) so s w y;;(zi; m Uji) by (2.8).

PART 3. Set

and let Vi be a neighborhood of Vi in Cn which is contained in A i
and relatively compact in CTi. Note from (2.6) that Vi n Ti= Vi and

Ti r) Ti = Fi. Setting

we see that Vii C Vii and y,;: Vji - fij.
Let y c- rijk , so Y E Vi(0153) for some 0153 E Ui. Since Viik intersects

1pii( Vi n Vii) and Vik(rk r) Uka) it also meets "Pii(Ãin Vii) and 1pik(Ãk n Ùki)
and hence x E Vii n Vik by (3). Therefore 1pki(Y) E Vk n CTj and VJkoVki(Y) =
== 1pii(Y) by (2), so

We therefore conclude that Vii(fijk) C Thik and by symmetry "Pï;( Viik) c Viik, so
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We also have Vij = ip,.-i’ and y;; = yko y2 on fij, so T12, yij} is an amal-

gamation system and we can construct the amalgamated sum

0
This sum is obtained from the disjoint union U fi by dividing out by the
equivalence relation

The space D is a complex manifold if it is Hausdorff. The natural maps

1pi: Vi 2013 f2 are given by the canonical open embeddings

and the isomorphisms ggi merge into an isomorphism 99 of M onto a generic-
ally embedded, real analytic, closed submanifold of D.

PART 4. The proof will be complete if we show that S) has a Hausdorff

topology.
We will first show that ilij C Vii and more precisely that iii c Wi;

(when Tii is nonempty). If y c- fij then there exists x E Ui such that

y c- !7,(.r) since f ij c fi c 12, .
if x 0 1jJii( Vi n Uji) then (p-’(x) 0 V; and hence y 0 1jJii(A; n U’2) by (3).

Since this contradicts the fact that y E Vii in (2.9), we have that

X C yi,(f7, r) U,,) and hence by (2) that y c Bij u Wj. Since Vii C ficii i
we see from (2.7) that y c-.jij U Wii and hence that y E Wi j as Aij and Bi,
are disjoint. In conclusion we have

Suppose now that x’ and y’ are two points of D with x’ =1= y’. Let x E Vi
and y c- il, such that yi(x) = x’ and V),(y) = y’. It suffices to show that

there exist neighborhoods A of x in Tl2 and B of y in Vi such that no point
of A is equivalent to a point of B.

If this was not the case we could find sequences fx,,) and fy,} in Cn con-
verging to x and y respectively with xk E Vii’ , Yk E fi and xk = 1jJii(Yk) for
every k. Since Vii c Uii we see that x E Uii and by symmetry Y E Uj,, so
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x = Vii(y) by continuity. Thus

and y = "Pii(0153), so x is equivalent to y which is contrary to our assumption.
This completes the proof of theorem 1.12.

3. - Domination of C-R structures.

Let M be a real analytic, m-dimensional manifold and let A and B be
two real analytic C-R structures of types k and I on M respectively. We say
that B dominates A if AD c Bp for every p E M (and thus l&#x3E;k). Note that

every real analytic C-R structure on M dominates the totally real struc-
ture of M.

THEOREM 3.1. If B dominates A as above and (X, z) and ( Y, a) are com-
ptexi f ications of (M, A) and (M, B) respectively, then there exist open neigh-
borhoods U of 1’M in X and V of aM in Y and a holomorphic surjective map
h : U - V o f maximal rank such that the diagram

commutes. Moreover, h is uniquely de f ined if U is sufficiently small and con-
nected with 7: M.

PROOF. Note that the unicity of h and the sufficiency to prove the result
locally both follow from corollary 2.3. We also have

PART 1. As a consequence of proposition 2.1 the result holds if A is

the totally real structure of M.

PART 2. Since (X, -r) and (Y, a) are complexifications of (M, A) and
(M, B) respectively, , and B dominates A, we have
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Assume, from the remark at the beginning of this proof, that M is an open
set D c Rm which is sufficiently small so that TD and aD are contained in
local holomorphic coordinate systems z = (Zl, ..., Zm-k) of X and w =

= (Wl, ... , wm-z) of Y respectively. The equations

and

with t e J9 are real analytic, local parametric equations (see (1.3)) of -rM

and aM respectively, and thus, from (3.2) and the proof of proposition 1.5,
we have

whenever t E D and a E Cm satisfying

That is (after conjugating), ,

Let f and d be holomorphic extensions of T and u respectively, to a suffi-

ciently small neighbourhood 15 of D in Cm such that 15 r1 Rm = D and

It now follows that the map a factors through the map f, i.e. there exists
a holomorphic function h : f-D -* Cr.D such that i = ho i on D. Since D is
a complexification of M with its totally real structure, it follows from part 1
that f and a are surjective and of maximal rank if D is sufficiently small.
Hence h is also a surjective map of maximal rank, and the proof is complete.

4. - Convexity of the complexification.

By a theorem of Grauert [6] we know that there is a complexification
(X, i) of a real analytic manifold M with its totally real structure in which X
is Stein. Since the totally real structure is the C-R structure of type zero
and Stein is the same as 0-complete we are lead to
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CONJECTURE 4.1. If (M, A) is a real analytic C-R mani f oZd of type (m, 1),
then there exists a complexification (X, z) o f ( M, A) for which X is l-complete (*).

The following theorem states that the above conjecture holds if M is

compact.

THEOREM 4.2. I f (M, A) is a compact, real analytic C-R manif otd of type
(m, 1) and (X, í) is a complexification of (M, A), then there exists a neigh-
borhood U of í M in X which is an 1-complete manifold.

REMARK. Since ( U, i) is a complexification of (M, A) whenever U is an
open neighborhood of TM in X, we see that TM has a fundamental system
of neighborhoods in X which are 1-complete.

PROOF OF (4.2). Let {U i, Zi} be a locally finite covering of T M by holo-
morphic charts of X such that for each i there exist (see (1.2)) real analytic
functions f;: Ui --&#x3E;- R for which

For each index i define v’: Ui --&#x3E;- R by

and note from (a) that

It now follows from (b) that L(Vi)z has at least m - 21 positive eigenvalues
for each z E TM r1 Ui.

(*) An n-dimensional complex manifold X is 1-complete if there exists a smooth
function 99: X -* R such that

(1) {z E Xigg(o)  c} is relatively compact for every c E R, and
(2) at each point Zo E X the Levi form of 99,

has at least n - t positive eigenvalues.
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Let (e,: Ui ---&#x3E; R} be a partition of unity subordinate to the cover {Ui}
with ei &#x3E; 0 and set

There exists a sufficiently small open neighborhood W of ’eM in X such
that 0 is smoothly defined in W with 0&#x3E;0y 0 (z) = 0 if and only if z E ’eM,
and with £(0)z , (the Levi form of 6 at z) having at least m - 21 positive
eigenvalues for each z EW.

Since ’eM is a compact subset of W there exists an open neighborhood U
of zlVl in W with U relatively compact in W. Hence a U = U - U is a com-
pact subset of W which does not meet ’eM and we set

If V = (z e U]0(z)  61, then V c U and g(z) = (ljð)O(z) has the following
properties on V:

(1) 0  g(z)  1 and g(Z) = 0 if and only if z c -rM.

(2) t(g),, has at least m - 21 positive eigenvalues for each z E V.

We now define (p: V--&#x3E; B by

Thus fz EVlp(z)  el is relatively compact in V for every c E R and also

C(p)z has at least m - 21 positive eigenvalues for each z E V. Since V is an

(m - Z)-dimensional complex manifold we see that it is 1-complete and (4.2)
is established.
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