Peter Hess

Nonlinear perturbations of linear elliptic and parabolic problems at resonance : existence of multiple solutions

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^{e} série, tome 5, n ${ }^{\circ} 3$ (1978), p. 527-537
http://www.numdam.org/item?id=ASNSP_1978_4_5_3_527_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Nonlinear Perturbations of Linear Elliptic and Parabolic Problems at Resonance: Existence of Multiple Solutions.

PETRR HESS (*)

1. - Introduction.

In this paper we are concerned with the existence of multiple solutions of the nonlinear equation

$$
\begin{equation*}
L u+G(u)=f \tag{1}
\end{equation*}
$$

in the real Hilbert space $H=L^{2}(\Omega), \Omega$ a bounded domain in a finitedimensional real Euclidean space. Here $L: H \supset D(L) \rightarrow H$ denotes a linear operator with dense domain $D(L)$ and compact resolvent; we assume that 0 is eigenvalue of L (and of the adjoint operator L^{*}), and that for the corresponding eigenspaces, $N(L)=N\left(L^{*}\right)$. Further G is the Nemytskii operator associated with the continuous function $g: \boldsymbol{R} \rightarrow \boldsymbol{R}$; we assume that the limits $g_{ \pm}:=\lim _{s \rightarrow \pm \infty} g(s)$ exist (in the proper sense), and that $g_{-} \leqq 0 \leqq g_{+}$. Then G maps H continuously into itself and has bounded range. Finally $f \in H$ is given.

By a well-known result which goes back to Landesman-Lazer [7], and for which various different proofs and extensions have been given (e.g. [4] and the comprehensive list of references therein), (1) is solvable at least for those $f \in H$ for which

$$
\begin{equation*}
(f, w)<\int_{\Omega}\left(g_{+} w^{+}-g_{-} w^{-}\right) d x \quad \forall w \in N(L), w \neq 0 \tag{LL}
\end{equation*}
$$

Here $w^{+}\left(w^{-}\right)$denotes the positive (negative) part of the function w, respectively, i.e. $w=w^{+}-w^{-}$. We remark that if $g_{-}=g_{+}$, no $f \in H$ will satisfy (LL).
(*) Mathematics Institute, University of Zürich, Zürich, Switzerland.
Pervenuto alla Redazione il 27 Aprile 1977 ed in forma definitiva il 14 Giugno 1977.

Under some additional assumptions on $N(L)$ and g we show that equation (1) is solvable for certain $f \in H$ which do not satisfy (LL), and admits multiple solutions. We impose the following further conditions:
(I) The eigenfunctions of L enjoy the unique continuation property: if $w \in N(L)$ vanishes on a set of positive measure in Ω, then $w=0$.
(II) There exists $\delta>0$ such that

$$
\begin{array}{ll}
g(s) \geqq g_{+} & \forall s \geqq \delta, \\
\boldsymbol{g}(s) \leqq g_{-} & \forall s \leqq-\delta .
\end{array}
$$

Note that (II) is opposed to the original assumption

$$
\begin{equation*}
\boldsymbol{g}_{-}<\boldsymbol{g}(s)<\boldsymbol{g}_{+} \quad \forall s \in \boldsymbol{R} \tag{2}
\end{equation*}
$$

made in the theorem of Landesman-Lazer. Set

$$
\begin{array}{ll}
\gamma_{+}:=\liminf _{s \rightarrow+\infty}\left(g(s)-g_{+}\right) s & (\geqq 0) \\
\gamma_{-}:=\liminf _{s \rightarrow-\infty}\left(g(s)-g_{-}\right) s & (\geqq 0)
\end{array}
$$

The space H admits a decomposition $H=N(L) \oplus R(L)$. We set $H_{1}:=N(L)$, $H_{2}:=R(L)$ and denote by P_{1} and P_{2} the orthogonal projections on H_{1} and H_{2}, respectively. For $f \in H$ we write $f_{1}:=P_{1} f$ and $f_{2}:=P_{2} f$.

Definition. Let S be the nonempty, bounded, closed set in H_{1} consisting of all functions f_{1} for which

$$
\left(f_{1}, w\right) \leqq \int_{\Omega}\left(g_{+} w^{+}-g_{-} w^{-}\right) d x \quad \forall w \in N(L)=H_{1}
$$

We remark that the set S is independent of $f_{2} \in H_{2}$. Our main result is
Theorem 1. Let the mappings L and G be as described above, and suppose that either
(α) the functions in $N(L)$ have constant sign in Ω and both γ_{+}, γ_{-} are positive, or
(β) the functions in $N(L)$ change sign in Ω and at least one of γ_{+}, γ_{-} is positive.

Then to each (fixed) $f_{2} \in H_{2}$ there exists a bounded open set $\mathrm{S}_{f_{2}} \subset H_{1}$ containing S, such that
(i) equation (1) is solvable for all $f=f_{1}+f_{2}$ with $f_{1} \in \mathrm{~S}_{f_{2}}$;
(ii) equation (1) has at least two different solutions for $f=f_{1}+f_{2}$ if $f_{1} \in S_{f_{2}} \backslash \mathcal{S}$.

As a consequence of Theorem 1 we further get
Theorem 2. Under the assumptions of Theorem 1, the mapping $L+G$ has closed range in \boldsymbol{H}.

Theorem 2 should be compared with the assertion that the range of $L+G$ is open under condition (2).

Remark. If $N(L)$ is one-dimensional, it is readily seen that the results hold without hypothesis (I).

This research is related to two recent results concerning the particular situation where $g_{-}=0=g_{+}$. The first one is due to Fučik-Krbec [5, Theorem 3] (cf. also [6] for some simplifications and improvements), the second one to Ambrosetti-Mancini [2, Theorem 3.1]. In [5, 6] attention is restricted to existence, while in [2] a multiplicity result is obtained by a global Lya-punow-Schmidt method. In order that the equation in $R(L)$ is uniquely solvable with continuous dependence on the given data, Ambrosetti-Mancini need some boundedness condition on the derivative g^{\prime}.

If $g_{-}<g_{+}$, a multiplicity result is given in [1, Prop. 6.4] for perturbations in the first eigenvalue and functions $f \in L^{\infty}(\Omega)$.

Our approach to multiplicity results is similar to that in [2] in as much as degree theory is used. By employing the Leray-Schauder degree in suitable rectangles in H we are however able to avoid any local restriction on g.

The paper is organized as follows: Section 2 contains the proof of Theorem 1, Section 3 that of Theorem 2, while in Section 4 two examples are given of mappings L which satisfy the hypotheses of this paper: (a) an elliptic differential operator, (b) a parabolic differential operator with a periodicity condition in time.

Acknowledgment. These results were obtained while the author was visiting the Universities of Pisa and Bologna through a grant of the C.N.R. He wishes to thank A. Ambrosetti for stimulating discussions.

2. - Proof of Theorem 1.

(i) Let $f=f_{1}+f_{2}$ with $f_{1} \in S$ and (fixed) $f_{2} \in H_{2}$. Equation (1) is equivalent to the equation

$$
\left(L+P_{1}\right) u+\left(G(u)-P_{1} u-f\right)=0
$$

which, since $L+P_{1}$ is invertible on H, is in turn equivalent to

$$
\begin{equation*}
u+\left(L+P_{1}\right)^{-1}\left(G(u)-P_{1} u-f\right)=0 \tag{3}
\end{equation*}
$$

Note that $\left(L+P_{1}\right)^{-1}: H \rightarrow H$ is a compact linear operator, and that G has bounded range in H. For $t \in[0,1]$ and $u \in H$ we define the homotopy mapping

$$
\mathscr{H}(t, u)=u+t\left(L+P_{1}\right)^{-1}\left(G(u)-P_{1} u-f\right) .
$$

Considering only the component in H_{2} we see immediately that

$$
\begin{equation*}
\mathscr{H}(t, u)=0 \quad \text { for } t \in[0,1], u \in H \Rightarrow\left\|P_{2} u\right\|<b \tag{4}
\end{equation*}
$$

with some constant $b>0$. For $n \in N$ let

$$
\mathfrak{B}_{n}=\left\{u \in H:\left\|P_{1} u\right\|<n,\left\|P_{2} u\right\|<b\right\} .
$$

We claim that there exists $n_{0} \in N$ such that

$$
\begin{equation*}
\mathscr{H}(t, u) \neq 0 \quad \forall t \in[0,1], \forall u \in \partial \mathfrak{B}_{n_{\mathrm{o}}} \tag{5}
\end{equation*}
$$

Let us assume for the moment that (5) holds. By the homotopy invariance of the Leray-Schauder degree,

$$
\begin{align*}
\operatorname{deg}\left(\mathfrak{H}(1, \cdot), \mathfrak{B}_{n_{0}}, 0\right) & =\operatorname{deg}\left(\mathfrak{H}(0, \cdot), \mathfrak{B}_{n_{0}}, 0\right) \tag{6}\\
& =\operatorname{deg}\left(I, \mathfrak{B}_{n_{0}}, 0\right)=1
\end{align*}
$$

Since the degree is moreover invariant in components of $H \backslash \mathscr{H}\left(1, \partial \mathfrak{B}_{n_{0}}\right)$, there exists an open neighborhood $\mathcal{U}\left(f_{1}\right)$ of f_{1} in H_{1} such that the degree $=1$ also for $\tilde{f} \in \boldsymbol{H}$ of the form $\tilde{f}=\tilde{f}_{1}+f_{2}$ with $\tilde{f}_{1} \in \mathscr{U}\left(f_{1}\right)$. For those \tilde{f} there exists a solution of (1) in $\mathfrak{B}_{n_{0}}$.

We set $\mathcal{S}_{f_{2}}:=\bigcup_{f_{1} \in S} \mathcal{U}\left(f_{1}\right)$. Then assertion (i) of Theorem 1 is proved.
It remains to establish (5). We argue by contradiction. Suppose for each $n \in N$ we find $t_{n} \in[0,1]$ and $u_{n} \in \partial \mathfrak{B}_{n}$ such that

$$
\begin{equation*}
\mathfrak{H}\left(t_{n}, u_{n}\right)=0 \tag{7}
\end{equation*}
$$

By (4) it follows that

$$
\left\|P_{1} u_{n}\right\|=n
$$

Applying the linear operator $L+P_{1}$ on both sides of (7) we get

$$
\begin{equation*}
\left(L+P_{1}\right) u_{n}+t_{n}\left(G\left(u_{n}\right)-P_{1} u_{n}-f\right)=0 . \tag{8}
\end{equation*}
$$

Hence $t_{n} \neq 0, \forall n \in N$. We take the inner product of (8) with $P_{1} u_{n}$ and obtain

$$
\left(1-t_{n}\right)\left\|P_{1} u_{n}\right\|^{2}+t_{n}\left(G\left(u_{n}\right)-f, P_{1} u_{n}\right)=0 .
$$

We conclude that

$$
\left(G\left(u_{n}\right)-f, P_{1} u_{n}\right) \leqq 0 \quad \forall n,
$$

or, writing $P_{1} u_{n}=n w_{n}$ with $w_{n} \in H_{1},\left\|w_{n}\right\|=1$,

$$
\begin{equation*}
\int_{\Omega}\left(g\left(u_{n}\right)-f_{1}\right) n w_{n} d x \leqq 0 \tag{9}
\end{equation*}
$$

Since $f_{1} \in S$, we know on the other hand that

$$
\begin{equation*}
\int_{\Omega} f_{1} n w_{n} d x \leqq \int_{\Omega}\left(g_{+}\left(n w_{n}\right)^{+}-g_{-}\left(n w_{n}\right)^{-}\right) d x \tag{10}
\end{equation*}
$$

Adding (9) and (10) we get

$$
\begin{equation*}
\int_{\Omega}\left(g\left(u_{n}\right)-g_{+}\right)\left(n w_{n}\right)^{+} d x-\int_{\Omega}\left(g\left(u_{n}\right)-g_{-}\right)\left(n w_{n}\right)^{-} d x \leqq 0, \quad \forall n \in \boldsymbol{N} . \tag{11}
\end{equation*}
$$

We investigate the first integral in (11); the second one is handled similarly. In the following limiting arguments we pass to subsequences repeatedly; in order not to complicate the notation we however do not change the indices thereby.

Considering the components of (8) in H_{2} and recalling that $\left(\left.L\right|_{D(L) \cap H_{2}}\right)^{-1}$: $H_{2} \rightarrow H_{2}$ is compact, we infer that the sequence $\left\{P_{2} u_{n}\right\}$ is relatively compact in H_{2}. We may thus assume (for a subsequence)

$$
P_{2} u_{n} \rightarrow z \quad(n \rightarrow \infty)
$$

in H_{2} and a.e. in Ω. Moreover there exists a function $y \in H$ such that, for some further subsequence,

$$
\left|P_{2} u_{n}(x)\right| \leqq y(x) \quad \forall n \in \boldsymbol{N}, \text { a.e. } x \in \Omega .
$$

(This useful fact occurs as an intermediate step in the standard proof of
completeness of L^{p}-spaces.) Since H_{1} is finite-dimensional, we may also assume

$$
w_{n} \rightarrow w \quad(n \rightarrow \infty)
$$

in H_{1} and a.e. in Ω, with $\|w\|=1$. Hence $w(x) \neq 0$ for a.e. $x \in \Omega$, by hypothesis (I), and consequently

$$
u_{n} \rightarrow\left\{\begin{array}{l}
+\infty \tag{12}\\
-\infty
\end{array} \quad \text { a.e. on the sets } \quad \begin{array}{l}
\{w>0\} \\
\\
\{w<0\}
\end{array}\right.
$$

We now split up the first integral in (11):

$$
\begin{aligned}
\int_{\Omega}\left(g\left(u_{n}\right)-g_{+}\right)\left(n w_{n}\right)+d x= & \int_{\substack{ \\
\left\{u_{n} \geqq \delta+v\right\}}} \ldots+\int_{\left\{u_{n}<\delta+v\right\}} \ldots= \\
& =\int_{\substack{ \\
\left\{u_{n} \geqq \delta+v\right\}}}\left(g\left(u_{n}\right)-g_{+}\right) u_{n} d x-\int_{\left\{u_{n}<\delta+\nu\right\}}\left(g\left(u_{n}\right)-g_{+}\right) P_{2} u_{n} d x+ \\
& +\int_{\substack{ \\
\left\{u_{n}<\delta+v\right\}}}\left(g\left(u_{n}\right)-g_{+}\right)\left(n w_{n}\right)+d x=I_{1, n}-I_{2, n}+I_{3, n}, \quad \text { say. }
\end{aligned}
$$

The behaviour as $n \rightarrow \infty$ is now studied for each of the three integrals separately. In the following χ_{ω} denotes the characteristic function of the set $\omega \subset \Omega$.
a) $I_{1, n}=\int_{\Omega} \chi_{\left\{u_{n} \geqq \delta+v\right\}}\left(g\left(u_{n}\right)-g_{+}\right) u_{n} d x$.

Since the integrand is non-negative, we obtain by (12) and the Fatou lemma that

$$
\liminf _{n \rightarrow \infty} I_{1, n} \geqq \mu(\{w>0\}) \cdot \gamma_{+}
$$

Here $\mu(\{w>0\})$ is the Lebesgue measure of the subset $\{w>0\}$ of Ω.
b) $I_{2, n}=\int_{\Omega} \chi_{\left\{u_{n} \geqq \delta+v\right\}}\left(g\left(u_{n}\right)-g_{+}\right) P_{2} u_{n} d x$.

The integrand converges to 0 a.e. in $\{w>0\}$ and $\{w<0\}$ and is majorized by some multiple of the function $y \in H$; hence

$$
I_{2, n} \rightarrow 0 \quad(n \rightarrow \infty)
$$

by Lebesgue's theorem.
c) $I_{3, n}=\int_{\Omega} \chi_{\left\{u_{n}<\delta+v\right\}}\left(g\left(u_{n}\right)-g_{+}\right)\left(n w_{n}\right)^{+} d x$.

Since $\delta+y(x)>u_{n}(x)=n w_{n}(x)+P_{2} u_{n}(x) \Rightarrow n w_{n}(x)<\delta+2 y(x)$, the func-
tion $\left|\chi_{\left\{u_{n}<\delta+y\right\}}\left(n w_{n}\right)^{+}\right|$is bounded by $\delta+2 y \in H$. Moreover the integrand converges to 0 a.e. in $\{w>0\}$ and $\{w<0\}$. Again by Lebesgue's theorem,

$$
I_{3, n} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Similarly one treats the second integral in (11) and concludes that in both cases (α) and (β),

$$
\begin{aligned}
0 & \geqq \liminf \int_{\Omega}\left[\left(g\left(u_{n}\right)-g_{+}\right)\left(n w_{n}\right)^{+}+\left(g\left(u_{n}\right)-g_{-}\right)\left(-\left(n w_{n}\right)^{-}\right)\right] d x \geqq \\
& \geqq \mu(\{w>0\}) \gamma_{+}+\mu(\{w<0\}) \gamma_{-}>0 .
\end{aligned}
$$

This contradiction proves the existence of $n_{0} \in \boldsymbol{N}$ such that (5) holds.
(ii) Let now $f \in H$ be such that $f_{1} \in \mathcal{S}_{f_{2}} \backslash \mathcal{S}$. By the proof of Theorem 1(i) there exists a rectangle $\mathfrak{B}_{n_{0}}$ in H such that $\operatorname{deg}\left(\mathfrak{H}(1, \cdot), \mathfrak{B}_{n_{0}}, 0\right)=1$. Further there is $\bar{w} \in N(L)$ such that

$$
\begin{equation*}
\left(f_{1}, \bar{w}\right)>\int_{\Omega}\left(g_{+}(\bar{w})^{+}-g_{-}(\bar{w})^{-}\right) d x \tag{13}
\end{equation*}
$$

Since the integral on the right side in (13) is nonnegative, $f_{1} \neq 0$ and thus $f \notin R(L)$. Let the constant $K \geqq 0$ be such that the equation

$$
L u+G(u)=(1+K) f
$$

has no solution in H (note that G has bounded range in H). We consider the homotopy mapping

$$
\varkappa(t, u)=u+\left(L+P_{1}\right)^{-1}\left(G(u)-P_{1} u-(1+t) f\right),
$$

$t \in[0, K], u \in H$. There exists a constant $c>b$ such that

$$
\begin{equation*}
\varkappa(t, u)=0 \quad \text { for } t \in[0, K], u \in H \Rightarrow\left\|P_{2} u\right\|<c \tag{14}
\end{equation*}
$$

For $n \in N$ let

$$
\mathrm{C}_{n}=\left\{u \in H:\left\|P_{1} u\right\|<n,\left\|P_{2} u\right\|<c\right\}
$$

We assert that for some $n_{1}>n_{0}$,

$$
\begin{equation*}
\kappa(t, u) \neq 0 \quad \forall t \in[0, K], \forall u \in \partial \mathcal{C}_{n_{1}} \tag{15}
\end{equation*}
$$

For suppose, again to the contrary, that to each $n>n_{0}$ there exist $t_{n} \in[0, K]$ and $u_{n} \in \partial \mathfrak{C}_{n}$ such that

$$
\mathcal{K}\left(t_{n}, u_{n}\right)=0 .
$$

Then

$$
\begin{equation*}
L u_{n}+G\left(u_{n}\right)=\left(1+t_{n}\right) f \tag{16}
\end{equation*}
$$

We may assume $t_{n} \rightarrow t(n \rightarrow \infty)$. By (14) we have $\left\|P_{1} u_{n}\right\|=n$.
Arguing as in the proof of assertion (i), we infer that $u_{n}(x) \rightarrow \pm \infty$ a.e. on the sets $\{w \gtrless 0\}$ (cf. (12)).

Taking the inner product of (16) with the function \bar{w} of (13) we obtain

$$
\left(G\left(u_{n}\right), \bar{w}\right)=\left(1+t_{n}\right)\left(f_{1}, \bar{w}\right) ;
$$

in the limit it follows

$$
\int_{\{w>0\}} g_{+} \bar{w} d x+\int_{\{w<0\}} g_{-} \bar{w} d x=(1+t)\left(f_{1}, \bar{w}\right) \geqq\left(f_{1}, \bar{w}\right)
$$

(the second inequality sign holding since $\left(f_{1}, \bar{w}\right)>0$ by (13)). However

$$
\int_{\Omega}\left(g_{+}(\bar{w})^{+}-g_{-}(\bar{w})^{-}\right) d x \underset{\{w>0\}}{\geqq} \int_{+}(\bar{w})^{+} d x-\int_{\{w>0\}} g_{+}(\bar{w})^{-} d x+\int_{\{w<0\}} g_{-}(\bar{w})^{+} d x-\int_{\{w<0\}} g_{-}(\bar{w})^{-} d x .
$$

We arrive at a contradiction to (13).
Thus by homotopy invariance of the degree,

$$
0=\operatorname{deg}\left(\mathbb{K}(K, \cdot), \mathcal{C}_{n_{1}}, 0\right)=\operatorname{deg}\left(\mathcal{K}(0, \cdot), C_{n_{1}}, 0\right)=\operatorname{deg}\left(\mathscr{H}(1, \cdot), \mathcal{C}_{n_{1}}, 0\right)
$$

We conclude by (6) and the additivity of the degree that

$$
\operatorname{deg}\left(\mathscr{H}(1, \cdot), \mathcal{C}_{n_{1}} \backslash \operatorname{cl}\left(\mathfrak{B}_{n_{0}}\right), 0\right)=-1 ;
$$

hence there exists a second solution of (1) in the set $\mathcal{C}_{n_{1}} \backslash \operatorname{cl}\left(\mathfrak{B}_{n_{0}}\right)$. This proves Theorem 1.

3. - Proof of Theorem 2.

Let $\left\{f^{n}\right\}$ be a sequence of functions in H such that (1) admits solutions for each f^{n}, and suppose $f^{n} \rightarrow f$ in H. Writing $f=f_{1}+f_{2}$, with $f_{1} \in H_{1}$,
$f_{2} \in H_{2}$, we distinguish between two cases:
(a) $f_{1} \in S$. Then (1) is solvable for this f by Theorem $1(\mathrm{i})$.
(b) $f_{1} \notin \mathrm{~S}$. There exists $\bar{w} \in N(L)$ such that

$$
\begin{equation*}
\left(f_{1}, \bar{w}\right)>\int_{\Omega}\left(g_{+}(\bar{w})^{+}-g_{-}(\bar{w})^{-}\right) d x \tag{17}
\end{equation*}
$$

We claim that the solutions u_{n} of the equations

$$
\begin{equation*}
L u_{n}+G\left(u_{n}\right)=f^{n} \tag{18}
\end{equation*}
$$

remain bounded in H, as $n \rightarrow \infty$. Clearly $\left\|P_{2} u_{n}\right\| \leqq d, \forall n \in N$, with some constant d. Assuming that $\left\|P_{1} u_{n}\right\| \rightarrow \infty(n \rightarrow \infty)$, we derive as in the proof of Theorem 1(i) that

$$
u_{n}(x) \rightarrow \pm \infty \quad \text { for a.e. } x \in \Omega .
$$

Taking the inner product of (18) with \bar{w} and passing to the limit $n \rightarrow \infty$ we obtain as in the proof of Theorem 1(ii) that

$$
\left(f_{1}, \bar{w}\right) \leqq \int_{\Omega}\left(g_{+}(\bar{w})^{+}-g_{-}(\bar{w})^{-}\right) d x
$$

contradicting (17).
We thus may assume, by the compactness of $\left(L+P_{1}\right)^{-1}$, that $u_{n} \rightarrow u$ in H. The passage to the limit $n \rightarrow \infty$ in (18) is now immediate and proves the solvability of (1) for the function f also in this case.
4. - Let $\omega \subset \boldsymbol{R}^{N}(N \geqq 1)$ be a bounded domain with smooth boundary, and let us denote by \mathcal{A} :

$$
\mathcal{A} u=-\sum_{i . j=1}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)-\lambda u \quad(\lambda \in \boldsymbol{R})
$$

a formally selfadjoint, uniformly elliptic differential expression of second order, with real-valued coefficient functions $a_{i j}=a_{i i} \in C^{1}(\bar{\omega})$. Together with homogeneous Dirichlet boundary conditions, \mathcal{A} induces a selfadjoint differential operator A in $L^{2}(\omega)$ by

$$
\begin{aligned}
& D(A)=H_{0}^{1}(\omega) \cap H^{2}(\omega) \\
& A u=\mathcal{A} u \quad(u \in D(A))
\end{aligned}
$$

It is known that the eigenfunctions of \mathcal{A}, i.e. the functions in $N(A)$, have the unique continuation property (e.g. [8]).
a) The elliptic problem. Here we set $\Omega:=\omega, H:=L^{2}(\omega)$, and $L:=$ $:= \pm A$. Then L satisfies all the assumptions made in the paper.
b) The parabolic problem with periodicity condition in time. Let $T>0$ be given, and set $H:=L^{2}\left(0, T ; L^{2}(\omega)\right)=L^{2}(\Omega)$, where Ω denotes the cylinder $(0, T) \times \omega$ in \boldsymbol{R}^{1+N}.

Let \tilde{A} be the extension of the above introduced elliptic differential operator to H; it is defined by

$$
v=\tilde{A} u \Leftrightarrow u, v \in H, u(t) \in D(A) \text { and } v(t)=A u(t) \text { for a.a. } t \in(0, T) .
$$

\tilde{A} is a selfadjoint operator in H.
Let further $d / d t: H \supset D(d / d t) \rightarrow H$ be the linear operator given by

$$
D\left(\frac{d}{d t}\right)=\left\{u \in H: u^{\prime} \in H, u(0)=u(T)\right\}, \quad \frac{d}{d t} u=u^{\prime} \quad\left(u \in D\left(\frac{d}{d t}\right)\right)
$$

Here the time-derivative is meant in the distributive sense. Note that $u, u^{\prime} \in H$ implies that u is (perhaps after modification on a nullset in [0, T]) a continuous and a.e. differentiable mapping of $[0, T]$ into $L^{2}(\omega)$. From the relation

$$
\left(u^{\prime}, v\right)+\left(u, v^{\prime}\right)=(u(T), v(T))_{L^{2}(\omega)}-(u(0), v(0))_{L^{2}(\omega)}
$$

which holds for all $u, v \in H$ with $u^{\prime}, v^{\prime} \in H$, it follows that

$$
\left(\frac{d}{d t}\right)^{*}=-\frac{d}{d t}
$$

and thus

$$
\left(\frac{d}{d t} u, u\right)=0 \quad \forall u \in D\left(\frac{d}{d t}\right)
$$

We claim that the mappings $L= \pm d / d t \pm \tilde{A}$ (where all 4 combinations are allowed) satisfy the conditions imposed on L, with

$$
N(L)=N\left(L^{*}\right)=N\left(\frac{d}{d t}\right) \cap N(\tilde{A})=N(A)
$$

For the sake of definiteness suppose in the following that $L=d / d t+\tilde{A}$.

As in [3, Theorem 19] (where the initial-value problem is considered), one shows first that

$$
\begin{equation*}
R\left(\pm \frac{d}{d t}+\tilde{A}+(\lambda+1) I\right)=H \tag{19}
\end{equation*}
$$

(note that $\tilde{A}+(\lambda+1) I$ is monotone and selfadjoint, hence a subdifferential). Further

$$
\begin{equation*}
\left(\frac{d}{d t} u, \tilde{A} u\right)=0 \quad \forall u \in D\left(\frac{d}{d t}\right) \cap D(\tilde{A}) \tag{20}
\end{equation*}
$$

From (19) it follows that

$$
\left(\frac{d}{d t}+\tilde{A}\right)^{*}=-\frac{d}{d t}+\tilde{A}
$$

by (20) we then conclude the above assertions on the nullspaces of L and L^{*}. Finally $(d / d t+\widetilde{A}+(\lambda+1) I)^{-1}: H \rightarrow H$ is compact by Aubin's lemma.

REFERENCES

[1] A. Ambrosetti - G. Mancini, Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance (to appear).
[2] A. Ambrosetti - G. Mancini, Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part, Ann. Scuola Norm. Sup. Pisa 5 (1978), pp. 15-28.
[3] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis, E. Zarantonello ed., Academic Press, 1971.
[4] H. Brézis - L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa 5 (1978), pp. 225-326.
[5] S. Fučik - M. Krbec, Boundary value problems with bounded nonlinearity and general null-space of the linear part, Math. Z. 155 (1977), pp. 129-138.
[6] P. Hess, A remark on the preceding paper of Fučik and Krbec, Math. Z. 155 (1977), pp. 139-141.
[7] E. M. Landesman - A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1970), pp. 609-623.
[8] S. Mizohata, The Theory of Partial Differential Equations, Cambridge University Press, 1973.

