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WEIGHTED APPROXIMATION AND SLICE PRODUCTS
OF MODULES OF CONTINUOUS FUNCTIONS

by JOÃO B. PROLLA

1. Introduction.

If .E is a completely regular Hausdorff space and V is a directed fa-

mily of non-negative upper semicontinuous functions on E, the Nachbin
space OV 00 (E) is the set of all continuous scalar-valued maps f defined on
.~ such that vf vanishes at infinity for every v E V, equipped with the lo-

cally convex topology determined by the seminorms j.’-+ sup v (x) f (x) I ;

X E E) for fEOVoo(E). If 31 is a subset of the algebra C (E) of all conti-
nuous scalar-valued maps defined on E, a vector subspace W e is

said to be an if mf E W for every 1n and The weighted
approximation problem for M-modules consists in describing the closure in

of such llTmodales. We study this problem in the case M is itself
a being the subalgebra of 0 (E) of all continuous and
bounded scalar-valued maps on .~. Our main results are Theorem 2.2 for

the more general Nachbin spaces of cross sections and Theorem 2.8 for the
case of scalar-valued functions. In Section 3 we apply this to study slice
products of modules.

2. Closure of Modules.

Let be completely regular Hausdorff space and Me C (E) a Cb (E)-
module. In all that follows, the following lemma, due to Nachbin, plays a
capital role. This lemma was the main tool for the proof of Nachbin,s

weighted Dieudonné theorem for density in tensor products. (See Nachbin

[5], § 23, Lemma 2).

--- ____

Pervenuto alla Redazione il 31 Maggio 1971.
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2.1. LEMMA. Let be a compact subset such that, for every t E K,
M for which g (t) =F Ai c E (i = 1, 2, ..., n) an open

covering of K, there are gi E M such that gi = o outside Ai and gi 0 on E

(a - l, 2, ..., n), I gi -1 on K and Z 1 oil -E.

Let (E, E)) be a vector fibration, i. e. for each x E E, h’x is a

real (resp. complex) vector space, and let x E E) be a Nachbin
space of cross sections, with its weighted topology Wv determined by the
directed family of weights V (see [6] for definitions). The vector space of
all cross-sections is a module over M, under the following multiplication
operation: if f = ( f (x) ; x E .~ ) is a cross-section and then gj is the
cross-section (g (x) f (x) ; x E E). Given a family V of weights, we shall con-
sider each Fx equipped with the topology determined by the familly of se-
minorms V (x) = j (y ; v E V}.

2.2. THEOREM. Let be a vector stibspace which is a sitbmoditle
over ll and suppose such that for evei-y x E E for u’hich 2U (x) # 0 f0T

E ~~, there is g E such that g (x) ~ 0. A cross-section f°E belongs
to tdae closure oj W if, a,nd only if, f (x) belongs to the closure of W (x) in

for each x E E.

PROOF. : The condition is obviously necessary. Conversely, 
be such that j" (X) belongs to the closure of TV (x) ir~ for each xEE.

Jael v E F and s &#x3E; 0 be given. Then K ---- ~x E E ; v (.v) [ f (x)] ~ ej is a compact
subset of E. For each t E K, there is a wt E T~ such that v (t) [ f (t) - wt (t)]  e.

Since t E K, wt (t) # 0. Hence there is gt E M such that gt (t) =t= 0. Notice that
the mapping x (x) [ f (x) - tvt (x)] is upper semicontinuous. Therefore, an
open neighborhood of t can be found such that for x E Ut we have
v (x) [ f (x) - wt (x)l  8. By compactness of K, there are t1 ~ ... , tn E K such
that Ai == Uti (i = 1, 2, ..., it) form an open covering of 2T. By Lemma 2.1,
there are gi E M such that gi = 0 outside of A.i and gi ~&#x3E; 0 on E (i = 1,~,..., 1 it),

=1 on .~ 1 on .~. Let hi = (i = l, 2, ... , We claim

that

for all x E E. Indeed, if x E K, then

and (I) follows from valid for E E and
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then

and (1) follows from gi (x) v (x) [hi (x)] -::::~-- gi (x) 28 valid for all x E E and i =

=1, 2, ... , 7 it. Since Z gi hi belongs to c W, it follows from (1) that f
belongs to the closure of W.

2.3. COROLLARY. Under the hypothesis of 2.2, suppose that

TV (x) is dense in Fz for each x E E. Then W ~is dense in 
Let V &#x3E; 0 be a directed family of weights on E in the sense of Nach-

bin [5], and let F be a locally convex Hausdorff space. By considering the

vector fibration Fa; = F, for all x E E, Theorem 2.2 implies the following.

2.4. THEOREM. Let W c 0 Vm (E; F) be a vector subspaces which is an

ccnd suppose M is such that for every x E E for which w (x) ~ 0
jor some iv E TiT, there is sucla that 9 (x) ~ 0. A function f E C F)

to tlae closure of W if, and only if, for every x E E the vector f (x)
is in the closure of W (x) in F.

2.5. COROLIJARY. Let be a vector subspace which is an

M and suppose M is such that for every x E E for which w (x) # 0
for some w E W there is such that g (x) ~ 0. If W is dense in OV 00 (E),
then WQ9F is dense in particular, is dense

in 

PROOF : It is clear that W Q9 ~’ is an M-module and that the pair l~
and W Q9 ~’ satisfy the hypothesis of Theorein 2.4. f,et now f E C Y~ (E; F)
and x E E. 0 and p a continuous seminorm on ~’ be given. If

(x)) = 0, there is nothing to prove. If p ( f (x)) # 0, choose g~ E .~’ such

that p ( f (x)) = 1. Then t I--~ g (t) = cp ( f (t)) defined on E belongs to 0 V 00 (.E).
Choose v E V such that w (x) &#x3E; 0 and ð &#x3E; 0 such that 6p ( f (x))  8. By
hypothesis there is some E ~~ such that

~‘’ (x) belongs to the closure of ( yV ~ F ~ (x) in F and by Theorem 2.4 it

l’ollows that f belongs to the closure of W Q9 F. To prove the last asser-
tion, consider M =: Cb (E) and W = (E).

2.6. COROLLARY. If -lfl 18 locally then ~~ ~’ is dense in
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PROOF: If E is locally compact, denotes the vector subspace
of all those f E C (E ) which have compact support. 9l (E) is an ideal in

hence a is dense in by Propo-
sition 2, § 22, Nachbin [5], taking M = in Corollary 2.5, it

follows that is dense in 

2.7. REMARK. A more general result than the above Corollary 2.6 can
be obtained. Let W and be as in Theorem 2.4. Let == f E 
f = 99 F’, w E W), and suppose f (D y belongs to W for each f E Wo
and y E F. If Wo is dense in C ~~ (E ), then W is dense in C V~~, (.E ; .~).
Indeed, the linear span Ws of Wo is dense in and 

by the hypothesis made, and Corollary 2.5 then implies that W is dense.
If W = ~ (~ ) ~ lf’, then and we obtain Corollary 2.6.

We also remark that Theorem 2.4 generalizes Theorem 7, § 7 of Bierstedt

To see this take M = and notice that M is dense in

OV 00 (E). The last statement of Corollary 2.5 was proved in Prolla [7] by
a different method (see Corollary 3.2, [7]).

2.8. THEOREM. Let F == K (If = R or C) and let W be as in Theoreem

2.4..~e~ for all w E Wj. belongs
to the closure of W ify and only if, f vanishes on Nw.

PROOF : i The condition is obviously necessary. vanish

on Let x E E be given. If then obviously f (x) E W (x). If

~ 0, then x ~ M wand there exists w E fV such that w (x) 4= 0. Consider

g = (.v)) w E W. (x), i. e. f (x) E W (x). By Theorem
2.4, f belongs to the closure of W in 

2.9. REMARK. In many instances M and } satisfy the following
properties: (1) for each x E E, there is such that g (x) ~ 0 ; (2) given
a E E a closed subset not containing a, there is 

such that f (a) ~ 0 and f (x) = 0 for all x E X.

2.10. THEOREM. Let M and satisfy conditions (1) and ~2) of
Remark 2.9. Then for every closed M-module (E) there is a unique
closed subset such that W = { f E (~ ) ; f (x) = 0 f or all x E 

PROOF: Let w (x) == 0 for all w E W). Since W is closed,
Theorem 2.8 implies that W = ( f E C ~~ (E ) ; f (x) = 0 for all Let

be any other closed subset of E such that 

j(x) = 0 for all x E N I - Obviously, Suppose that the inclusion is

proper; i. e. there exists a E NW such that a ~ N. By condition (2) of Re-
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mark 2.9, there such and = 0 for all

i. e. f ~ W and f vanishes on N, a contradiction Hence N = N w .
The above Theorems, 2.8 and 2.10, provide a one-to-one correspondence

between the closed ideals of several algebras of continuous functions and
the closed subsets of .E, when .E is locally compact. Indeed let Ai = C (E)
with the compact-open topology, A2 == Ob (E) with the strict topology # (see
Buck [3]) ; and A3 == Coo (E) with the uniform topology. Let ~T c: Ai (i === 1, 2, 3)
be a closed ideal. Then there exists a unique closed subset NC E such

that I = ~ = 0 for all I (i == 1, 2, 3). Indeed, 
(i ~ 19 2, 3), where 1~~ is the set of all characteristic functions of compact
subsets of E; V, = Clj (E); and ~3 ~ where v (x) = 1 for all x E E.

Then Vi &#x3E; 0 (i =: 1, 2, 3) and to apply Theorem 2.10, consider M = 9( (E),
the set of all continuous functions on .~ with compact support.

Suppose now that LV 00 is an M-module itself and that for any x E E

there is a g E M such that g (x) ~ 0.

2.1 ~. THEOREM. Let be a proper closed There

exists a closed M-submodule of codimension one in which contains lV

and, moreover, W is the intersection of all such 

PROOF : Let f E L V 00 be outside of W. Since W is closed, there exists
by Theorem 2.2 some point such that f (x) does not belong to the
closure of W (x) in By the Hahn-Banach theorem there exists a linear
functional q E such that qJ ( f (x)) # 0, while 99 (w (x)) = 0 for all w E W.
Let 9K = (g E L Y~ ; g~ (g (x)) = 0;. The mapping 6x ff 1-+f (x)] ] from LV 00
into is obviously continuous. Hence being the kernel of y o y is

a closed linear subspace of codimension one in such that W e 

while It remains to prove that em is an M-module. Let 9 E Cfll and
m E fl5. Since .L is an = nig E L T~~ . On the other hand

g (h (x)) = cp (m (x) g (x)) = 1U (x) 99 (g (x)) = 0. Hence hE 9X, which ends the proof.

2.12. THEOREM. Suppose that C (E ; F) is an M-module and let W C

F) be a _proper closed There exists a closed 

module of codimenszon one in CV, (E; .F) which contains Wand, moreover,
W is the intersection of all such submodules.

PROOF : Theorein 2.12 follows from Theorem 2.4 in the same manner

as Theorem 2.11 follows from Theorem 2.2. The continuity of for each

x E E, being now a consequence of the assumption V &#x3E; 0.
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3. Slice Products.

Let F), i = 1, 2, ..., n, be Nachbin spaces of F-valued fun-

ctions with Vi &#x3E; 0, i =1, 2, ... , n, where F is a locally couvex Hausdorff

space. Let P~ denote the set of maps (xi , ... , Xn) E E
1--+ (xl) Vn (xn) for each choice of vi E Vi, i = 1, 2,..., n. If Wi C ( C Vi)oo (.E~, ; F)
(i = 1~ 2, ... are vector subspaces, the slice pi-oduct T~1 # ... # Wn is the
vector subspace oi all/6 I~’ ) such that the mapping 1-+ f (aft, ...
... , a~_1. ... , an) belongs to Wi for each choice of aj E Ej (,j =}== i),
i = 1, 2, ... , n. It is clear that, if each Wi is an module, where Mi c: 
is a Cb (Ei) - module, then # ... # lvn is an .~1 module, where M = Mi # ...
...~7~. If each pair and satisfy the hypothesis of Theorem 2.4,
then for every x E E for which w (x) =~ 0 for some w E # ... # y there

is g E such that g (x) # 0, i. e., if and Wi #... # satisfy the hypothesis
of Theorem 2.4 too. From now on we shall assume that all pairs and

Wi, i =1, 2, ... , n, satisfy the hypothesis of Theorem 2.4.

3.1. ~i #... # Wn == ... , an) E ~7. The
closure in F of W (a) is equal to the intersection of the closures in F of

~-=~-e~,...~~2.

PROOF : Let z E ~ belong to the closure of ~ (a). Given e &#x3E; 0 and jp
a continnous seminorm on .F’ there exists w E 1iT such that p (z - w (ac))  8.

The Ei -+ wi (xi) = w ~(~~ ~ * I I , ai-l , xi , ... , an) belongs to Wi and
= ’W (a), for all i = ~, 2,..., n. Hence z belongs to the closure of

z belongs to the closure of B7i (ai) for all i = 1, 2, ..., n.

conversely, let z ~ W (a). By the Hahn-Banach Theorem, there is 99 E F’
such that for all w E W. If for some ~(1~2~...~)~
I~i (a~i) == 0 there is nothing to prove, since then (wi (ai)) = 0 for all E 

whjie g (z) ~ 0, so z ~ Wi (ai). Assume that Wi (a,i) # 0 for all i ~ 1, 2, ..., 7a
and choose w2 E -Wi such that wz (ai) ~. ~, i =-1, ~, ... , n. Now let ~jl~2,...~}
and t E Wi (ai), where Then t --- w (~), where w =

Hence (p (t) - 0 for all t E Wi 

while g ~ 0. Therefore z g Wi 

3.2. COROLLARY. The closure of l

.. # W~z .

PROOF : This follows from Proposition 3.1 combined with Theorem 2.4.

It is clear that T~1 Q9 ... is contained in ~~1 ~ ... ~ Wn, when
If A is a set of vector - or scalar - va-
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lued maps defined on a set X, let us denote for all f E A~
by Z (A). The hypothesis of Theorem 2.4 now reads 

3.3. PROPOSITION.

3.4. THEOREM. The tensor products dense in 1

PROOF : Let and , It is clear

that W is an M- module, while Proposition 3.3 implies that 
since by hypothesis Z c Z = 1,..., n. Let f E W, 0... # By
Proposition 3.3 (ii), f vanishes on and therefore by Theorem 2.8, f’
belongs to the closure of W1 ~ .,. @ W",.

3.5. THEOREM.

PROOF: We first remark that the slice product ( C Y~;~ (~1 ) # ...
... is a Cb (E)-module. 0 V 00 (E) and (a, , ..., E.

It follows from Lemma 1, § 23, Nachbin [5]~ that the map xi E .E2 1-+
... , ... , an) belongs to ( C for each i == 1, 2,..., n.

If (ai ~ ... , a~) E ~ ( 1~ ), then Z for some i = 1, 2, ... , n, by
Proposition 3.3, and therefore ... , an) ~ o. By Theorem 2.8 it follows
that f belongs to the closnre of nr, which is closed by Corollary 3.2.
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3.6. COROLLARY. (

3.7. REMARK. For each i = 1, 2, ... , n let Pi be the map defined on E

whose value at a =: (at , ... , an) is the map xi E Ei I--~ ... , x, , ai+l , ...

... , an). If X is a set of ma,ps on .E with values in a vector space F, we
denote by Xi the linear span of the set of maps of the form f o Pi (a),
when f E X and a C E. It follows that if C C (E) is a Cb (E)-module, then

C= 0 (E;) is a Cb for each i =1, 2, ... , n. Also if W c C V,, (.~ ~,
then Wi c ( C (Ei).

3.8. W e be an M-module. If for each i -z= 1, 27 ..., n,
(1) Wi is an 

(2) C Z ( Wi) ;
then Wi Q9 ... Q9 Wn is dense in W.

PROOF : It is clear that W is contained in W, 0 ... # Wn, so the con-

clusion follows from Theorem 3.4. Notice that hypotheses (1) and (2) are
satisfied if (~). Notice also that Wi Q9 ... Q9 Wn consists of all finite
sums of functions of the form ) where W and

3.9. REMARK. Corollary 3.6 is Nachbin’s weighted Dieudonn6 theorem
for density in tensor products. Our proof of Theorem 2.2, hence of Theo-
rem 2.8, is modeled on Nachbin’s proof of Corollary 3.6. For further

properties of slice products of subspaces of weighted spaces see Bierstedt
[1], pp. 77 78. For slice products of function algebras, see Birtel [2] and

Eifler [4].
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