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On the Approximation of Elliptic Operators
with Discontinuous Coefficients.

WILLIAM H. MC CONNELL (*)

Summary. — Implicit in the application of many physical theories is the replacement
of differential equations with discontinuous coefficients by ones with constant coef-
ficients. Whenthe coefficients depend upon only one independent variable, sufficient
conditions are proven which determime if such a procedure truly approximates the
actual solution. The new system is comstructed and applications to boundary value
problems, spectra and physical examples are discussed. It is interesting that, in
general, the constant coefficents are meither close im a pointwise semse mor im an
average sense to the discomtinuous coefficients.

The elastic deformation of most structural metals and composite media
is properly modeled by partial differential equations with discontinuous
coefficients. Since representations of such solutions are difficult to obtain,
more tractable approximate theories intending to characterize the mol-
lification of the actual solution are often used. The approximating theory
is to reflect the gross response of the body while masking the fine structure
of the material. In particular, the replacement of discontinuous coefficients
by constant ones is common in applications to structural metals (Timoshenko
and Goodier [12]) and composite media (Pagano [8]). In Theorem 2 we prove
sufficient conditions to determine when such an approximation is valid in
the case of laminated composite media, that is, when the coefficients depend
upon one and only one coordinate. In fact, Theorem 2 contains the explicit
criterion for selection of suitable constant coefficients. The proof of Theorem 2
is based on Theorem 1, which considers sequences of elliptic systems whose
coefficients need not converge in L, but are still shown to affect a limiting
system. Similar results for spectra are given in Theorem 4.

(*) Division of Applied Mechanics, Stanford University, Stanford, Ca. 94305.
Pervenuto alla Redazione il 14 Giugno 1975.
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Spagnolo [11] has developed compactness arguments for sequences of
single uniformly elliptic operators demonstrating that, like Theorem 1,
there always exists a limiting operator. Marino and Spagnolo [7] have
determined the form of this new operator for the special case when the
coefficients of the sequence are diagonal and products of functions of one
variable. Khoroshun [5] and Pagano [9] have considered special (piece-
wise quadratic) solutions to derive theories similar to Theorem 2, but their
methods do not generalize to deal with every H' solution.

1. — Interior estimates and results.

Let 2c E* be a bounded domain with a C! boundary.
L,(2) will denote the classical Banach space of equivalent real-valued,
measurable, pth-power summable functions under the norm

f "L,(a) = [ f|f|” dx]“” .

A vector function f(x) = (fi(«,)), 4, =1,...,n, is said to belong to L, (£2)
iff each component f,e L, (£2), and

”f ”L,,(n) = |”f ”|L,(9)~

The Sobolev Space H(RQ) is the completion of *(£2) under the norm

) 4l ey ={ [Tt + Wup ol
Q

A vector valued function u(x) is said to belong to H(Q2) iff each component
does and

lul gyoy = {J[uiui + iy 5] dx} .
o]

Repeated subscripts are to be summed 1 to n. The strong derivatives of u are
denoted w ;. The Sobolev Space Hy(R2) is the completion of Cy(£2) under
the norm (1).

The bulk of the paper deals with systems with n dependent variables
in E~, but the general ideas apply to single equations with only superficial
alterations. A function uwe H(Q) is said to be a weak solution to

(Cijmatry),; =0, 1=1,..,m,
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iff for all ne Hy(Q)

(2) fCiikluk,lni,fdm =0.
Q

It will be assumed that C possess the ellipticity property that there
exist A, 2> 0 such that for all symmetric e (1)

(3) A6is45< Cisy €15 €1
and
A > max esssup |Cy;u(@)| .
4,9,k xR
Also C will be assumed to satisfy the symmetry properties

(3/) Ciﬂcl = Oiilcl = Giilk .

Gurtin [5] discuss the physical basis of these assumptions for elasticity.
For the most part, the analysis deals with coefficients C that depend
only upon the n-th independent coordinate, x = (y, ..., )

4) C=C@,).

Lemma 1, Theorems 1, 3 and 4 deal with families {C°},.,,, such that (3),
(3') and (4) hold uniformly. For solutions of (2) the stress 7¢ is defined

o __ o ] g\ __ (o o
Ty = %Cijkz(“k,l + ) = Chqug,; .

LEMMA 1. Let u® be a weak solution of (2) associated with Co. Suppose (3),
(3") and (4) hold with C = Ce. If there ewists ¢ << oo where ||u’| g o) < ¢, then
there exists ue H'(£2), v € L,(R2) and a sequence {u”, t*}, such that as r — oo,

O
o =0, ugmu, TIm T

Or — N J— —
u may Yo a=1,..,n—1,

and

L (S ) — 2
Tin g Tinr L 1, ..,n.(3

(*) This is more restrictive than strong ellipticity but is advantageous in that no
continuity assumptions are required to bound ||Vaul|;q)-
() ¥ means weak convergence in the space ¥.
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REMARK. The bound [u?| gy < ¢ may be obtained from suitable boundary
values. These well-known arguments will be sketched in the next section,
but Lemma 1 and Theorem 1 are not subordinate to any particular boundary
condition: they are interior results.

Cauchy’s inequality will be used frequently. It states that for any
€ij = Cjiy dij = d,',‘ and &> 0,

& {3 1 [
€:; 0o <35 Cfin €0+ — Chindydy ,
2 2¢e
gince

1

_ 1
Ve dii) Ciin (\/3 Cri— ngu) .

0<(\/§3i5—

Proor oF LEMMA 1. The existence of u and t follow from the hypothesis
that |u|gq <c and the weak compactness of closed balls in H*({2) and
Ly(L2). For h~0

Arui(x) z% (wi(z + e h) — uy(2)) , a=1,...,n—1

and
Q,={zlre 2 and dist(», 02)> o} .

The following difference-quotient technique is similar to that discussed
in Ladyzhenskaya and Ural'tseva [6]. If ne Hy(2,,) and |h|< /2,

fogikl(AZ ui'.),m;,,'dw =0.
2

Define e C3’(£2,,,) such that =1 on £,. Then choosing

h 2

Ni= Aaugc
— Ah,,0
v; = A

fO%kt”i,j”k,z¢2d$ =— 2"‘0%k;§'€,5vivk,,dw =dJ.
Q Q

From (3) and (3')

';:J‘(/Di.jvi.i + 0,002 de<d .
Q
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Using the integration by parts formulae,
[ —f(v”)zmijv“ 0L, do— 2fv”v,c Ldo.
Q
Using Cauchy’s inequality and the above identity,
A 22
3 00,00 de<d + | |20, 0,02 —}———8—|v[2|VC|2 dx
Q Q

Decomposing J similarly and absorbing the gradient terms on the left, one has

|

where ¢, depends upon the parameters listed. Its explicit form is peripheral;
such constants will often be lumped together. This implies

Z (AZ“;’J)

Gi=1

L2 < (4, A, n, 2, 9)”42“6"1,,(9,,,)

I u:‘«"m(gg)<cl(l’ A, m, 2, 0, ¢)
therefore,
175 2l 22, < €2(4, 4, my 2, 0,0).
For ne Hy(Q),

ngnni,n dr = —

Q

it
||M=

a=1 la=1

n— n n—1
z f‘l tqozni,a de = Z z T'gz,a:'r]i dx )
Q2

therefore

l"ﬂ ET'MZQ

"TZi”HI(QQ)<03(Z: A7 "y -Qy ) c), for i = L.,mn.

The conclusion follows from the weak compactness of closed balls in L. O
Let a° and b° be measurable functions such that as-—a® and b —b°
is L,. Suppose also that ab’ converges weakly in L,. The limit will be
denoted a°b® — (ab)’. Generally (ab)®~a°b® unless a°® or b° converge
strongly in L,.
The submatrix [C;,,], %,j=1,...,n is nonsingular (with smallest eigen-
value not less than A/2) by (3), so call the inverse Sj.
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THEOREM 1. Let u° be a solution of (2) associated with Ce. Suppose {C} . 1)
satisfy (3), C,=0 for a=1,..,n—1, and |u’|gq<ec. Leta, be any sub-
sequence such that u”, ™, S"' C"' f,,',,,cS"'Cs";,ma and CF,. Sy converge weakly
to w in HYRQ), to ©, 8% C°% (CijuxSksConm)’ and (Cy;18:)° respectively in
Ly(R2). (These exist since closed balls in Ly(2) are weakly compact.) Define

Aijkl = Giakl ( iing Csnkl)o ( iing as)o( l)_ ( nma) .
Then
Ty = Ayt
and
(Aimthyy) ;=0
in the weak sense.

Proor.

n n—1

g Z mju a, +z njn u.

"'Q

So (using explicit summation)

n n—1

(5) UWo=2 8570~ 2 285 Chmatin.-

i=1 ym=1a=1

By Lemma 1 and the compactness theorem of Rellich [10], {‘r "}e and {u%},
converge strongly in L°(2). Let ¢>0. Then

n n n—1
=380t — > Z( 1 Cinme) Uy -0, iD 2,
i=1 myi=1a=
S0
n
0y—1 .
(6) Tin = z (S’i:i) (Smcaﬂmt) 'm,b a.€. 11 Qg°
Jytysmya=1
In general,
n—1 =n
%—Z Z oo W +2 o Wiy +
a=1k=
Using (5),
n—1 n
{3 c O
T = 2 [ 2 iima kZ on St gnma] U o+ kZIC‘W %t Tin
a=1 th=1 i

Again u? and 7j; converge strongly in L,(£,) so

#—1 n
= 21[ z igme z_ Cnlmsktcmma)] m¢+ 2 (Cuk,,Sk,) Tin s a.e. in .QQ',

=1 ki kit=1
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Using (6) and summing to » all repeated indices,

Tii = [Cg’ma_ (0 8,0 )0 + (OiiknSks)o(sgr)‘l(snCmmq)o]um,q a.e. in ‘QQ °

ijkn ks ™ snma.
Since p is arbitrary, this must hold a.e. in 2. O
One would expect that A satisfies ellipticity conditions like (3). This

is indeed the case.

LEMMA 2. There exists 1'>0 and A'<< co such that

! 14
Neje;<Aygezey  and max esssup [A(@)|<4".

ProoF. The existence of A’ follows from the boundedness of each term

in A. The search for A’ seems to require some machinery. Let e;;e; =1.
Consider the function

(7) 1°(e) = (O — CFugSer Cova + (CiinaSak)O(Slgr)hl(Sn Cnd)") €561

ijng ™ ar
which has a Lipschitz bound independent of x# and o. Then in L,(£2),
fo(e) = ey A ijnrbr: -

f°(e) will be shown to be bounded below by a positive constant A'.
Define

dyy = 271(0,,8% + 0,187) Cyne

anmp “mp *

If d =0, then the second term in (7) is zero and trivially fo(e)>A. Hence-
forth assume ds£ 0. Now from (3),

(€ + adyy) Cinley + ady) > Ale,; + ady)(e; + ady;) .
Minimizing with respect to a yields
8) (Cia— OinaSer Ceta) 55610 => A1 — (e5d,5) (dydy) ™)

Finally, define

M= {SijIEi,- = yi(sjn + y,-ﬁm for yEE” and €€ = 1} .
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The existence of A’ follows from considering three regions on the unit
ball for e. If ee M

y)
f°le)= 3ia‘(0ia'nqSak)o(sgr)_l(srtCntkz)oekz >'2‘ .

Then by the uniform Lipschitz bound for fo, there exists a neighborhood
(independent of o and ) where fo(e)>A/4. Since d(d;;d,;)1e M, if e is
outside this neighborhood, (8) implies that there exists 0<1 so that
fo(e)>A(1—0). Define 2'=min(A(1—0),4/4). O

The central problem this paper addresses is to determine sufficient con-
ditions for a constant coefficient system to approximate, in the average,
a system with discontinuous coefficients. Theorem 2 addresses this problem
directly. To that end, define

C(4, A) = {C|C satisfies (3), (3') and (4)}
5 = K(2)|K(») c Q, K(x) = [®1, 21+ b X... X[%0y @n+ bal,

1
ER <(b;b;)}< R, and 5 < max (byfbyy<2.
(%]

If fe L,(2) and K(x)e Xy, then

fmy(®) = -m—(ll-(-)- ff(&) dé .

K(x)

THEOREM 2. For every ¢>0 and R> 0, there exists 6 >0 such that if
Coe C(A, A), A is constant and

esa:se.g,]}p IC'iik’(x,)(w) - (Oii.msst Ontkl)(xi)(w) +

+ (Cigon Sst)(x,,(stp(x‘))—l(spm Crmit) (@) — Al < 0

for all K,eXp, i=1,...,5; then to every solution u of (Cits,;),; =0 (in
the weak sense) where |u| g <1, there exists a solution v of (Aiivx,),; =0
where ”v"Hl(Q)<17

lw— vy <e,

II (Vu)(K) - (Vv)(K) "L.(-Qm) <e !
and

1(Caiatse )y — (Aim V|l < €

for all K =K(x)eXy and we Qyp.
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Proor. Define the solution space
$(A4) = {u] ] gy <1 and (4%, ;= 0} .

To gain a contradiction, suppose there exist ¢ >0, B> 0 and sequences
{C"},c C(2, A), {47}, and {u’}, such that

iCirm(x,)(ﬂﬂ) — (Cljen S5 C:tkl\(Kg)(w) -+ (Cirjsn‘s:e\(x,)' (‘Strp(x.))_l'

r r r 1
*(Spm O (@) — Afj| <0 = P

for all K;e Xy, |u'|gq0<1 and, say

nf Jur—v]nan>e .

Since {A4"},
is weakly compact, there are weak limits Cp,, (C,

iisn
(Cy;en84)° of appropriate subsequences such that

isn

Cg'kl(x‘)(w) - (Cfia'sn Sst Cntkl)?,m(x) + (Gijsn Sst)?xa)(stoﬂ(x‘))_l(srm Gmnkl)?xs)(x) = Agkl

is bounded, there exists A™ — A° as m — oo; and since (4, A)
844 Ca)’s Sy, and

nl

for all K,eX,. The K, are independent, so treating each integral separately,
and differentiating with respect to the length of each edge yields

Cg'kl_ (Cigon St Cod)’ + (Ciisnsst)o(sg))_l(sﬁm L A?jkl a.e. in Q.

Notice that by Lemma 2, 4™¢c C(1'[2,2A4') for large m. Now from The-
orem 1, there exists a weak limit u such that u'™™ — w in L,(2;) and u e §(A4°).
Clearly there exists v™e 8(4™) such that v™ —u in HY(Q;) (e.g., choose
v™— ue Hy(2)) contradicting the assumption that the distance from u’
to S(A") is at least e. The other cases are handled similarly. O

If such C and A exist, the v associated with u of Theorem 2 is not
unique, but a natural identification would be to choose v to attain the same
boundary data as u .

2. — Global results for boundary value problems.

The usual boundary value problems are one of three types: (Cjxts,),; =0
and

(A) u=¢ on 00,

9 - dnnali della Scuola Norm. Sup. di Pisa
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(B) 7iyn;=y; on 02 where n is the outer unit normal,
or

(C) w=¢ on 8, and 7,m; =1y, on 8,, §;,U S8, =00.

To use Theorem 1, one must establish that (A), (B) and (C) can be inter-
preted in the setting of H!({2) and that these solutions have uniformly
bounded H(Q) norms. The following are standard Sobolev Space inter-
pretations by Ladyzhenskaya and Ural'tseva [6]; they can be motivated
by formally using the divergence theorem.

(A) Suppose ¢ € H(Q), then a weak solution u to (2), where u—c € Hy(Q),
is said to be a weak solution to (A).

(B) Suppose e L,(0£2), and n e H(Q), then u is a weak solution to (B) iff
fOijkluk,lni,idw =f¢iﬂids )
Q2 an

fu,-dw = 0 )
2
and

[t —w,dde=o0.
Q

Here the values of v on 0f2 are interpreted as the trace of v. For
example, ue HY(Q) is said to vanish on S,c 0Q iff there exists a 0°(£2)
sequence approximating w in H!({Q) where each function vanishes
in a strip adjacent to S;.

(C) Suppose e Ly(8,), n,¢c H(R2), and v vanishes on 8;. Then u is a
weak solution to (C) iff

foijkluk,lni,i da =f¢t N as
Q2 S

and u—« vanishes on §,.

The existential questions for (A), (B), and (C) are discussed for single
equations by Ladyzhenskaya and Ural'tseva [6] and their methods readily
generalize to the systems considered here. The following well-known results
are summarized for later discussion.

LeMMA 3. Ifue HY Q) is a weak solution to (A), (B) or (C) with C satis-
fying (3), (3') but not necessarily (4), then there exists a number ¢ independent
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of C such that

|w | gy <e-
Here ¢ depends on Q, A, A and the boundary values.

REMARK. The technique of proof is similar to that used for a single
equation by Ladyzenskaya and Ural'tseva [6] except in place of the usual
uniform-ellipticity inequality to bound the L, norm of the derivatives, one
uses (3) and Korn’s inequality as discussed by Gurtin [4] or Fichera [3].
It states that if ve HY(L) and there exists S, c 02 where surface meas-
ure of 8;,>0 and v vanishes on §;, or

f(vi,j—vj’i)dm =0, 4j=1,..,n,
o2

then there exists a k such that

kJ‘(vi,j + ) (05 + i) de > vi,ivi,idx .
Q Q

The global version of Theorem 1 is

THEOREM 3. Suppose {C°} satisfies (3), (3') and (4). Consider fived
boundary values and let us satisfy either (A), (B) or (C). Then there exist weak
limits uw and © of Lemma 1 such that

i) 74, =0 in the weak sense,
ii) w and © satisfy the same boundary values as u® and =°,
iii) 7= AijmqUme a.€. 0 2, as in Theorem 1, and

iv) Upon restriction to the subsequence {C*}>° , that generates A, there
is a unique limit u.

Proor. The existence of u and ~ follow from Lemmas 1 and 3.
1% 1o T implies that as r — oo and Vme HY(Q),

et
ftijrni,idm _—)J‘z'i:ini,i dx
Q Q

50 it satisfies the same equation; hence (i). If u*—e¢ =0 on §,coR,
then since u” g~ u, u—¢@ =0 on S, too; hence (ii). Theorem 1 im-
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plies (iii). The solution we H(LQ) to

fAi:imq Umn,a"i,i dz =0
(2}

Vne Hi(Q) is unique by Lemma 2 for boundary conditions (A), (B) or (C).
(If w and v are two solutions, choose v = u— v. Subtracting the equa-
tion v satisfies from the one u satisfies and applying Korn’s inequality
implies y = 0.) Hence the sequence {u”};>, has a unique accumulation point.
This is the limit point by the compactness theorems. [

REMARK. If C° —C° in L,(Q), then C*®= A4, as is well known, for ex-
ample see Ladyzhenskaya and Ural'tseva [6], or Spagnolo [11].

3. — Spectra.

Results analogous to Lemma 1 and Theorem 1 hold for eigenvalues and
eigenfunctions. Define the eigenvalue uo and the eigenfunction us for weight oo
of L°(u) = (C5,u;,); to be a number and a function such that Vy e Hy(Q),

fogikluz,lﬂi,jdw = /ff“?m@" de  and f|"'a|2 ’de=1
Q 7] Q

One can consider boundary value problems (A), (B), or (C) with homogeneous
boundary values ¢ and . A result parallel to Lemma 1 and Theorem 3 is

THEOREM 4. Suppose Cco satisfies (3), (3') and (4), o° = o°(x.), and
A<oo<A. Consider boundary conditions (A), (B) or (C) and let ug, and yj
be the j-th eigenfunction and eigenvalue (ui<uj,,) of L° with weight o°. If
there ewist numbers c; such that uj <<c;, then there exists a subsequence
o, >0 as r —> oo such that for all j=1,2,..., and 1 <<p < oo,

Oy Ny Or P o\ Or N
@m0y BTVHT, U TE® Yo TH) L@ o)
0;
uQ o —_\H}oe(g) Upey o«=1,...,n—1

and
Or N ) —
Tint) Togeg, Tin)1 L= 1,..,n.

Tim() = Almst (o).t
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(o]

where A is generated from {C"}7°,

as tn Theorem 1. Finally

Tlm(:i),m = OM; ul(i)
in the weak sense and w and v satisfy the same boundary values as u° and =°.

REMARK. There are standard arguments to find the ¢,’s. They will be
outlined in Lemma 4.

Proor. By Korn’s inequality and the normalization
”u?j) ”Hl(.())< e(¢;, Q,m, A, k).

Since |uj|<<¢;, by the compactness of the real line, there exists a con-
verging subsequence uj” —pu;. If o°—p in L,(Q), the conclusion follows
as in Theorem 1. Otherwise, from the stronger imbedding theorem [6] that
the unit ball of H'(2) is compact in L,(Q), q<2n/(n—2), o”"u" — gu
in L,(£2). 0O

In fact, u, is the j-th eigenvalue of A(u)= (4;,,%,,) ;- This will be
discussed in

LeEMMA 4. Suppose Co satisfies (3) and (3') but not necessarily (4), and
A<o’<A. Let ujy and uj be the eigenfunctions and eigenvalue of Lo with
weight o° for homogeneous problems (A), (B) or (C). Then there exist numbers c;

oo

such that u<c; and a subsequence {o,}’2, such that as r — oo

Or N Or
o >0, UG TT@ Yoy T L@ T
u =y and 0" om0 for 1<p<oo.
Furthermore
ToGi)p = M QW)
in the weak sense and u;y and < satisfy the same boundary values as ug and

©;) do. Lastly, suppose we HX(Q) and (w, oug;) =0 for all j. In addition if
for problem (A), we Hy(£2), if for (B),

j(w..—wi’j)dxzo,

1
Q

or if for problem (C) w vanishes on S;; then w = 0,
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REMARK. In this general setting, no v~ Vu relationship is determined.

Proor. If suffices to bound the eigenvalues of (A) since they are the
largest. Let I; be the j-th eigenvalue of the Laplacian operator with weight
¢ = 1 for the homogeneous Dirichlet boundary data. From Korn’s inequality
and (3), if ve Hy(R) and v+ 0,

g
2 [vi0.,de  [Cfa0; 0., de fviv:;dw
2 9 2

A
=

4KA (v, v) = (v, 0°v) (v, v)

where

(u, w) Efuiw,.dw .
Q

Applying the obvious generalization of the maximum-minimum character-
ization of the eigenvalues by Courant and Hilbert [1],

4
2 . Mljz(}j.

(9) A Li<pi < 2

The converging subsequences exist due to compactness.

The completeness for problem (A) of {u;}:>, in Hy(2) follows easily from
the growth of I,. Assume, to gain a contradiction, that there exists a
we Hy(2) such that w0 and (w, ou;) =0 for all j.

(3
fcisz”c.j”k.z dx
Q

3
) ’

p; = inf
veH) (D) (v, ov)
v#0

o
(v,0%u(s)) =0
8=1,2,..05—1

But the test function

implies that
A
”j\\l(w,w) i xWik y
Q2

or from (9), {I};>, is bounded. This is a clear contradiction, so w = 0.
The argument is similar for boundary conditions (B) and (C). O
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REMARK. The set of eigenvalues of the C° system map onto the set of
eigenvalues of the limit system.

4. — Generalizations.

The arguments of Theorems 1 and 3 generalize to an equation of the form

(O%kluk,l),j =f;

provided Co satisfies (3), (3') and there exists a number M such that

1C ey, 1N ey Iy < M

for « =1, ...,n— 1. The proofs also serve to outline a similar development
for a single uniformly elliptic equation with the limiting matrix A4,

Ay = 65— (6:n8Cn;)® + (€in8)°(80)71(8€0s)°
where
87 = (o) Ty 8"

(cg.u:’j)’i =0.

The results would extend to any strongly elliptic system provided a Garding-
type [2] inequality holds. This has only been proven for continuous coef-
ficients.

Of course, any domain and {C},,, for which there exists a local co-
ordinate transformation mapping them into the setting of Lemma 1, can
be analyzed. For example, concentric cylinders with discontinuities in the
r-coordinate direction can be handled.

5. — Examples.

The following two examples illustrate how A is computed and are them-
selves interesting.
Suppose ¢, = fo(a;)d,; for a single equation in K3,

fo(x;) = f°(xs + o) ,
o  if 2€[0,00), 0<O<1,
f@) = oy it ze[fo, o),
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0',3,-: {0“1 + 1 0)“2}5ﬁ ;

8% = 1
fe(wy)’

s”:g 1—0’
[+ 4] 22
oy + (1 —0) oty 0 0

A 0 Ooc, + (1 — 6)exy ) 01—-6 .

0 0 (——I— )
253 oy

For a system of equally spaced isotropic laminates with Lamé con
stants A5 and us, f=1,2,
CZk, = ,uﬁ(éikail + 5i16ik) + lﬁaijakl
Co(w3) = Co(w5 + 0)

{ }»1,#1 if z€ [0, 0'/2)
lpy Mg = .
Aoy s if x€[0/2,0).
Then
Anu:Azzzz:l‘l’FHz"‘l{ll—l‘ Ay— A - & +
2 Mt 2m A+ 2u,
N
At 2u " A 2p) \M 4 Ao+ 20 + )]’
Aypoy= Auu_lh_,uz y
A Ay M +2 1][12 -+ 2u,]
Ann=Aunn+t (ll + 2u, + A+ 2,“2) (21 + /12/3‘ 2p: + éu;z) .
( B )_( ik Pata )
ht2m At 2pm)  \h+2m At om)’
Ay, 3= A113 ’
i o\ (At 2]+ 2u,]
g = Aun+2 (ﬂl + 2u, T A+ 2,”2) (11 + l:fl“ 2p+ ;.“z) .

( M + M )_2( o [ )
A+ 2,“1 A+ 2,“2 A+ 2p A+ 20,
y25 -+ Uz
—oyr 2
( dpa s f ”2) T
(A4 2u1) (A, + 2,“2)) ( 221 M )2
A+ A+ 2,ul + 2,“2 A+ 21 A+ 2,

o

#i s )
—4
(11 + 20 T A+ 2u, ’
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A ! + 221
1212 — 2 1

21 142
Apygs= Aygy=—"7"—.
23 23 1313 fi+ o

All other 4,,,=0. A consequence is A;;; = Ajps + 24,5, 80 this coefli-
cient matrix is transversely isotropic (hexagonal) about the z; axis: the
representation of A is invariant under rotations about the x; axis. This is
physically reasonable.
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