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Leray Endomorphisms and Cone Maps (*).

GILLES FOURNIER (**) - HEINZ-OTTO PEITGEN (***)

dedicated to Jean Leray

Introduction.

Computations of the fixed point index of a map which is not necessarily
compact have proved to lead to interesting applications (cf. [16,17,19]).
In this paper we shall try to generalize to some non compact maps the index
computations due to C. C. Fenske and H.-O. Peitgen [5], G. Fournier and
H.-O. Peitgen [8] and R. D. Nussbaum [16].

The notion of fixed point index used in this paper shall be the one de-
fined by R. D. Nussbaum [18]. As an alternative, the one defined by J. Eells
and G. Fournier in [4] generalized to convex sets would be sufficient. Our
methods of proof strongly rely on the calculation of the generalized Lefschetz
number and the generalized trace due to J. Leray [13].

0. — Preliminaries.

0.1. Compact attractors and ejective sets.

An extensive use of the notion of « compact attractor » which is due to
Nussbaum [15] shall be made in the following.
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(0.1.1) DEFINITION. Let X be a topological space and f: X — X a contin-
uous map. A compact, nonempty set M c X such that M is f-invariant i.e.,
f(M) c M, will be called a compact attractor for f if, given any open neigh-
bourhood U of M and any compact set K c X, there exists an integer
n = n(K, U) such that f~(K)c U for m>mn.

In the above situation we say that M «attracts » the compact subsets
of X. If f»(K)c M for m>n(K), then we say that M « absorbs » the compact
subsets of X under f. (f™ is the m-th iterate of f).

(0.1.2) PrOPOSITION. Let X be a topological space and f: X - X a continu-
ous map. Let V be an open subset of X such that there exists n € N such that

f(X\T) ¢ IV

for all m>n. Then X\V absorbs the compact subsets of

under f. (V denotes the closure of V).

Proor. Observe that X\V c U, whence f(Uy) c U,. Now, let Kc Uy
be compact. Then there exists j = j(K) such that

and hence, for all m>n 4 j, we have that

j — —_—
fH(E)c U= XN\V)c XNV .
i=1
The notion of an «ejective » point is due to F. E. Browder [1, 2] and
plays a fundamental role in recent studies of the existence of periodic solu-
tions of certain nonlinear functional differential equations.

(0.1.3) DEFINITION. Let X be a topological space and f: X — X a contin-
uous map. A closed subset F of X is said to be ejective for f relative to
an open neighbourhood U of F provided that, for all x € U\ JF there exists
n = n(x) such that f*=)e X \T.

The relation between compact attractors and ejective sets (to be made
precise in the next proposition) is fundamental for our considerations.
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A similar observation has been used in [5], but there, however, the mappings
are always assumed to be locally compact and this is a restriction which,
in view of the class of mappings we shall consider, has to be eliminated.
Unfortunately, this programm requires some very technical and elaborate
arguments.

(0.1.4) PROPOSITION. Let X be a topological space and f: X —~ X a contin-
uous map which has a compact attractor M. Let F be an ejective set for f,
and assume that

(%) XNF) c XN\F.
Then f: X\ F — X\ F has a compact attractor M'.

ProoF. Since F is ejective, we can choose an open neighbourhood V of F
such that

XNFc Ufx\P).
i=0
According to (0.1.5), there exists a compact, f-invariant set M’ such that

M\VcMcM\FcX\F.

It remains to show that M’ attracts the compact subsets of X\ F' under f:
let K c X\ F be compact and let U be an open neighbourhood of M’ in X\ F.
Consider

M= Uf(E) U M.

i=0

Obviously, My is f-invariant and, since M attracts the compact subsets
of X and K and M are compact, it follows that My is compact. According
to (0.1.5), there exists a compact, f-invariant set M, such that

M \VcM,c Mx\F.
Moreover, since K is compact, there exists my € N such that
mg .
Kc Uf(Me\V)
i=0

and hence

fre(E) ¢ Uf(MT) ¢ UML) c M.

=0 =0
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Thus, it remains to show that there exists ng € IV such that
(M) c U for all n>mng.

Again, since M is compact, there exists jx € N such that
, ix ] _
My c UF(@\D).
i=0
Note that M'c U and M’ is f-invariant. Hence
ik )
McNf(U)=W,
i=0

and, since M\V c M'c W, we have that Mc VU (M\V)cV U W. More-
over, since M is f-invariant, it follows that

ik
McOf(vVuw).
i=0
Hence, since M attracts M, there exists nx > jx such that

ir
F(My) c N (VU W)
i=0

for all j>ng— jx.
We now have that, for all j>mng — jx,

pan e it o pony U} o [ A o o)
=0 =0
ix _ ix
c U ({XN\In{vuw})cUf«w.
i=0 =0
Finally, we have that, for all j>ny,
pony e Uiom) ¢ Upom ¢ Upro e v
i=0 =0

i=0

(0.1.5) LEMMA. Let X be a topological space and f: X— X a continuous map.
Let F be closed and V be open in X such that f(X\F)c X\F, FcV and

X\Fc D f(XN\TY).
i=0
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If M is a compact, f-invariant subset, then there exists a compact, f-invariant
subset M' such that
M\VcMcM\F.

ProOF. Since M\V is compact, we have that f{(M\V) is compact for
all € N. Moreover,

FMNY) C f(MNF) ¢ MNF {EJOJ‘—"(X\V)} N {E]Of—"(M)}

c Ufi(d\V) for all i>0.
i=0

3

Hence, for ¢ = 1, there exists n € N such that

i=

farvy e Uf-rg).
i=0
Set M'= CJ]‘"(M\V). Then M’ is compact, M\Vc M'c M\F c X\ F, and
i=0
Y MN\V)c O fi(MN\V)= M'; ie., (M)cM'.
i=0

(0.1.6) COorROLLARY. Let X be a topological space and f: X — X a contin-
uous map which has a compact attractor M. Let V be open in X and such
that, for all ® € X\V there is n = n(x) € N such that fr(x) € X\V.

(o]

Then, if Uy, = UfHX\V), one has that U, is f-invariant and has a
compact attractor. ‘=1

PrOOF. Since X\V c X\V c Uy, we have that Uy, is f-invariant. Since
Uy, is open, we have that F = X\ U, is closed, F c V, and, for all x € ¥\
\F c Uy, there exists n = n(x) € N such that

fr(@) e XNV ;

i.e., I is ejective. According to (0.1.4), f: Uy — U, has a compact at-
tractor.
0.2. Leray endomorphisms and generalized Lefschetz numbers.

The notions of this paragraph are due to J. Leray [13]. They have
proved to be of great importance in fixed point theory (cf. [91).
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Let F be a vector space and let 7' be an endomorphism. Set N(T) =
= {¢ € E: there exists n € N with T"(¢) = 0}. One observes that T-*(N(T)) c
cN(T) and T(N (T)) c N(T), and hence T induces an endomorphism
T: B — E where E := E/N(T). If E is finite-dimensional, then, since T is
injective, T is an isomorphism. We define the « Leray trace » Tr(T) of T
to be the ordinary trace tr(7') of 7'

Let E = {B,} be a graded vector space and T = {T,} be an endomorphism
of degree zero. If £ = {E‘q} is of finite type, then we say that 7' is a « Leray
endomorphism » and we define the « generalized Lefschetz number » A(T)
of T by

AT) =3 (—19Tr(T).
a
We have the following properties.

(0.2.1) (cf. [10]) Assume that the following diagram of graded vector
spaces and morphisms is commutative.

E——F

TT\IT,

E——F

Then, if T or 7' is a Leray endomorphism, so is the other and, in
that case, A(T) = A(T').

(0.2.2) Let T: EF — FE be an endomorphism of a graded vector space of
degree zero. Let A cE be a graded vector subspace which is
T-invariant and such that, for all ¢ € E, there exists n € IN such
that T»(¢) € A. Then T is a Leray endomorphism if, and only if,
T: A+ A is a Leray endomorphism and, if so,

AT:E >E)y=AT: A - A).
ProOF. The assertion can be obtained as a combination of the following

facts (cf. [9]):

1) T induces an endomorphism 7' on EjA and T' is weakly-nilpotent
(i-e., for all fe E/A, there is » € N such that T(f) = 0); i.e., 7" is a Leray
endomorphism and A(7) = 0.
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2) The following diagram with exact rows is commutative.

0>A4—>E—->EA-0

0>A—>F—->E|A->0

It is easy to check that T is a Leray endomorphism if, and only if, T,
and 7' are Leray endomorphisms and

A(Tg) = A(T) + AT) .

Let X be a topological space and f: X — X a continuous map. Let H
denote the singular homology functor with rational coefficients. (Our main
reason for choosing this homology here is that it has compact supports.)
If f, = H(f): H(X) - H(X) is a Leray endomorphism, then we say that f
is a « Lefschetz map» and we define the Lefschetz number A(f) of f by

A(f) = A(fy) -

Let us recall that a space X is «acyeclic » with respect to H if H (X) =0
for ¢ > 0 and Hy(X) = Q is the field of coefficients. A space X is « con-
tractible » if there exists x,€ X and a continuous map h: X x[0,1] - X
such that h(x,0) =  and h(w, 1) = «, for all x€ X. Note that a contrac-
tible space is acyclic with respect to H.

We collect a few properties for Lefschetz maps.

(0.2.3) Let f: X — X be a continuous map and let ¥ c X absorb the com-
pact subsets of X under f. Then

Ay := {a € H(X): fi(a) € i, H(Y) for all n>0}

if f.-invariant and absorbs the elements of H(X) where ¢: Y — X
denotes the inclusion. Furthermore, f is a Lefschetz map if, and
only if, f«: Ay — Ay is a Leray endomorphism and, in that case,

A(f: X '—).X) = A(f*: -AY ﬁAy) .
Proor. Evidently, Ay is f.-invariant. Choose a € H(X). Since H has

compact supports, there exists K c X compact and be H(K) such that
j«(b) = a where j: K — X denotes the inclusion. Now, there exists nge N
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such that f*(K)c Y for all n>mng; ie., f*: K — Y is defined. Therefore,
(f")«(b) e H(Y) for all n>ngz. Hence froi.o(f"*)y(b) € H(Y) for all n>0.
Since the following diagramm is commutative,
Y X
= T Tf”"

we obtain that fix(a) = f=(j«(b)) = ix((/")«(b)) € Ay.
Finally, we obtain the remaining part of the assertion from (0.2.2).

(0.2.4) Let f: X — X be a continuous map and let ¥ c X be an f-invariant
subset which absorbs the compact subsets of X under f. Then, if
one of f: X - X or f: Y - Y is a Lefschetz map, both are Lef-
schetz maps and, in that case,

Af: X > X)=A(f: Y - Y).

Proor. This is a consequence of an argument similar to the one in (0.2.2)
and the fact that H has compact supports (cf. [6], II, lemma 1.2).

(0.2.5) Let f: X — X be a continuous map and let X be acyclic. Then f
is a Lefschetz map and

Af: X - X)=1.
(0.2.6) Let f,9: X — X be homotopic maps (f~g). Then
Af: X - X) = A(g: X - X)
provided one of these numbers is defined.

0.3. Measure of non-compactness.

The notion of «measure of non-compactness» is due to Kuratowski [11].
Let (Y, d) be a metric space. We define the « measure of non-compactness »
»(Y) of Y to be

y(Y) =inf {r > 0: there exists a finite covering of Y by subsets
of diameter at most 7}.
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Notice that y(Y) < co if, and only if, ¥ is bounded. Let f: X — Y be a
continuous map where (X, d') and (Y, d) are metric spaces. We define

y(f) = inf {k: yy(f(4)) <kyxz(A) for all A c X}.
One has the following properties (cf. [11,15]):

(0.31) O0<y(Y)<diam(Y) where diam(Y) is the diameter of Y.

(0.3.2) If AcBcY, then y(4)<y(B).

(0.3.3)  y(4A U B)<max {y(4), y(B)}.

(0.3.4) If A is compact, then y(4) = 0.

(0.3.5)  y(4) = y(A).

(0.3.6) If (Y, d) is complete and 4,5 4,2 4;> ... is a sequence of closed,
nonempty subsets of ¥ such that

then
A, =4,
i=1

is compact, nonempty and, for all neighbourhoods V of A, there
exists nmy € N such that A,c V for all n>n,.

(0.3.7) If f is a compact map, then y(f) = 0.

(0.3.8) 1If g: Y — Z is a continuous map then y(gof) <y(g) y(f).

(0.3.9) 1If f is a Lipschitz map with Lipschitz constant k, then y(f)<k.
(0.3.10) If X=Y and ,}Lnélo y(f*(X)) = 0, then f has a compact attractor.

Furthermore, if Y is a linear, normed space, we have the following (cf. [3]):

(0.3.11) y(4 4 B)<y(4) + »(B).
(0.3.12) 9y(r-A) = |r|-y(4A) for all re R.
(0.3.13) y(co A) =y(A), where co A denotes the closed, convex hull of A.

(0.3.14) y(f + g)<y(f) 4+ v(9)-

0.4. Condensing mappings.

Let X be a metric space and 2c X a subset. A continuous map
f: 2 - X is called « condensing » (k-set—contraction, with % <1, in [15])
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if p(f: 2 > X)<1. If f: X - X is a continuous map and 2 c X is a sub-
set, then f: 2 — X is called «eventually condensing » if there exists n e N
such that y(f*: 2 — X)<1l. A continuous map f: 2 — X is called « con-
densing on bounded subsets» if y(f: A — X) <1 for all bounded subsets
Ac Q. The notions of maps which are «compact on bounded subsets »
or are «eventually condensing on bounded subsets» are defined in a
gimilar manner.

0.5. Fixed point index.

The reference for this section is R. D. Nussbaum [18]. First, we fix a
class of spaces. We shall write X € ¥ if X is a closed subset of a Banach
space from which it inherits its metric and if X has a closed, locally finite
covering {Ca: « € A} by closed, convex sets 5Cc X. We shall write X € &,
if X € & and if A is finite. Note that if X € & than X is an absolute neigh-
bourhood retract (X € ANR).

Suppose that U and Y are open subsets of a space X € F such that
UcY and f: U - Y is a continuous map. Assume that Fix(f) = {x e U:
f(x) = @} is compact (possibly empty). Suppose there exists a bounded open
neighbourhood W of Fix(f), W c U, and a decreasing sequence of spaces
K,cY, K,e&,, such that

(1) K,oW;
@) (WNK,) cK,.;
(3) lim y(K,) = 0.

(0.5.1) DEFINITION (Nussbaum). If the above conditions are satisfied for
some W and some decreasing sequence {K,} we say that « f belongs
to the fixed point index class», and we define

ind(f: U ->Y) = lim ind(f: WnNn K, - K,) .
If K, is empty for some n, then ind(f: U — Y) is taken to be zero.

Note that a map f: U — Y which is weakly condensing (in the sense
of Eells-Fournier [4]) belongs to the fixed point index class. The fixed point
index defined in the above generality satisfies the familiar properties; e.g., the
excision, additivity, solution, and commutativity properties. Since we make
use of the contraction, normalization, and homotopy properties permanently,
we cite them here. We need one more definition.
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(0.5.2) DEFINITION. Suppose that X € F, Y is an open subset of X, and
f: Y — Y is a continuous map. Let M c Y be a compact, f-invariant
set. Assume that there exists an open neighbourhood W of M and
a decreasing sequence of sets K,e F,, K,c Y, such that K,> W,
fWNK,)cK,,, and }1_;[010 y(K,) = 0. Then we say that f: Y -Y
has property (L) in a neighbourhood of M.

We have the following properties.

(0.5.3) CONTRACTION. Suppose that Y, Z are open in X € &, U is open
in Y, and Zc Y. Then, if f(U)c Z,

ind(f: U - Y) =ind(UN Z - Z) .

(0.5.4) NORMALIZATION. Suppose that X € F, Yisopenin X, and f: Y Y
is a continuous map which has a compact attractor M.

Then, if f has property (L) in a neighbourhood of M, f belongs
to the fixed point index class, f is a Lefschetz map, and

ind(f: Y >X) = A(f: Y - Y).

(0.5.5) HomotorPY. Suppose that XeF, U, Y are open in X, and f:U X
x[0,1] — Y is a continuous map such that

8 = {x € U: there exists ¢ such that f,(z) = f(x, t) = x}

is compact. Assume there exists a bounded open neighbourhood W
of 8§ with W c U and a decreasing sequence K, € F,, K, c Y, such
that K, > W, f((W,N K,)x[0,1])c K,,,, and lim y(K,)=0. Then

ind(f;: U — Y) is defined and constant for 0<i<1.

Since it is difficult to tell whether a map belongs to the fixed point index
class, we shall select a few examples of those given in [18] and [4]:

(0.5.6) EXAMPLES:

(1) Suppose that X € F, U is an open subset of X, and f: U — X
is a continuous map such that Fix(f) is compact. Assume that
there is an open neighbourhood W of Fix(f) such that f: W — X
is condensing. Then f belongs to the fixed point index class.
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(2) Suppose that X € &, U is an open subset of X, and f: U - X
is a continuous map such that Fix(f) is compact. Assume there
exists a compact set M > Fix(f) and a constant k, 0 <k < 1,
such that d(f(x), M) <kd(k, M) whenever # € U and d(z, M)<r,
r a fixed positive number. Then f belongs to the fixed point
index class.

(3) Let U be an open subset of a Banach space X and f: U - X
a continuous map such that Fix(f) is compact. Assume that f
is continuously Fréchet differentiable on some open neighbour-
hood of Fix(f) and is eventually condensing on some open neigh-
bourhood of Fix(f). Then f belongs to the fixed point index class.

1. — Main results.

1.1. Index of ejective sets and fived points of index zero.

In this paragraph, we give generalizations and extensions of character-
izations due to C. C. Fenske and H. O. Peitgen [56]. First, we give a formula
which allows calculation of the index of certain fixed points in terms of
generalized Lefschetz numbers.

(1.1.1) THEOREM. Let Y be an open subset of a space X € . Assume that
f: Y — Y is a continuous map which has a compact attractor M and

has property (L) in a neighbourhood of M. Let Fc Y be a closed
subset, assume that

(%) fOINT)c Y\ JF),
and f: INF — Y\F has a compact altractor. Then
ind(f: W—Y)=A(f: Y - Y)—A(f: I\F - Y\F)
for all open subsets W such that

Fix(f: W - Y) = Fix(f: F - Y).

Proor. Note that f has no fixed points in WN\F = W N (Y\JF'). Hence
the additivity property of the index implies that

ind(f: ¥ - Y)=ind(f: W - Y) +ind(f: I\F - Y).
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Condition (%) and the contraction property yield

ind(f: I\F — Y\F) = ind(f: I"\F - Y),

and, finally, the normalization property implies the assertion.

The next result is fundamental for paragraph 1.3.

(1.1.2) COROLLARY. Let Y be an open subset of a space X € F. Assume

(%)

that f: Y — Y is a continuous map which has a compact attractor M
and has property (L) in a neighbourhood of M. Let F be an ejective
set for f relative to W, and assume that

J(TNF)c T\F.
Then

nd(f: W—>Y)=A(f: Y - ¥)—A(f: INF - T\ JF).

PrROOF. According to (0.1.4), f: Y\ F — Y\JF has a compact attractor.

(1.1.3)

(*)

THEOREM. Let Y be an open subset of a space X € F. Assume that
f: Y =Y is a continuous map which has a compact attractor M and
has property (L) in a neighbourhood of M. Let F CY be a closed sub-
set, assume that

HYNF) c Y\F,

and f: YNF — Y\F has a compact attractor M'. Furthermore, as-
sume that one of the following conditions is satisfied.

(1) The inclusion j: YNF — Y induces an isomorphism H(j) in
homology ;

(2) there exists am open subset U of Y such that Fc Uc U c Y\ M’
and the inclusion j: YNU — Y induces an tisomorphism H(j)
in homology;

(3) there exwists a meighbourhood V of M' in Y\F and the inclusion
j: V=Y induces an isomorphism H(j) in homology. Then

ind(f: W -Y)=0
for all open subsets W of Y such that

FcW and WNFix({N\F=20.

11 - Annali della Scuola Norm. Sup. di Pisa
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Moreover, A(f: ¥ — Y) =0 implies
Fix(f\NF # 0.

Proor. Note that both Y\ F and Y\ U are neighbourhoods of M’ disjoint
from F. Hence it suffices to prove the assertion using (3).

Note that V absorbs the compact subsets of Y\ F, and hence, in the no-
tation of (0.2.3), we have that A, ci,H(V)c H(Y\F) where i: V— Y\ F
is the inclusion. Moreover, according to (0.2.3), we have that

Alfe: Ay - A7) = A(f: TNF - T\F) .

Next, observe that if a € H(Y), then j,'(a) € H(V), and hence, according
o (0.2.3), there exists n € N such that

fa(i. (5N @) € Ay C i (V).

Now we have a commutative diagram

Vi— Y

1l

\F

SN

and thus we obtain

fu(@) = L, 14,(j,(a)) € 1,(4y) c H(Y) .

Next, observe that fu(4dy)c Ay and fily = lef, imply that f.(l4(4y)) C
cly(4y). Applying (0.2. 2) we obtain

f Y > Y (f* l*(AV) - l*(Av))
It remains to show that
A(f*: l:(Ay) — l*(Av)) = A(fs: Av - Ay) .

This follows from (0.2.1) once we have proved that l.: 4, — I (4y) is an
isomorphism. Suppose that 1, is not injective; i.e., there is a € A, such
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that l«(a) = 0 and a = 0. From the definition of 4,, we have that @ = 7,5

for some be H(V), b+ 0. Now, li(a) = 0 implies j*1,4,(b) = 0. However,
§1l,4,(b) = b, and this is a contradiction.

PrOBLEM. Does (1.1.3) remain true if we replace the assumption (%) by
the assumption that F is ejective?

We can only give a partial answer to this problem. Similar results have
been obtained by Nussbaum in [17] and in [5].

(1.1.4) PROPOSITION. Let P be a closed, conver subset of a Banach space,
and let f: P — P be a continuous map which is condensing on bounded
subsets. Assume that x, € P is an ejective fiwed point for f relative to W,
and assume that P\ {w,} is contractible.
Then \
ind(f: W —-P)=0.

Proor. Choose r > 0 such that B.(x,) " Pc W.
Define g: P — P by

Ty + 1y — o) [@—y[ 7, i |@—y|>r
oly) = )
Y, if |w—yl<r.

Note that if A c P, then p(4)cco({r,} U A). Thus,

7(e(4)) <max{y({@y}), y(4)} = p(4); ie., y(e)<1.
This implies y(fop(4)) <y(f: B,(#,) N P — P)-y(A) for all A c P; i.e., fop:
P — P is condensing.

Observe that f=({zo}) N B.(w,) = {w,} whence foo(P\{%}) C P\{%},
since o(P\{#o}) Cc P\{x,}. Now we observe that

y((fo)"(P) < (y(f: B,(@,) N P —P))"-2r; e, lim ((fog(P))") =0.

According to (0.3.10), this means that fop: P — P has a compact attractor.
Finally, we can apply (1.1.2) and obtain

ind(f: W — P) = ind(f: B,(#,) N P — P) = ind(fop: B,(x,) N P — P)
= A(fop: P — P) — A(foo: P\{%} — P\{o})
=1—-1=0

since P and P\{r,} are contractible.
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1.2. Mappings leaving a wedge invariant and the calculation of some Lefschetz
numbers.

Following Schaefer [20], we call a closed, convex subset P of a linear
normed space a « wedge » if ¢ € P implies t-x € P for {>0. We call P a
«cone» if P is a wedge and v € P, v % 0, implies that —a ¢ P. If P is a
wedge which has the additional property of a cone for at least one point
(i.e., there exists z, = 0, such that — @, ¢ P), then we say P is a « wedge
missing a ray». For r> 0, we set

B,={weP: |z|<r} and 8,={xeP:|z|=r}.
In the forthcoming paragraphs we shall deal with the following hypotheses.
H,: There exists m € N such that

f~(8,) c B,

and, for all € B,, there exists n,e N
such that

f*(x) € B,
for all n>n,.

H_: There exists m € N such that
f(8,) c P\B,.
and, for all # € P\ B,, there exists n, e IN such that

f*(x) € P\B,
for all n>mn,.

H,: There exists m € N such that
fi(8y) c B,

for all >m, and there exists n € N such that
f(B:) C B, .

There exists m € IN such that

148,) c P\B,
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for all i>m, and there exists » € N such that
f*(P\B,) c P\B, .

We have the following property which is fundamental for our further
considerations (cf. (2.9) of [8]).

(1.2.1) ProOPOSITION. Let P be a wedge missing a ray and let f: P — P be
a continuous map. Assume that one of the conditions H,, H.,, H,,
or H. is satisfied. Let

B,, in cases H, and H,
B— _
P\B,, in cases H, and H_ .

Then (W)Cc W, f: W —~ W is a Lefschetz map, and A(f: W — W)=1,
where o
W=UfB).

i=1

ProOF. Note that W is open, f-(W)c W, and, since B c W, we obtain
f(W)c WU BcW. Choose y, € P such that —y,¢ P. We define p: P— P by

z, if xeP\B
o@) = { rx|w|*, if xeB and B= P\JB,
r[ryo + |2l @— yo)]lrye + |@|(@—9o)|~*, if eB and B=B,.

Observe that o(B) c 8, and hence o(W) c [(P\B) "W]U §,cW. Moreover,
ow ~ Idy (cf. (2.2) of [8]).

Similar to the proof of (2.9) in [8], one obtains the assertion as a con-
sequence of the following facts:

(1) B s contractible (cf. (2.2) of [8]) and absorbs the compact subsets of W
under fmop.

(2) If i: B — W denotes the inclusion, then i, H(B) is acyclic, f.-invariant,
and fi 1= fyli,jum = Id. Thus, A(fy) = 1.

(3) Let f, denote the quotient homomorphism of f: H(W) — H(W) and Fa:
Then f, is weakly nilpotent. This is a consequence of (1). Hence A(f,)=0.

(4) Since f, and f, are Leray endomorphisms, one concludes that f,: H(W) —
— H(W) is a Leray endomorphism and

A(fs) = A(fe) + A(fe) =1+0=1.
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The next proposition is only designed for section 1.4. It can be obtained
by going through the proof of (1.2.1) with obvious modifications.

(1.2.2) PROPOSITION. Let P be a wedge missing o ray, X C P an open subset,
and f: X — X a continuous map. Assume that, with the motation
of (1.2.1), Bc X and that the assumptions of (1.2.1) are satisfied.
Then f(W)c W, f: W —~ W 4is a Lefschetz map, and

Af: W>W)=1.

1.3. Condensing mappings of wedges.

The following result for cones is due to Nussbaum [17].

(1.3.1) PROPOSITION. Let P be a wedge missing a ray in a Banach space,
and let f: P — P be a continuous map which is condensing on bounded
subsets. If 0 € P is an ejective fixed point for f relative to U, then

ind(f: U —>P)=0.

ProoF. According to (1.1.4), it suffices to show that P\{0} is contrac-
tible. To see this, choose r > 0 and observe that the radial retraction
0: P\{0} — 8, defined by

o(@) = ra|ux]-

is homotopic to Id, . Since P is missing a ray we find y, € P such that
—yo¢ P. Define h: 8, x[0,1] — 8, by

h(@, t) = r(tyo + (L — 1)) [tyo + A — D)@ [*;

this homotopy is well defined by the choice of y,.

Nussbaum’s proof substantially uses the fact that, if P is a cone, then
0€ P is an extremal point.

The following results for mappings which are compact on bounded sets
are due to G. Fournier and H. O. Peitgen [8].

(1.3.2) PRrOPOSITION. Let P be a wedge missing a ray in a Banach space,
and let f: P— P be a continuous map which is condensing on bounded
subsets. Assume that H, or H. is satisfied.

Then
ind(f: B, - P)=0.
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ProoF. We shall use the notation of proposition (1.2.1). Note that we
have p(4)c co{{0} U A} for all Ac P whereby y(g)<1; i.e., fop: P - P is
condensing. Since

y((foo)"(P)) <y((foo)**(f(B,)) <2r(y(f: B, = P))=,

we have that 111_{90 y((fop)"(P)) =0 and, according to (0.3.10), this implies
that fop: P — P has a compact attractor.

Note that 8,c W, thus o(W)c W and foo(W)c W. Moreover, F = P\ W
is closed and ejective for f relative to B,. Since f,z = fogg,, F is also ejec-
tive for fop. Now we can apply (1.1.2) and obtain

ind(f: B, — P) = ind(fop: B, — P) = A(fop: P — P) — A(fop: W—>W).

The first of these Lefschetz numbers is 1 because P is contractible. The
second, however, is also 1 since fog,;; ~ f, and thus we can apply (1.2.1).

(1.3.3) PrOPOSITION. Let P be a wedge missing a ray in a Banach space,
and let f: P — P be a continuous map which has property (L) for
each compact, f-invariant subset and which is eventually condensing
on bounded subsets. Assume that either H, is satisfied and there exists
e € N such that

(%) B,c U8,

i=1

or H, is satisfied.
Then, f

we have that W is f-invariant, f: W — W has a compact attractor, and
ind(f: B, - P)=1.

ProOF. Note that either H, together with condition (%) or H, implies
that there exists m, € N such that

B,US,c UfriB)c Uj«B)=F.
=1 i=1

G=

F is closed in P and, since f~Y(W)c W and B,c W, we have that Fc W.
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Moreover, F is f-invariant because

me—1

f(F)c Uf¥B,)UB,CcF.
i=1

Now we use F to show that f: W—W has a compact attractor M:

we observe that B, c Lj f~#(B,) implies that

i=1

—_ Mo —_
f«(By) c Uf(B,)
i=1
for all me N; in fact, if ¥ B,, then there are 4,,...,i,€ N such that
1<i;<moy m— (i + ... + %) <m,, and

frofiro ... ofs(a) € B,

for je{1,..., s}
Since f is eventually condensing on bounded subsets of P, we have that
f*(B,) is bounded for each n € IV, and therefore we can find R > 0 such that

Mo

Ufi(B,) C Be.

i=1

Now choose ke N such that y(f*: By —~ P)<1. Let n > m, 4 k and let
Piy¢:€ N be chosen such that n—i=p;-k + q;, 1€{1,...,me}, p;>1,
and 0<q;<k. We have

y("(F)) <, max y(f~i(B,) = max y(f*f**B,)

1.ccamy 1,ceag

<. max y(f%: By — P)- (y(f*: Bx — P))™-2r;

i=1,.My

hence lim y(f*(F)) = 0. According to (0.3.6), we obtain that

M=

is compact, nonempty, and, for all open neighbourhoods U of M, there
exists ny € N such that

fi(F)cU

whenever ¢{>ny,. Since F is f-invariant, and since M c Fc W, we have
that M is f-invariant.
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It remains to show that M attracts the compact subsets of W. Let
K cW be a compact subset. There exists nx € N such that

KEcUfB,).
=1
Hence f"™=(K)c B,V ..Uf*(B,)cFU..Uf*%F)cF; that is,
fK)cf=F)cU, if i>ny -+ ng.

Now, f has property (L) in a neighbourhood of M; thus (0.5.4) implies
that f: W — W belongs to the fixed point index class and

ind(f: W—W)=A(f: W->W)=1.
Finally, the excision and contraction properties together with (1.2.1) imply
ind(f: B, - P) =ind(f: B, -~ W) =ind(f: W - W) =1.

PrROBLEM. Does (1.3.3) remain true without assuming condition (x)?

We can only give a partial answer here (see also 1.5.2).

(1.3.4) PROPOSITION. Let P be a wedge missing a ray in a Banach space,
and let f: P — P be a continuous map which has property (L) for
each compact, f-invariant subset and which is eventually compact on
bounded subsets. Assume that H, is satisfied. Then if

W= Uf*B,),
i=1
we have that W is f-invariant, f: W — W has a compact attractor, and
ind(f: B, - P)=1.
ProoFr. Choosing k € N such that f¢(B,) is compact, consider
V=B,Nf*B,) and K=fV)cB,cW.
We have that K is compact in W. From H, and the definition of W, we have
that, for each x e W, there exists n,e N such that f*(x) e B, whenever

n>n,. This means f7=(x) € B, N f*B,) = V, and therefore we have that

Wc Gf—i(V) .

i=1
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Since K is compact, we find #n e N such that

KcUf#V)c UfF+K).
i=1 i=1

n+k—1
Set M = |J fi(K). Then M is f-invariant since

i=0

#any ¢ U(E) ¢ 3 U f(B) ¢ M0 U F(B) I .
i=1 i

=0

Moreover, M absorbs the compact subsets of W. To see this, let L be a
compact subset of W. Then

Lc Uf#4V) for some jeN
and hence

fiH+ (L) C O fieey (V)
i=0

i=

c U )
i=0

\

for all e N.
For the final part of the proof, see the last part of the proof for (1.3.3).

Combining the results of this section, we obtain a fixed point principle
that can be regarded as an asymptotic version of the principle due to
M. A. Krasnosel’skil [12] which has come to be known as the principle for
mappings « expanding » or « compressing » a cone.

(1.3.5) THEOREM. Let P be a wedge missing a ray in a Banach space, and
let f: P — P be a continuous map which is condensing on bounded
subsets. Let r = r, > 0. Assume that one of the following conditions
is satisfied:

(1) H;
(2) Hy, and f is eventually compact on bounded subsets;

(3) Hy, and B, C (j (B, for some m,.

i=1
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Let r = ry, > 0. Assume that one of the following conditions is satisfied.
(4) Ho;
(8) Hyjs
(6) 0 € P is an ejective fiwed point for | relative to B, and r, <r,.

Then

+1, if ri>m1,
ind(f: U—P) =
-1, if rn<<ry.

Thus, f has a fized point in
U= {xeP:min{r,r} < |z| <max {r,r}}.

ProoF. This is an immediate consequence of the additivity property
for the fixed point index and (1.3.1)-(1.3.4).

1.4. Ewventually condensing mappings of wedges.

Propositions (1.3.1) and (1.3.2) do not seem to generalize to mappings
which are condensing on bounded subsets and which have property (L) for
each compact, invariant subset. However, we still can obtain a fixed point
prineiple.

(1.4.1) THEOREM. Let P be a wedge missing a ray in a Banach space, and
let f: P — P be a continuous map which has property (L) for each
compact, f-invariant subset and which is eventually condensing on
bounded subsets. Let r = r, > 0, and assume that

() H, s satisfied; or
(2) H, is satisfied and B, C Lj f~(By,) for some m, € N.

i=1
Let r =r,> 0, and assume that
(3) H, is satisfied; or
(4) H., is satisfied; or
(8) 0 € P is an ejective fized point of f relative to B, and f(P\{0}) c
c P\{0}.

Then, if r, > ry,, we have that

ind(f: U > P)=1.
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Thus, f has a fized point in
U={@meP:r<|s|<r}.

PROOF. According to (1.3.3), if W= U f~i(B,), then W is f-invariant,
i=1

f: W — W has a compact attractor, and ind(f: B, — P) = 1.

Case where 0 € P is ejective: f(W\{0}) C f(P\{0}) N W c W\{0} and,
moreover, F = {0} is an ejective fixed point of f: W — W.

Other cases: Note that B, c B, cW. Hence, if W' = U f(P\B,),
i=1
then F = P\W'c B,\W'c WN\W' and f(W')c W'. Thus, we have that F
is an ejective set for f: W — W and f(W\F)c W\JF.

According to (1.1.2), we have in all cases that
ind(f: B,, ~ P) = ind(f: B,, -~ W) = A(f: W — W) — A(f: W\F -W\JF).

Now, (1.2.1) implies that A(f: W — W) = 1. Since
WNF = Uf(W\B,),
i=1

we can apply (1.2.2) to the mapping f: W— W> B, and obtain A(f:W\F —
—W\JF)=1. Thus, ind(f: B, — P) =1—1=0, and finally we obtain the
assertion by using the additivity property of the index:

ind(f: U — P) = ind(f: B, —P) —ind(f: B, >P) =1—0=1.

ProBLEM. Do (1.3.1), (1.3.2) and (1.3.5) generalize to mappings which
have property (L) for each compact, invariant subset and which are even-
tually condensing on bounded subsets?

1.5. Special wedges.

In this section, we shall restrict attention to «special wedges»; that
is, a wedge P for which there exists y, € P such that |z 4 y,|> |»| for
all x € P. Notice that if 4> 0, for all x € P,

o+ Ayo]| = Alw-A7* + 4o > 02| = | .

The following lemma is our main reason for considering this type of wedge.
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With its aid, it will be possible to eliminate one of the crucial assumptions
which were necessary in 1.3.

(1.5.1) LEMMA. Let P be a special wedge in a linear normed space, and let
R>0. For all ¢ > 0, there ewists a retraction o: Bp — 8 such that

Qis, = Idg, and y(o)<1+e.

ProOF. Choose y,€ P such that |y) =1 and |z + y,| > || for all
x € P. Now, for all » e N, define a map h,: B —~ P by

ho(x) = |o|R'x + (1— |#|R"?) 2nRy, .

Observe that, for all 4 EBR, ha(A)cco(A U {2nRy,}), and therefore
. p(ha(4)) <p(A); i.e., p(hy: Br - P)<1. Furthermore, we have the esti-

mates
|Ba(@)] = | |2 B2 + (1— || B-2)2nRy,

> 2nR[1— |#| B[y, | — |o| B2
> 2nR[1— |#|R-|— R>R

provided that || <(n —1)n—'R and since P is a special wedge
Ihn(@)] > 2| B 2] > (n—1)n~?)2- B
provided ||| >(n—1)n—tR. This implies that

hn(ER) c P\\Br
where r = ((n —1)n~!)2R.
Next, we define g,: P\B, — 8, by

(@) = rlo| e,

Then g,(A)cco(4d U {0}) for all Ac P\B,, and hence y(o.(4))<y(4);
i.e., y(0.: P\B, > P)<1.
Finally, define n,: S, — Sz by

Tt.(2) = Rr1x.
Then
Y <B-rt= (n(n—1)1)2 =14 2(n—1)! 4 (n—1)-2
<14+ 3mn—1)1 if n>2.
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To obtain g: Bz — 8z, setting
0 = 7,00,0h,, We have

p(0) <Y(a) y(0a) Y(hn) <1+ 3(n — 1)~

(1.5.2) PROPOSITION. Let P be a special wedge in a Banach space, and let
f: P — P be a continuous map which is condensing on bounded sub-
sets. Assume that H, is satisfied.

Then
ind(f: B, - P)=1.

Proor. Set W= Uf#¥B,). Then W>B, is open in P, f(W)cW,
i=1

fY(W)c W, and, according to (1.2.1), we have that A(f: W — W) =1.

Now, if ¢: B, — 8, is any retraction, define m: W — W by

o(x), if zeB,

w(x) = -
w, it e WN\GB,.
Since B, is convex, we have that 7wg,~ Idg, and mw~ Idy. Set g:= mof:
W — W, and observe that g ~f; hence A(g: W — W) = A(f: W W) = 1.

Now, observe that W c U g-i(8,).
i=1
In fact, if 2 € W, then there is n € IV such that f~(x) € B,. Suppose that n
is minimal with this property; i.e., fi(x)¢ B,, 1<i<<mn. Then g*(»)=
= mof*(x) € 8,.
Next, since there exists m € IV such that f~(S,) c B,, we have that

S,cUgiS,)=FcW.
i=1
Moreover, one obtains from f=(S,)c B, that
m
9(8,) = (mof)»(8,) c U fi(8,) .

i=0

Since f is condensing on bounded sets, we have that fi(B,) is bounded,
and therefore we can find R > 0 such that

Gﬁ(gr) CBgr.
i=0
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Now, choose ¢ > 0 such that
k=14 ¢&)y(f: Be—>P)<1.

According to (1.5.1), we may assume that y(p)<1 -+ ¢ and therefore
y(w)<max {y(o), y(Idw)}<1 + e. Since 8,c F, one cbtains that F is f-in-
variant. We compute y(g*(F)) for n > m:

y(9"(F) < ;max y(9"i(8,)) <y(g: Bz — P)™-2r <kr—m-2r.

Hence, lim y(9*(F)) = 0, and, from (0.3.6), we obtain that M = ) g(F)c
i=0
c F cW is compact, nonempty, and, for all neighbourhoods U of M, there
exists nyeN such that ¢gi(F) c U whenever ¢ >ny. Moreover, we have that M
is g-invariant since g(F)c F.
Furthermore, M attracts the compact subsets of W under g. To show

this, let K be a compact subset of W and let U be an open neigh-
oo 104
bourhood of M. Since K c Uf-(B,), we find ngy e N such that K c Uf#B,);

ng i=1 ng—1 ng—1 i=1
ie., Kc Jg8,). Now, g«(K)cS8,U UgiS,)cFuU Jg'(F)cF. Hence,
i=1 i=1 i=1

g{(K) c g-"=(F) c U, whenever i>mng -+ ny.
Now, the normalization property for the index implies that

indlg: W—-W)=A4@g: W->W)=1,

and, since g(x)~ « for all xe W\ B,, we have that ind(g: B, - W) =
= ind(g: W — W). Thus, to obtain the assertion, we have to show that
ind(g: B, -~ W) = ind(f: B, — P). First, ind(f: B, — P) = ind(f: B, - W)
by (0.5.3). Then, consider the homotopy

h:B,x[0,1] - P

defined by h(z,t) = tf(x) + (1 —t)g(x). We have that y(h(A x [0, 1])) <
<y(co(f(4) U g(4))) <ky(4) for all A c B, and that h(z, )+ @ for all (z,1)e
€ 8, x[0,1]. Therefore, from (0.5.5), it follows that

ind(g: B, — W) = ind(f: B, — W).

(1.5.3) THEOREM. Let P be a special wedge in a Banach space, and let f: P — P
be a continuous map which is condensing on bounded subsets. Let
r = r, and assume that H, or H; is satisfied. Let r = r, and either
assume that H . or H. is satisfied or assume that 0 € P is an ejective
fiwed point of f relative to B, and r,<r,.
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Then
+1, dfri>n

ind(f: U - P) =
—1, ifrn<nr,

and f has a fized point in
U = {weP:min{r,, r} < |#| < max{r, r}}.

Proor. This is immediate from the additivity property of the fixed
point index, (1.3.1)-(1.3.5), and (1.5.2).

1.6. Continua of solutions for mappings leaving a wedge imvariant.

Let P be a wedge missing a ray in a Banach space, and let a,b € R,
@ <b. In this paragraph, we consider mappings F: P X (a,b) — P and
wish to establish conditions under which the nonlinear eigenvalue problem

Fx, ) =2

admits a continuum (i.e., a closed, connected set) of solutions. Our result
here is a generalization of Peitgen [19] where the case of mappings which
are compact on bounded sets is treated. Since the structure of the proof
is taken from [19], we only outline the main steps here and refer to [19].

First, we fix some notation.

Let r, R: (a,b) - R\ {0} be continuous maps such that r(1) < R(4)
for all 4 or (1) > R(A) for all A. If 4y, 4, € (a, b) are fixed elements then
we set

8y ={weP: || =1k}, Bo={weP:|z|<r(i)},

8, = {weP: |z| =R(A)}, Bi={xeP:|z|<R)},

Z = Px(a,b),

Z} = {(x, ) € Z: min{r(1), R()} < || < max{r(1), R(A)}},
and

UF = {(x, 1) € Z: min{r(1), R(A)} < |#| < max{r(3), R(A)}}.

If QcZ, then (1) = {weP: (v, A) € 2} is the section over 1. Observe
that UPF is open in Z.

(1.6.1) THEHEOREM. Let F:Z — P be a continuous map which is condensing,
and assume that F(z, 1) # x for all (v, 1) € ZENUE.
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Let Ay, 2, € (a, b) be fixed elements. Let r = r(4,), and assume that
F(-,2): P — P satisfies

— condition H,; or
— condition H, and is eventually compact on bounded subsets; or
— condition H, and there is m,€ N such that
Mo
B.c 2.L=J1F(-, A)i(B,); or

— condition H, and P is a special wedge.

Let r = R(4,), and assume that F(-, A,): P — P satisfies
— condition H_; or
— condition H.; or

— 0 € P is an ejective fived point of F(-, A,) relative to B, and
R(A) < r(4).

Then
(i) for any A€ (a,b),
—1, if r(A)<R(A)

ind(F(-, 2): UX2) - P) =
+1, if r(A)>R(A);

(ii) for amy &> 0, there exists a continuum
Cec 8= {@x, NeZ: F(x, 1) = x, v+ 0}

such that (®, A) € C; implies x € UF(A) and A€ [a + & b— &l;

(iii) the projection of C. onto the A-axis fills the entire interval

[a 4 & b—&]

ProoF. Let us assume that 7(A) < R(4) for all A€ (a,b); the case
r(A) > R(A) is proved similarly.

(1) Since F(x, 1) =« for all (z, A) € ZP\UE, the generalized homotopy
property (cf. [14], p. 245) together with the index computations of the
previous paragraphs give

1 = ind(F(-, A): Bgy — P) = ind(¥(-, A): B,y - P)
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and
0 = ind(F(-, 4): Bray — P) = ind(F(-, A): Bpy > P) ;

thus, we obtain from the additivity property that
ind(F(-,4): UXA) > P)=0—1=—1 for all 1€ (a,d).
(2) Choose ¢ > 0. Let K. be the set
K= {@®AeUF:F@, 1) =m0+ e<i<b—e}.

Then K. is compact (cf. [14], p. 245) and (1) implies that K. 0. Now
assume that there is no continuum joining K(a + ¢) = 0 with K (b — €)= 0.
Then, by a lemma of Whyburn ([21], Chap. 1, Theorem 9.3), K. decom-
poses into two disjoint closed subsets K,, K, such that

K, UK,=K:, HKea-+e)x{a+ e cK, and K¢b—¢)xX{b— ¢} c K,.

Choose 2 open in UF such that K,cQ and K,N 2 = 0. Observe that
the generalized homotopy property (cf. [14]) and the excision property
imply (A>a -+ &)

ind(F(-, 2): 2(2) — P) = ind(F(-, a + ¢): Q(a + &) - P)
= ind(F(-,a+¢): Ufa+¢e) -P)=—1.

However, since 2(b— &) N K¢b— ¢) =0, we have ind(F(-,b—e): Q(b—e)—
— P) = 0, and this is a contradiction.

It is obvious from the above proof that (1.6.1) can be generalized to
mappings considered in the previous paragraphs after the generalized homo-
topy property has been extended appropriately. This, however, is omitted
here for reasons of length.
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