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Strongly Nonlinear Elliptic Boundary Value Problems.

H. BRÉZIS (*) - F. E. BROWDER (**)

dedicated to Hans Lewy

Let Q be an open subset of Rn. We consider a nonlinear elliptic par-
tial differential equation of order 2m, (m ~ 1 ), on S2 of the form

where the principal term of order 2m is given in the generalized divergence
form

and the lower-order perturbing term g(x, u) is strongly nonlinear in the
sense that we impose relatively weak sign conditions but not an over-all
growth condition on the size of g(x, u) as a function of u. In the present
discussion, y we obtain existence and uniqueness theorems for the solution
of the equation (1) under null Dirichlet boundary conditions (as well as other
variational boundary conditions). We also obtain related results on existence
and uniqueness for general classes of variational inequalities involving the
elliptic operator A(u) -f- g(x, ~). These results give a considerable sharp-
ening to earlier results on the existence of solutions for this class of problems
obtained in Browder [3], Hess [6], [7], [8], Edmunds-Moscatelli-Webb [5],
Webb [11], and Simader [10]. Our treatment includes the case of un-

bounded domains which previously required a special treatment. Unlike

many of the discussions just mentioned, it does not rest upon a generalized

(*) D6partement de Math6matiques, Universit6 de Paris VI, Paris, Cedex.
(**) Department of Mathematics, University of Chicago, Chicago, Illinois.
Pervenuto alla Redazione il 17 Settembre 1977.
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theory of pseudo-monotone operators, nor upon singular perturbation tech-
niques. We employ instead the standard theory of pseudomonotone opera-
tors from a reflexive Banach space V to its conjugate space V* which we
apply to the truncated operator A(u) = gn(x, ~) and pass to the limit in n,
upon the resulting approximate solutions.
We begin by remarking upon our use of the standard notation in this

area of discussion. The points of ,~ are denoted ..., xn) and
integration with respect to Lebesgue n-measure on is written jdm. The

space LP for p ~ 1 denotes the corresponding Lebesgue space of p-th power
summable functions on S~. We use the conventional notation for differ-

ential operators in which a is the n-tuple of non-negative integers (exl, ..., an),
n

Da is the elementary differential operator Da and its order
n i=l

oej. Let .RN be the vector space of m-jets on Rn whose elements
;=1

are denoted {9: IPI  m. Each corresponds to a pair (i, q) where
~ = f~,6: 1 # == m} and q = lq,6: ~ ~ c m -1~ . The ~ form a vector space RNI,
the q a vector space RN. with N = -E- N2.

We denote by the Sobolev space of functions u in Lp on S2,
all of whose distribution derivatives Zu lie in Lp for is a

reflexive, separable, uniformly convex Banach space with respect to the
usual norm

is the space of elements u from Wm.V(Q) which satisfy the Dirichlet
null-boundary’ conditions of order m - 1 on the boundary of Q in the
generalized sense, where is defined to be the closure in 

of the testing functions with compact support in Q.
To define the representation of the operator A(u) in (2) more precisely,

we introduce a more precise definition of the functions Aa involved in that
representation. Each Aa is a function from Q X RN to R, the reals, and
the family ~)} satisfies the following assumptions :

Assumptions on A(u) :

(1) Each A,,(x, E) is measurable in x for fixed ~, continuous for
f ixed x..I’or a given real number p &#x3E; 1, there exists a constant C1 and a func-
tion k1 in Lp’, with p’ = p(p -1)-1, such that
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(II) For each x in Q, each n in Rl,,, and any pair of distinct elements ~
and ~1) o f RNl, we have

(III) There exists a constant C2 &#x3E; 0 and a fixed function l~2 in El such
that for in Q and ~ in RN,

In Section 1, we treat the Dirichlet problem for the equation (1) with f
in the conjugate space of V’ = under very general assumptions
upon the strongly nonlinear perturbation g(x, u). This set of assumptions
is as follows:

Assumptions upon g(x, u) :

(1) The function g(x, r) is measurable in x on Q for f ixed r in R, con-
tinuous in r for fixed x. For each x in Q, g(x, 0) = 0, while for all r in R,
x in D7

(2) There exists a continuous, nondecreasing f unction h from R to .R

with h(O) = 0, such that for a given constant C, have

and

f or att x in ,~ and att r in .R.

Let us note that the second assumption will hold for a function g(x, r) =
= g(r) independent of x if for any pair of arguments 0  r  s

with a similar assumption for negative arguments. In particular, it holds
if g(x, r) = h(r) is increasing in r and independent of x. The inequalities
of (2) when g(x, r) is not independent of x express a comparison of the
growth rates of the g(x, r) as x varies over S~.

Our basic result in Section 1 is given in the following theorem:

38 - Annali della Scuola Norm. Sup. di Pisa
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THEOREM 1. Let S~ be a bounded open set, A(u) a differential operator of
the form (2) which satisfies the Assumptions (I), (II), and (III) given above.
Let g(x, r) satisfy the Assumptions (1) and (2) given above. If V‘ = 
then for each f in V*, the conjugate space of V, there exists u in V with g(x, u)
in L’, u) in Ll such that

on Q (in the sense of distributions) while

(Here (w, u) denotes the pairing between an element of V* and an ele-
ment u of V.)

In Section 2, we extend the result of Section 1 to avoid the assumption
that the domain ,S~ is bounded and to cover more general boundary value
problems of variational type as well as a rather general class of variational
inequalities. This discussion is based upon replacing the assumption (2)
on the strongly nonlinear term g(x, u) by another assumption in which
g(x, r) is non-decreasing in r, namely:

Alternative Assurrzption on g(x, u):

(2)’ The function g(x, r) is non-decreasing in r on .R. For each r,

g~(x) = g(x, r) yields a f unction g, in Z1 (S2).
Note that in this alternative assumption, no comparison is made of the

rate of growth of g(x, r) as a function of r for different values of x in Q.
Under this assumption, we may define :

This function G, the primitive of g with respect to r, is continuous, convex
in r, and is non-negative for all arguments with G(x, 0) = 0. Its derivative

with respect to r is of course g(x, r).

THEOREM 3. Let Q be an arbitrary open set in Rn, A(u) a differential
operator of the f orm (2) which satisfies the Assumptions (I), (II), and (III).
Let satisfy the Assumptions (1) and (2)’, G(x, r) its primitive with respect
to r as defined above. Let V be any closed subspace of -W’*"(Q), K a closed
convex subset of V, (0 E K), 7 f a given element of V*.
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Then there in K such that g(x, u) lies in L’(Q), g(x, u) u lies in

in and u)  + 00, while u satis f ies both of the following varia-
tional inequalities :

(i) For each v in

(ii) For each v in K,

(By (A(u), v - u) for general V, we mean a(u, v - u) as defined in the

discussion of Section 1.)
THEOREM 4. Suppose that the hypotheses of Theorem 3 hold while in

addition A is monotone, i.e.,

for all u and v in V. Then for two solutions U1 and U2 of the problem con-
sidered in Theorem 3 for a given f, have

and

If these two conditions imply that Ul = u2, then the solution u of Theorem 3
is unique.

- The relation between the two classes of problems considered in Sec-
tions 1 and 3 is clarified in Section 4 by the following result :

THEOREM 5. Suppose g(x, r) satisfies the assumptions (1) and (2) of The-
orem 1 on ac bounded open set Q of .Rn and that g(x, r) is also non-decreasing
in r for each fixed x. Suppose that u is a solution of

for a given f in V* with u in V = Wo ~~(S2), g(x, u) and g{x, u) u in Ll, and
that we have the equality
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Then u is a solutions of the variational inequalitieg (i) and (ii) of Theorem 4
= V.

In particular, u is unique under the hypotheses of Theorem 4.

As we show in a paper to follow the present one, the methods which
we have applied to elliptic problems can be adapted in a suitably modified
form to the treatment of a corresponding broad class of strongly nonlinear
parabolic initial-boundary value problems of variational type.

§ 1. - We now proceed to the proof of Theorem 1. We begin by noting
that for u in 1Vo ~~ ( S~ ) and v in O;(Q), if we denote by (w, w1) the pairing
between elements of IP spaces given by

and similarly for the pairing between a distribution and a testing function,
then

where Em(u) is the function from Q to RN given by

By part (I) of the Assumptions on A(u), it follows that for each u in

Tr = TV--’(D), (and indeed for each u in lies in the

space L2", the conjugate space to the space Lp for the p described in that
Assumption. It follows by the Holder inequality that

and that for each fixed u in V, a(u, v) is a well-defined bounded linear

functional of v in V. This functional we denote once more by A(u), so
that A(u) is an element of V‘* and also is a distribution on Q. It follows

by the standard arguments that as a mapping from V to V*, A is a con-
tinuous mapping which maps bounded sets of V into bounded sets of V*.

If Y’ is a general subspace of we define A(u) as the element
of V* such that

Here, A(u) is no longer a distribution.
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We recall that a mapping T of V into V* is said to be pseudo-monotone
if it is continuous from finite dimensional subspaces of V to the weak
topology of V* and satisfies the following condition:

(p-m) For any sequence in V which converges weakly to u in V
and for which lim sup u~ -- ~) c o, converges weakly to T(u)
in V* and converges to (T(u), u).

We recall that T is said to be coercive if ’11,) - + oo as
11 u 11 --* + co, i.e., if there exists a function c from R+ to R with e(r) - + o0
as r - + oo such that for all u

PROPOSITION 1. be any open subset of Rn, V a closed subspace of
A an operator which satisfies the Assumptions (I), (II), (III) given

above. Then A is a continuous coercive mapping of V into V* which maps
bounded sets of V into bounded sets of V*. Moreover, A is pseudo-monotone
from V to V*.

PROOF TO PROPOSITION 1. The coercivity of A follows from the hypoth-
esized inequality (III) by integration. The continuity and boundedness of A
follow by standard arguments as already noted.

The pseudo-monotonicity of A from V to V* is proved in Browder [4].
Q.E.D.

We now introduce the truncated functions gn(x, r) in the usual way by
setting

PROPOSITION 2. Let Q be a bounded open set in .Rn, a function from
to R which satisfies the Assumptions (1) and (2) above. Then for each n

the mapping which assigns to each u, the element A(u) + gn(x, u) of V* is a
continuous coercive, pseudomonotone map ping of V into V*.

PROOF OF PROPOSITION 2. If ,S2 is bounded and g satisfies the condi-

tions (1) and (2), then the operator A(u) + gn(x, u) will satisfy the Assump-
tions (I), (II), and (III) if A(u) does.

Hence, the conclusion of Proposition 2 follows from that of Proposition 1.
Q.E.D.

PROPOSITION 3. Let V be a reflexive Banach space, T a coercive, bounded
pseudo-monotone mapping of V into V*. Then T is surjective.
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PROOF. OF PROPOSITION 3. This is a standard result of the theory of
pseudo-monotone mappings [1].

Using Propositions 1 and 2, we see that the result of Theorem 1 fol-
lows from the semi-abstract statement which we formulate as Theorem 2:

THEOREM 2. Let V = W’,v(S2), where Q is a bounded open subset of Rn,
g a function f rom Q xR into R which satisfies the Assumptions (1) and (2)
stated above. Suppose that A is a coercive pseudo-monotone mapping of V
into V* which maps bounded sets o f V into bounded sets in V*. Then for
each f in V*, there exists u in V such that

with g(x, u) in .L1, g(x, u) u in L", and

PROOF OF THEOREM 2. By Proposition 3, for each positive integer n
and for the given element f of V*, there exists an element u, of V such that

Since gn(x, un) = wn is automatically an element of V*, we know moreover
that

From the definition of the truncation and the assumption that g(x, r) r &#x3E; 0,
it follows immediately that 0. Hence

Hence Since c(~)2013~-j- oo as r --~ oo, it follows that there exists
a constant M such that for all n. Since A maps bounded sets

into bounded sets, it follows that for all n for a suitable

constant .M-1. Using the reflexivity of V, it follows that for an infinite

subsequence of the integers n (which we denote without loss of generality
as the original sequence) converges weakly in V to an element ’111, while

converges weakly in V* to an element w.
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On the other hand, we also know that

for all n. For each positive integer I~ and all n, we have

since

if while t1,) == I for all points of SZ. Hence for

any subset B of S~, we have

meas (B) R-llVl2 -E- JI3(R) meas (B) .
B

Hence by choosing R- sufficiently large, and then making meas (B ) sum-
ciently small, we find that the sequence {g,~(x, of .L1 is equi-uniformly
integrable. (This type of argument is some-times referred to as the principle
of De La Vallee Poussin [9], p. 159.)

We may choose an infinite subsequence of the original sequence (which
we denote once more for simplicity of notation as ~~cn~) such that un con-
verges to u almost everywhere to u in Q.

It follows immediately for this new sequence by the continuity of g(x, r)
in r and the definition of truncation that ~c~(x)) converges almost every-
where to g(x, u(x)j and furthermore that converges almost ever-

where to g(x, u(x)j in Q. By Fatou’s Lemma, it follows that

i.e., g(x, u)u lies in .L1. Moreover, by the equi-uniform integrability of

{g.,,(x, u,)) and their convergence to g(x, u) a.e., it follows from Vitali’s

Theorem that gn(x, un) converges to g(x, u) in L", where g(x, u) is itself an
element of 

To continue our argument, we shall need to apply the following result :

PROPOSITION 4. Let H be a continuous convex f unctions on the reals with

H(O) = 0. Let u be an element of V with H(u) in Ll. Then there exists a

sequence in such that vj converges to u in V, v j converges to u

almost everywhere in Q, and is bounded for all j by a fixed functions in Ll.
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PROOF OF PROPOSITION 4. This is Lemma 3, p. 11, of Br6zis [2].

PROOF oF THEOREM 2 CONTINUED. We consider the infinite subsequence
at which we had arrived during the course of the argument, y and in

order to apply the pseudo-monotonicity of the mapping A, we seek to show
that lim sup (A (un) ~ u)  0. For any v in V r’1 LCB we have

By Fatou’s Lemma,
II

By the Z1 convergence of gn(x, un) to g(x, u),

Hence

In particular, we may choose v = vj for any element of the sequence de-
scribed in Proposition 4 where we choose for H the convex function

g is continuous and convex, while by construction = 0. Moreover

where the function on the right-hand side of the inequality lies in Ll. Hence
H(u) lies in L1, and the sequence ~v~~ converging to t1 in the sense of Pro-
position 4 may be constructed.

We remark in addition that since h(r) is the derivative of H at r,

Therefore,
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Moreover, by the inequality I and the sign conditions on the
two quantities g(x, r) and h(r), we see that

(Indeed, if t1 and v have the same sign, this is a consequence of the fact
that = h(u)v. In the other case, g(x, u)v is negative, and
the right side of the inequality is positive.)

For each j,

where (g(x, denotes the non-negative part of the function. By the
inequality we have just derived

The term on the right by Proposition 4 is dominated by an Li function.
The sequence of function (g(x, u)v;)+ converges almost everywhere to

(g(x, u)u)+ = g(x, u)u. Hence by the Lebesgue dominated convergence the-
orem,

On the other hand

where while

where the difference of the integrals on the right approaches 0 as j ~ + oo.
Hence,

Since A is pseudo-monotone, it follows that w = A(u) and that 
-~ 0. Since converges to A(u) in V* and hence in the sense

of distributions while
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in the sense of distributions, it follows that

From the equality, y

it follows by Fatou’s Lemma that

To complete the proof of Theorem 2, we wish to show the reverse of this
last inequality. For each element of the sequence constructed as above

using Proposition 4, we have

Thus,

Since

in LI as above, it follows that

Combining this fact with the previously established inequality we see that

§ 2. - PROOF OF THEOREM 3. We shall employ the general procedure
used in the proof of Theorems 1 and 2. By the theory of variational inequal-
ities for pseudo-monotone mappings on reflexive Banach spaces [1], for each
positive integer n, there exists a solution Un in .~ of the variational ine-
quality

Since A is assumed to be coercive and 0 lies in K, we know that
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Hence, it follows as before that the sequence is bounded in V, and
that the sequence ~A(un)~ is bounded in V*. Therefore, we may assume
by passing to an infinite subsequence that Un converges weakly in V to an
element u of K, and converges weakly in Y’* to an element w of V*.
We shall show that u is a solution of the problem posed in Theorem 3, and
that w = A(u). By the same argument as in the proof of Theorem 2,

is uniformly bounded for all n.

We now deduce the equi-uniform integrability of the sequence 
on the (possibly) unbounded open set S~ by a variant of the De La Valle
Poussin principle applied in the preceding case. For each positive integer R,

Hence, for each set B with meas (B) sufficiently I may be
B

made small uniformly in n. In addition, for each given 6 &#x3E; 0, there exists
a subset Be of finite measure in Q such Thus the

11-B

hypotheses of the Vitali convergence theorem hold since we can show using
the local form of the Sobolev imbedding theorem that for a suitable infinite
subsequence 9-(X, un) converges almost everywhere in S~ to g(x, u). It fol-

lows as in the proof of Theorem 2 that g(x, u) lies in L1, that g(x, u) u lies
in Ll by the Fatou Lemma, and that gn(x, converges to g(x, ~c) strongly
in 

Let v be any element of .K and set

Each Gn is a convex, non-negative, differentiable function on .R for fixed x.
Hence for any pair of arguments r and s

If we substitute for r and s, v(x) and respectively, y we obtain

We now integrate over ,~ and obtain the inequality
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Suppose that

Then

implies that

Since un) converges almost everywhere to G(x, u) it follows that

for every v in K such that v)  + oo. Setting v = u, however, we
obtain

By the pseudo-monotonicity of the mapping A from V to V*, it fol-

lows that w = A(u), i.e., A(un) converges weakly to A(u) in V* while

Hence, for any v in ~ with v)  + oo, we have by a preceding ine-
quality

Thus the variational inequality (ii) of the conclusion of Theorem 3 has been
established.

To complete the proof of Theorem 3, it suffices to establish the variational
inequality (i) for the case in which v lies in IT r1 Loo. To obtain this con-

clusion, however, it suffices to take the inequality

Using Fatou’s Lemma and the strong convergence of gn(x, un) to g(x, u),
we obtain

as desired.
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PROOF OF THEOREM 4. Suppose that tli and u, satisfy the conclusions
fo Theorem 3 for f a given element of V* and K a given convex subset of K.
Suppose that A is monotone. For any element v of .K with v)  + oo,

and

Since G(x, r) is convex in r, if we set

then v is a permissible element, and we have

Therefore

Adding, we obtain the inequality

The conclusion then follows from the monotonicity of A and the con-
vexity of G(x, r) in r. Q.E.D.

§ 3. - We now give the proof of Theorem 5 on the relation of the

procedures of Sections 1 and 2.

PROOF oF THEOREM 5. Suppose that is a solution in Tr = 

of the differential equation

with g(x, ~) and g(x, in L’, and with

For any testing function v in Q, we have
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Hence

implies that

Suppose that v is an element of V with v)  + oo. We know that

H(v) ELI since

and therefore by Proposition 4 we may construct a sequence of testing func-
tions vj converging to v in V such that is dominated by a fixed .L1
function; thus converges to G(x, v) in Ll. Taking the limit of the
inequality for v = vj given above, y we see that

so that the inequality (ii) holds for u.
To obtain the inequality (i), we consider v in and choose a

sequence of testing functions in V converging a.e. and boundedly to v.
If we consider the inequality

and take the limit, we obtain the equality

Q.E.D.
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