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Variational Theory of Set-Valued Hammerstein Operators
in Banach Function Spaces.
The Eigenvalue Problem (*).

CHARLES V. COFFMAN (**)

1. - Introduction.

This paper is concerned with the eigenvalue problem for monotone,
variational, set-valued Hammerstein operators. The methods that were

used in [6] to treat the single-valued operator are extended here so as to be
applicable to the set-valued operator; we prove a generalization of the main
result of [6].

Let (92, E, p) be a measure space and let g be a real-valued function on
Q such that g(., x) is fl-measurable for each x and ~(~’) is mono-
tone for each t E ,~. Let g+, g- be the real-valued functions on ,~ X R de-
fined by

Finally, let k be a real-valued kernel defined on Q X S~. By the value of the
Hammerstein operator, denoted

on the function x, we shall understand the set of all functions of the form

(*) This work was supported by NSF Grant GP28377.
(**) Department of Mathematics, Carnegie-Mellon University, Pittsburgh.
Pervenuto alla Redazione il 10 Luglio 1975 ed in forma definitiva il 31 Mag-

gio 1977.
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where h is a real-valued, ,u-measurable function satisfying

In the particular case, for example, where S2 is a smooth region in Rn, and k
is the Green’s function for

this set consists of all functions which have generalized derivatives of first
and second order, vanish in a generalized sense on and satisfy

An eigenfunctions of (1.2) is then understood to be a function x such

that, for some real number A,

where h satisfies (1.3). Suppose that for almost all satisfies

for all X E I~B~0~ and that k is a symmetric, non-degenerate, y non-negative
definite kernel. The main result obtained here states that, under some
additional compactness and continuity conditions, the operator (1.2) has an
infinity of eigenfunctions.

We restrict our attention here to Hammerstein operators of the form (1.2)
acting in a Banach function space X. The motivation for choosing to con-
sider the operator acting in a Banach function space is the following. Lest T
be the convex Nemytskii potential that is defined by

and which we suppose to be defined and finite-valued on the Banach space X
in which the Hammerstein operator is to be assumed to act. In order that
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the eigenfunctions of the Hammerstein operator in X whose existence we
prove be eigenfunctions in the sense described above, rather than merely in
some more generlized sense, it is essential that 99 have as its subgradient
at precisely the set of measurable functions that satisfy (1.3).
If we take X to be a Banach function space, and if q; is defined and finite
on X then its subgradient indeed has just such a characterization. To ap-
preciate the problem that is involved here consider the case where

X = L’(0, 1), then the subgradient of cp at x is a set in (.L°° (0, 1 )) * and
it is by no means immediately obvious that this is a set of functions; (in
this particular case, however, the desired result is known, see, e.g. Rocka-
fellar [19].)

The construction of the space H, in § 6, is equivalent to a construc-
tion used by Amann in [2] and by Browder and Gupta in [4], see also

Lemma 5.1 [1]. The variant of this construction that is used here and in [6]
results in a Hilbert space of functions H in which the Hammerstein operator
acts and is a subgradient. In the partial differential equations case, e.g. in
the example mentioned earlier, this construction leads to the Sobolev space
naturally associated with the problem.

The topological lemma of § 8, which is essential to the proof of the
main result, was suggested by Day’s generalization [8] to set-valued func-
tions of the Borsuk-Ulam theorem and the proof thereof, see also Jawo-
rowski, [12].

For further references on the eigenvalue problems for Hammerstein

operators, see the bibliography of [6]. An additional reference is Amann [1],
whose results include a generalization of the main result of [6]. In particular,
it is shown in [1] that the assumption of positive definiteness of the kernel
that is made in [6] is not necessary. I Eigenvalue problems for multiple-valued
operators are treated in [9], [10], however the problems discussed there,
unlike the problem treated here, admit transformation to an eigenvalue
problem for a single-valued operator.

I wish to acknowledge a number of very helpful conversations with
Professor V. J. Mizel concerning Banach function spaces and Nemytskii
functionals. I am indebted to the referee for supplying simpler proofs than
my original ones of Lemmas 4.1 and 7.1 and for bringing to my attention
several relevant references of which I was not aware.

2. - The function space X.

Let (, Q, p) be a complete or-iinite non-atomic measure space. In what
follows this space will be regarded as fixed and all measure-theoretic notions,

41 - dnnali della Scuola Norm. Sup. di Pisa
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such as almost everywhere, measurable, integrable, etc., except where ex-
plicitly stated otherwise, are to be understood as with respect to /-l. 3f will

denote the set of equivalence classes, modulo difference on a /t-null set, of
real-valued measurable functions on D. We shall not distinguish between
an element of M and a function which is a representative of it. The natural
order on M will be denoted by « &#x3E; », i.e. for x, y E .1Jf

If x E M, denotes the measurable function defined by

Finally

In what follows X will denote a Banach space with norm 11 ... 11, whose
element are members of M, and which has the following properties.

(A) If E E 1: and ~ 0 then there exists such that 

y(F) # 0 and xF E X, where xF is the characteristic function of F. (The
assumption that X is a Banach space whose elements are members of M

implies that 11 X, II =1= 0.)

(B) M and - Ixl implies y E X and ~~ c llxll.

(C) The unit ball in X is closed under monotone convergence, i.e. if 
is a sequence in X with

. where

These assumptions concerning X are equivalent to the assumption
that X is a real Banach function space with the strong Fatou property,
see [13], [15]; more specifically, x = Zg, with the underlying measure space
(D, ~, ,u) and where o is the function norm defined on .M+ by



637

For standard notions in the theory of Banach function spaces, e.g. asso-
ciate space, absolutely continuous norm, the reader is referred to [13], [15].
Here we shall identify the associate space X’ of X with the subspace of X*
which is naturally isometrically isomorphic to it. The normal subspace of X

consisting of elements of absolutely continuous norm is denoted Xa.
As indicated, II...11 11 will be used to denote the norm in X ; for other

normed spaces we shall in most cases use double-bars with the symbol for
the space as subscript to denote the norm, e.g. the norm in X’ will be denoted

. For operator norms, however, when the domain and codomain are
specified we shall use double bars without a subscript. When two distinct
Banach spaces are in duality, (’y’) will be used to denote the duality pairing
e.g., for 

the lack of explicit distinction between such pairings for different pairs of

spaces, even though several may occur in the same computation, should
not cause confusion. For the inner product in a Hilbert space we shall

use ( .; ). For an arbitrary, y i.e. not necessarily continuous linear func-
tional ~ on the space X we will use ~(x) to denote the value of ~ at x.

Let Y be a Banach function space and T a bounded linear operator
from Y to X. If the range of lies in Y’, the associate space of Y,
we shall say that T’ = is the associate of T. We shall also say that

and T are associates when T is a bounded linear operator from H to X
where H is a Hilbert space whose elements are equivalence classes of measur-
able functions.

We shall denote by (X’, X) the space X’ furnished with the weak
X-topology; (X’, X) is sequentially complete [13], [15], therefore, if X is

separable then the unit ball in X’ is sequentially compact in (X’, X). The
unit ball in X’ is also sequentially compact in (X’, X) when X has ab-

solutely continuous norm [15].
The following lemmas contain the properties of X that are required in

the sequel; these hold merely by virtue of the fact that X is a real Banach
function space. (In particular we need not have assumed that X has the

strong Fatou property, neither for our purposes, is there any loss of gener-
ality in doing so. )

LEMMA 2.1. Let convergent sequence in X with limit 0153o. Then

there exists an element y E X and a subsequence of the original sequence
such that
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and

LEMMA 2.2. (Luxemburg) .

for every seque7aee in X such that

For the proof that a convergent sequence in X has a subsequence 
that converges almost everywhere see the proof of Theorem 4.8 [14]. It can

be assumed further that

and then we can take

which, because of (C), will belong to X.
The proof of Lemma 2.2 can be found in [13] or [15].
From Lemma 2.2 and the remarks above concerning absolutely con-

tinuous norm we immediately obtain the following result.

COROLLARY 2.1. If X has absolutely continuous norm then X’ = X*. If
both X and X’ have absolutely continuous norm then X is reflexive.

3. - Nemytskii functionals.

A real valued function f defined on Q X R is said to satisfy the Cara-
thgodory conditions or to be a Carathiodory f unction on Q X R if f(., x) is

measurable for each x and /«,’) is continuous for all t e S2. (It is con-
venient and involves no real loss of generality to assume that f (t, ~ ) is de-

fined and continuous for all t E ,S2 rather than only for almost all t E S~.)
In what follows here « Carathéodory function » will always be understood
to mean « Carathéodory function on 
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If f is a Carath6odory function, A c
whenever r E A then q, defined on A by

is said to be a Nemytskii functional on A.

LE&#x3E;iM-x 3.1. Let f be a convex Oarathéodory functions and suppose that

f (., x( ~ )) E ft) whenever x E X. Then the Nemytskii functional 99
on X defined by (3.1 ) is :

(a) continuous with respect to dominated convergence in X, i.e.

if is a sequence in X, and there exist xo, y E X such that

(b) continuous with respect to monotone convergence in X, i. e.

and (3.3) for Xo E X imply (3.2),

(c) continuous with respect to the X-topology.

PROOF. If Iml ~ y, the convexity of l(t, ") implies that

and thus (a) follows from the Lebesgue dominated convergence theorem.
Continuity with respect to monotone convergence is an immediate conse-

quence of continuity with respect to dominated convergence.
To prove the last continuity assertion it suffices to show that if {xn~

is any convergent sequence in X, say with limit xo, then every subsequence
of contains a subsequence such that the corresponding sequence of the
values of 99 converges to This however follows immediately from
Lemma 2.1 and continuity with respect to dominated convergence.
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REMARK. When X is an L? space then one can also conclude from the

hypothesis of Lemma 3.1 that (p is bounded on bounded subsets on X, see
Krasnosel’skii [17]. In the general case, when T is defined and finite on the
space X, then a sufficient condition for 99 to be bounded on bounded sets is
that f satisfy the 4§-condition of Portnov [18], i.e. that there exist a non-

negative function g E 2~ f-l) and a constant C such that for all x E R,

LEMMA 3.2. Suppose that X has absolutely continuous norm I If there exists
an a &#x3E; 0 such that

whenever x E X and 11 x ~~ ~ a, then in fact [3.4) holds for all x E X.

PROOF. Since X has absolutely continuous norm and (Q, E, p) is non-

atomic, then given any x E X, Q can be partitioned, say as follows,

wliere so that

The assertion then follows immediately. I

REMARK. This is the only place where the non-atomicity of the measure
space is used.

Suppose that f (t, ~ ) is convex for all and satisfies

and finally that for any E e I with 0 there exists an F e 27 and an

E &#x3E; 0 such that F c E, p (F) ~ 0 and /(’ ~ E ,u). Let Z1= (z E .M :
for f(., )) E and for x E Z, put

Then Z, with the norm 11 ... is a real Banach function space with the strong
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Fatou property, as follows readily from our assumptions concerning f. We
now put

i. e. Z is the normal subspace of Zl that consists of functions of absolutely
continuous norm. Since Z is a Banach function space with absolutely con-
tinuous norm and (3.4) holds for all with ~~ x ~~ z ~ 1 it follows from

Lemma 3.2 that (3.4) holds for all x E Z.

LEMMA 3.3. Suppose that X is as above and (3.4) holds for all x E X,
then X is stronger than Z, i. e. X is contained in Z algebraically and the in-
clusion mapping X c Z is bounded.

The above discussion shows how a Banach function space having abso-
lutely continuous norm and satisfying (3.4) can be constructed when / is
given. Lemma 3.3 shows moreover that this space is the weakest Banach
function space among those that satisfy (3.4). Note that the last assump-
tion above concerning f is necessarily satisfied if there exists any space X
satisfying the hypothesis of Lemma 3.3. Since Lemma 3.3 is not used ex-

plicitely in what follows its proof will be omitted.
Finally, in connection with the remark following the proof of Lemma 3.1

we note that the following are equivalent:

a) g~ is bounded on bounded sets in Z,

b) 

c) f satisfies the d2-condition.
For the equivalence of b) and c) see Portnov [19].

4. - Subgradients of convex hTemytskii functionals.

Let g be a real-valued function on S~ X R such that g( ~ , x) is measurable
for each x E R and g(t, .) is monotone nondecreasing for all t. Let g+, g_
be the functions on that are defined by (1.1).

Let
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so that f is a Carath6odory function on with

and f (t, ~ ) is convex for all t E S~.

Let f be as above, let 99 be given by (3.1). We shall assume throughout
this section that 99 is defined and finite on X, i.e. that f ( ~, x( ~ )) E Li(Q, E, p)
for all x E X. The functional T is then a convex functional on X and satisfies

The subgracdient Bp(x) of 99 at x is defined as follows:

For

Since is continuous it is bounded on the ball {y : 11 y - for some

r &#x3E; 0. Upon taking y = x ~ z we see is uniformly bounded

on the ball ~z : 11 z Ilx  rl. Thus ~ E X’ and (y - x, ~) i.e. ~ E X’ r1
n 

Conversely, if $ E then we conclude from the definition of 

and Lemma 3.1 that a sequence satisfying (2.2) and (2.3) satisfies (2.1)
and thus, by Lemma 2.2, ~ E X’. Now let EEL’ with xE E X, then for 

As the integrand on the left decreases to the limit g+(t, x(t)) xE(t) and
therefore by the monotone convergence theorem we have
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Similarly, y we get

From condition

This completes the proof of the lemma.

LEMMA 4.2 (Moreau [17]). For each x E X, acp(x) is a closed, bounded,
convex subset of X’. The set-valued mapping x --~ is upper semi-conti-

nuous from X to (X’, X).

We recall that a set-valued function f from a topological space ~S to a

topological space T is upper semi-continuous [3], if

is open in S for every open set U in T.

5. - Compact symmetric integral operators on X’.

By a symmetric integral operator on X’ we shall understand an operator A
from X’ to X of the form

where k is a (y x p)-measurable function on

The last two conditions are obviously necessary and sufficient in order that
the integral operator A act from X’ to X. Because of the symmetry of the
kernel k, the operator A : X’ - X satisfies
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A is therefore self-associate; it is self-adjoint if and only if X is reflexive.
It is proved in [15] that if AX’c Xa then a necessary and sufficient

condition for A to be compact is that the image of the unit ball in X’ under A
be of uniformly absolutely continuous norm in X. A sufficient condition for A
to map X’ into XQ and satisfy the above condition is that k have absolutely
continuous norm in the Banach function h of functions on Sd X S~ with norm

In the case X = L~(,~, 1:, #), 2  p  00, li(D)  oo, we have, as a spe-
cial case of the result of [15] quoted above, that A : X’--&#x3E;- X is compact if

for some &#x3E; p/2.
Finally we note that so far as the condition AX’c X~ is concerned there

is, in fact, in view of Lemma 3.3, no loss of generality in assuming that
X = Xa. 

6. - The intermediate space H.

Let A be, as in § 5, a symmetric integral operator from X’ to X. Assume
moreover that A is compact and non-negative definite, i.e. that

for all Let

and for x, y E:Jt, say

let

Since A is non-negative definite
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for x = A~ if and only if A~ = 0. Thus  ., . &#x3E; is a positive definite sym-
metric bilinear form on fl. Let H denote the Hilbert space that is obtained

by completing 9t with respect to  -, - &#x3E; and let B : X’- H be the operator
that assigns to ~ E X’ the element A~ considered as a member of H. For

we have

Therefore

Since B clearly has dense range in H, its adjoint

is injective. Moreover, y for

so

i. e. B* agrees on fll with the inclusion mapping (where X is regarded
as a subspace of (X’ )’~) . I Since B* is bounded and injective we can identify
the elements of H with elements of X, i. e. we can regard H as being algebraic-
ally contained in the function space X and then the inclusion mapping
i : is the associate of the mapping B : X’ - H and A = iB.

LEMMA 6.1. The operators Band i are compact.

PROOF. Let ($n) be a bounded sequence in X’. Since A is compact we
can choose a subsequence of {$.,,I such that is convergent.
But then

so that is a Cauchy sequence in H. Since ~~n~ was an arbitrary
bounded sequence in X’ it follows that B is compact. By standard results
it follows that B* is compact and hence i is compact also.
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REMARK. By using an alternate construction, it can be shown that the
space H does not depend on the space X.

7. - The potential y.

Lest 99 be a Nemytskii functional which satisfies the hypothesis of

Lemma 3.1, i. e. which is defined and finite on all of X. With H as in _§ 6,
we define the potential V on H by

where, as before, i denotes the inclusion H c X.

LEMMA 7.1. The potential y is weakly sequentially continuous on H.

PROOF. Immediate from Lemma 6.1.

LEMMA 7.2. For yo E H,

PROOF. By Lemma 4.1, c X’ and by the results of section 6, the
restriction to X’ of i* is B ; the result then follows from [11, Prop. 5.7, p. 27].

8. - The genus, and a topological lemma.

Let N be a normed linear space and let 9 = be the class of sub-

sets of NE(0) which are closed in N and invariant under the involution

The genus y(G) = yN(G) of an element G c- 9 is zero if G is empty; other-
wise, y(G) is the supremum of the set of integers n such that every odd con-
tinuous map has a zero on G. Following are the relevant
properties of the genus; in these statements G, with or without subscript,
will denote an element of 8.

1) If there exists an odd continuous map f : G1 -&#x3E; G,, in particular if

Gl c G2, then 

2) y(Gl u O2) + y(~2)·

3) If G is compact then y(G)  oo and G has a neighborhood U with
U c- 9 and 1’(U) = y(G).
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4) If is a decreasing sequence of compact sets then

and

5) If there exists an odd homeomorphism of the n-sphere onto (~ then

For proofs of the above properties see [5].
The first result of this section is a partial generalization to set-valued

mappings of property 1 of the genus.

LEMMA 8.1. Let M and N be normed linear spaces and let f be a set-valued
mapping f rom M to N such that:

ii) f (x) is a compact convex subset of N for each x E M,

iii) f is upper semi-continuous

iv) for x =1= 01

Then for any compact set G, with G E g(M), f (G) E g(N) and

PROOF. It follows readily from the hypothesis that G, = f(G) is compact
and belongs to lg(N). Let G2 be a closed neighborhood of G1 which belongs
to lg(N) and is such that y(G2) = y(G1). For each x E G let Ux be a convex

open neighborhood of f (x) with Let Vz be a convex open neigh-
borhoo d of x such that

Finally, let Eo be the Lebesgue number of the covering of G.
Let x,, ... , x2m be chosen in G so that
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x,, ..., zm are in general position and

where 8 is chosen so small that 0  and 0 W. Let S be the sim-

plicial complex in ltl whose vertices are and such that 

belongs to S if and only if

where

and

Let h(t) be a real valued function which is defined, continuous and non-
negative on [0, oo) and satisfies

Define an odd mapping T : by

it can be verified immediately that TG c S. We next define an odd simpli-
cial map

by choosing f 1(xi) in for z = 1, ... , m, putting = - 11(Xi),
i = 1, ... , m, and extending fi to S by linearity. All of the vertices of a

simplex or of S lie in a ball of radius E, hence in one of the Vz . Consequently,
Il(G) lies in the corresponding Ux. Thus 11: S -+ G2 and therefore

and the lemma is proved.
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9. - Variational problems.

We now turn to the central problem of this paper, namely the question
of existence of eigenfunctions of the Hammerstein operator

Following is a summary of the assumptions and notations introduced
earlier and which will be implicit below. The function g is as in § 4, f is
given by (4.1) and it is assumed that 99, defined by (3.1 ), is defined and finite
on the Banach function space X. The kernel k is as in § 5, i.e. k determines
a compact, non-negative definite, self-associate operator from X’ to X.
The space H and the operators B and i are as constructed in § 6 and, finally,
1p is defined by (7.1). We now make the following further assumptions con-
cerning g, namely, for all x E 

We also exclude the case in which A has finite dimensional range and H

is finite dimensional. The assumptions lead immediately to the conclusion
that rp, hence also 1jJ, is even and vanishes only at 0, where we have used the
injectivity of i; in particular, y this implies

We now consider the two dual variational problems of determining the
critical values of y relative to the side condition and of

determining the critical values of subject to the side condition

q(r) = fl &#x3E; 0. We shall exhibit two variational principles, a maximum-

minimum principle and a minimum-maximum principle, y which yield, y re-

spectively, critical values of these two problems. These can be more con-

veniently formulated if we first introduce the following notations. We let
a &#x3E; 0, denote the collection of subsets G of H%(0) which are weakly

compact, invariant under

and such that
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We let denote the collection of subsets G of HE(0) which are weakly
compact, invariant under

and such that

Next we put

here y(iG) = is the genus of iG in X, or less formally, the genus of G
regarded as a subset of X; note that this is always finite. Finally, if G

is a weakly compact subset of H,

We now define sequences as follows:

THEOREM 9.1. The sequences and are, respectively, non-
increasing and non-decreasing sequences of positive numbe.rs with

Corresponding to each there is an x E X with

for some real ~,, and corresponding to each there is a y E H with
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and such that

for some real 00. I f ,un(a) = for some k &#x3E; 0, then the set of x E H

for which (9.1 ), (9.2) hold is a set of genus not less than k --~- 1. if
- for some k &#x3E; 0 then the set of y E H for which (9.3), (9.4) hold
is a set of genus not less than k -E-1. (Since a set of elements satisfying (9.1),
(9.2) or (9.3), (9.4) is compact in H its genus as a subset of H is the same as
its genus when it is regarded as a subset of X).

PROOF. From (7.1) it follows that 1p is both continuous and, since i is
compact, weakly sequentially continuous, thus bounded on bounded sets.
From convexity and the fact that &#x3E; 0 except for x = 0 it follows that

varies from 0 to 0o as r varies from 0 to co when x 0 0. Using these
facts and property 5 of the genus we easily conclude, since ~I is assumed to
be infinite dimensional, that when &#x3E; 0 and n is any positive integer then

and are non-empty and ,u~(~) are finite positive numbers.
The monotonicity of the two sequences ~~Cn(o~)~, is an immediate con-

sequence of the definitions.

The remainder of the proof will be carried out only for the first of our
two variational problems; the proof for the second is similar. We begin
by showing that the suprema in the definition of the ,un(«) are attained.
To this end let the natural number n be given and suppose

Put

and note that S(a, c) is weakly compact and moreover, c) E In

fact, if

then

this leads immediately to a proof that

Let

42 - Annali della Scuola Sup. di Pisa
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We furnish 9(,x, c) with a metric topology by defining the distance G2)
between two sets G1, G2 E c) to be the Hausdorff distance between iG,
and iG2 induced by the X-norm, i.e.

Henceforth c) is to be regarded as a topological space with the topology
induced by the metric o. Since iS(ac) is compact in X it follows readily,
using general results on the Hausdorff metric, that c) is compact. Next
we observe that the functions 2 diam G and y(iG) are, respectively, lower
and upper semi-continuous on c). The first of these assertions is obvious,
the second almost equally so. To verify the second note that if is a

sequence in c) which tends to Go, then, for any neighborhood U of iGo
in X, iGn c U for all but finitely many values of n. Using properties 1 and 3
of the genus we conclude that

We conclude from the compactness of c) and the semi-continuity asser-
tions above that there exists a On E c) r1 such that

The next step in the proof consists in showing that the set Gn, whose
existence was just demonstrated, contains an element x that satisfies (9.1),
(9.2) and that if ,un(a) is repeated k times, then the set of such elements in Gn
has genus &#x3E; k.

We define a set valued mapping

We shall show:

then for

with and , for some real positive 1,

then



653

To prove 1), let
thpn

where

and it is clear from the derivation that equality holds only under the con-
dition stated.

so that

Let and

By Lemma 7.2

By Lemmas 4.2, 6.1 and the fact that compactness of B is equivalent to the

sequential continuity of B from (X’, X) to H, we conclude that is upper
semi-continuous and therefore, by Lemma 8.1, the genus in H of 
is not less than that of iG in X. Since oi is continuous and odd we conclude that

which was to be proved.
Having verified the properties 1) and 2) of the transformation a, the

proof can be completed by means of the standard arguments of the Lyusternik-
Schnirelman theory, y as for example in [6] or [7].

We shall not make a careful reinterpretation here of the results of The-
orem 9.1 in terms of the original Hammerstein operator. I Indeed in view of

Lemma 7.2 and the special nature of the splitting

it is clear that, for example, an element x satisfying (9.2) is a function such that
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where I is a real number and h satisfies (1.3), i.e. x is an eigenfunction of the
operator (1.2).

We conclude with a theorem expressing the duality between the two
variational problems considered above.

THEOREM 9.2. Let a, fl &#x3E; 0 then f or n = 1, 2, ...

PROOF. We prove only the first formula, the proof of the second is similar.
From the proof of Theorem 9.1 follows the existence, for a given n, of

such that

we have, obviously, y and

If the equality does not hold then there is a with

and

If we take then

which is a contradiction.
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