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A COMPARISON THEOREM
FOR NONLINEAR OPERATORS

W. ALLEGRETTO

Sturmian comparison theorems for the solutions of non-selfadjoint
linear uniformly elliptic equations and inequalities were first obtained by
M. H. Protter [5], in 1959, and more recently, by C. A. Swanson [6], [7].
These results stated that if a certain differential equation or inequality
was satisfied in a domain G by a function which vanished on the boundary
of G, then every solution v of a related non-selfadjoint differential equation

or inequality, would vanish somewhere in G. K. Kreith [4], by means of
the Hopf maximum principle, obtained a « strong » version of the results
of C. A. Swanson for domains which have a boundary with bounded cur-
vature. That is, he showed that under the above assumptions » would vanish

in @ rather than in G. He also obtained, [3], by spectral considerations,
strong comparison theorems for special pairs of differential inequalities,
under more general boundary conditions, but also under the assumption
that conditions were so regular that a Green’s function could be constructed
for the operators in question.

The main purpose of this paper is to obtain strong comparison theo-
rems for the generalized solutions of nonlinear elliptic-parabolic equations,
without assuming any regularity properties of the boundaries of the domains
involved, and without imposing conditions that ensure the validity of the
maximum principle, or the existence of a Green’s function. The conditions
on the regularity of the boundary are replaced by the weaker assumption
that the functions involved belong to suitable Sobolev spaces. Specialization
of the results obtained to the case of a smooth domain and a linear uni-
formly elliptic inequality still yields sharper results than those previously
available, since an extension of the basic Lemma in [6] is also obtained.

Pervenuto alla Redazione 1’11 Marzo 1970.
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Let G denote a domain, not necessarily bounded, of the n dimensional
Fuclidean space E". The points of E" are denoted by x = (x,, ..., x,) and
differentiation with respect to x;, in the L? sense, by D; for i =1,...,n,
We consider the nonlinear elliptic-parabolic operator L with real coefficients
and formally defined by :

Ly = — g D;[Ay (@, v) Djv] + 2 g Bj(x,v) Djv + C(x,v) 7.
i, j=1 j=1
Let D denote the subset of H! (@) such that if v€ D then:
(i) Ay(x, v (x), Bj(w,v(xr), C(x v(r)) are measurable and essentially
bounded in @ for 4,j=1,...,n, and
(ii) there exists an essentially bounded measurable function H such
(Aij(@,v))  (Bj(w, v)T

that the matrix M=<
(Bj (@, v)) H

) is symmetric non-negative defi-

nite a.e. G.

‘We note that a sufficient condition for H to exist is that the matrix
(4) be uniformly positive definite, but weaker conditions can be stated by
using limiting procedures. It is, in fact, easy to construct examples of
parabolic non selfadjoint operators for which such a function exists.

We now associate with L the functionals B, F where for u, w € H!(&)
and v€ D,

B (v, u, w)::fZAij(x, v) D;uDjw + 2w X Bj(x, v) Dju 4 C (x, v) uw

G

G

The function v€.D is then said to satisfy the inequality Lv > 0 (resp.
Ly < 0) in G iff B((v,v, )= 0 (resp. B (v,v, )<< 0) for every D€ 0" (G),
® >0 in @. If simultaneously Lv =0 and Lv <C 0, then v is said to satisfy
the identity Lv =0 in @.

Since we are concerned, unlike the previous authors, with the beha-
viour of a generalized solution v of a differential equation, the classical

conclusion of a Sturmian theorem, i.e. that there exists x,€ G (or @) such
that v (x,) = 0, is somewhat vacuous. We therefore replace it by its natural
extension, which is to show that the subset of G where v is non-negative
and the subset where v is mon-positive have positive measure. If conditions
are sufficiently regular so that the Hopf maximum principle can be applied,
then this is known to be equivalent to v vanishing somewhere in @, [4].
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THEOREM 1. Let w€ H) (@), ve€D and F(v,u,u) < 0. If Lv=>0 (resp.
Ly < 0) then u{x:v(x)<<0} > 0 (resp. u{x:v(x) =0} > 0) where u denotes
the Lebesque measure.

ProoF. Assume Ly >0, v> 0 a.e. @. Since u€ H,(G), there exists
a function D€ 0y (G) such that F(v, D, P)<<0. We note that for any
positive constant e, the functions @? (v + &)—!, @ (v 4 &~! belong to H) (@)
and their derivatives are given by the classical formulas. Now by an iden-
tity of C. A. Swanson, [6], we obtain :

(1) f(v + )2 3 A;j D (P/v+¢) Dj(P/v+e)+ 2D (v+ &) 3 B; D (P[v+ &)+ HDP? =
‘ = F (v, D, D) — B (v,v + ¢ DP*/v + ¢)
and by the choice of H we have:

&

0< F(v, P, D) — B (v, v, d??/v—i—s)-—f oP?
¢

v+ ¢
aud therefore for every e,

&

vte’

0<< Fv, D, @)——f@@g

But 0<<e¢/v+ e<<1 and Lim (¢/v 4 &) = 0 a.e. G. Passing to the limit as
e—>0

¢ — 0, obtain 0 << F (v, §, D). The contradiction establishes the theorem.
If Lv <0, then B (v, — v, ) =0 and we proceed as before.

CorROLLARY 2. Let u satisfy the conditions of Theorem 1 and assume
Ly=0. Then u{r:v(x)<<0} >0 and pu{r:v@)=0}>0.

Simple examples can be constructed to show that the conclusion of
Theorem 1 cannot be strengthened to u{x:v(x)<<0]>0 (resp. u [x: v(x)>0}>0)
even if v is assumed non-trivial, since the maximum principle need not
hold.

If the operator is essentially elliptic, then we may choose H = X B;h;

where h; = 2 B; A% and (AY) = (Ay5)~1. In this case the following result,

i
where the condition on F is weaker, is valid. (A one dimensional version
of which has been obtained by C. A. Swanson [8]).

THEOREM 3 (Elliptic Case). Let we Hy(G)N O (G), veD,u> 0 in G,
F(,u,u)<<0 and Lv=0. Furthermore assume that (A4;) is essentially
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positive definite and that h;e C' (@) for i =1,..,n. Then » > 0 a.e. G iff
v=1¢e"u a.e. G for some (' function w such that grad (w)=(h,,..., ).

PrROOF: Assume v >0 a.e. G. Then, except for a set of measure
zero, G=l],l Gp where Gg={w:v(®)> 7, |D;v| B for i =1,...,n}

Let {®,} be a sequence of 0y (@) functions such that P, — u in
H' (@), then we obtain from the left hand side of (1), for any integer 8 > 0,

m-—+oco & »0

lim lim [ /('v + 8?2 2 Ay Di (P /v + &) Dj (DPnfv + &) +
G

+ 20y (v + &) 2 By Dj (Pufv + ¢) + H ;| = 0.

Since the matrix M is symmetric, non-negative definite, we conclude that in
Gy the n -+ 1-vector {vD, w — uD, v ....,vD, u — uD, v, uv} must essentially
lie in the kernel of M. A simple computation then shows that vD; u —
— uD;v = — h;uv a.e. Gy for every integer p and therefore a.e. G. Now
let 8 denote an open sphere such that S c @. Then vju€ H'(S) and there-
fore D;(v/u) = h;v/u a.e. S. As a consequence we obtain D;(k;) = D;(h;) in

8 for ¢,j =1,...,n and therefore, by Poincare’s Lemma, there exists a
funetion w; such that grad (w,) = (hy,..., k,). Clearly we must have
D;(¢ “*v/u)= 0 a.e. § for ¢ =1,..,n and therefore by Sobolev’s integral

identity, it follows that v=1¢"*u a.e. S with the integration constant
absorbed in w,. Now since G can be written as the countable union of

spheres, G = (:j&-, we can define a function w as follows: if x€ G then
x €8; for some ¢, and we set w (x) = w,, (x). It follows that v =¢“u a.e. G,

We remark that the condition to be satisfied by F in the theorem is
more general than the one previously required for the basic Lemma in [6],
and [7], where a strict inequality is wanted. From the proof of Theorem 3
the following corollary is immediate :

COROLLARY 4. Let the conditions of Theorem 3 hold and furthermore
assume there exists x,€ G and also integers ¢,j such that D;(h))(x,) 3=
== Dj(hi) (®,). Then u{x: v(x)<< 0} > 0.

If the operator is « symmetric », i. e. (B;) =0, then H = 0 and Theo-
rem 3 reduces to:

COROLLARY 5. (Symmetric Case) Let the conditions of Theorem 3 hold.
Then v > 0 a.e. G iff v = A4u a.e. G for some constant A.
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If we assume that L is linear, G is bounded, and conditions are suffi-
ciently regular then the theory of Krasnoselskii [2], is valid, and we can
conclude that, for vanishing boundary conditions, L has a real eigenvalue
A, in @ with a positive eigenvector v,. It is known [1], that i, << u, where

. L+ IL*
Mo is the smallest eigenvalue of the symmetric operator —+2—— + H, L*

denoting the formal adjoint of L. By means of Theorem 3 we can now
state :

COROLLARY 6. A, = u, iff there exists a function w such that grad (w) =
= (h, y ..., ha). Furthermore, in such a case, v, is given by v, = 7¢* u, where =
is an arbitrary non-zero constant and u, is the eigenvector corresponding
to u,.

The above results yield immediate comparison theorems. Let L’ denote
the operator formally defined by :

L’ uw = — 3 D;[a; (%, uw) Dju] + 2 Z b; (%, u) Dju + ¢ (%, u) u.

By D’ we mean the subset of H! (@) such that u € D’ implies aj; (x, u (x)),
bj (¢, u (x)), ¢ (x, w(x)) are measurable and essentially bounded for ¢,j =1,...,n.

THEOREM 7. Let u be a mnon-trivial function in H{(G)n D’ such that
L’ u =0, and assume v € D satisfies Lv = 0. If the matrix

v o = ((af,- (@, w) (b, u»T) _( (4 (@) (Bj(@ )7 )

' (b (@, w) ¢ (@) (Bj(@,v) O(a,v)+ H
is positive definite a.e. G then u (x:v ()<< 0} > 0 and g {x:v(x) = 0} > 0.

If the operator L is also assumed to be elliptic, then clearly theorems
analogous to Theorem 7 can be stated with weaker conditions imposed on V.
It is also evident that the pointwise conditions on V can be replaced by
more general integral conditions.

In conclusion, we remark that, in a sense, the above results are really
linear, since once v and w are given, the operators involved become linear.
However, the comparison theorems are also meaningful for those pairs of
nonlinear operators L, L’ for which the matrix V can be shown to be po-
sitive definite regardless of » and ». Of particular interest are the cases
where one of the operators is linear, for then the known linear theory can
be drawn upon to obtain oscillation or nonoscillation criteria for the other
operator. Simple physical examples of such cases are furnished by Mathieu’s
equation and by Duffing’s equation.
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