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A THEOREM ON APPROXIMATE
DIRECTIONAL DERIVATIVES

by A. M. BRUCKNER (1) and M. ROSENFELD

1. Introduction.

Let f be a measurable real valued function on the Euclidean n space
Rn. According to a theorem of Stepanoff [2] (See also Saks [1, p. 300]) f
is approximately differentiable a.e. if and only if f possesses approximate
partial derivatives a.e.. Stepanoff also gives an example to show that the

corresponding statement is false if one deletes the word « approximate &#x3E;&#x3E; from
both the hypothesis and the conclusion. An intermediate property is that

of having, at almost every point, directional derivatives in almost every direc-
tion. We first show, by example that this property is strictly intermediate

if we are dealing with ordinary derivatives. We then study the situation

for approximate derivatives ending with a theorem which states that if a

measurable function has approximate partials a.e., then it has a.e. direc-

tional derivatives in a.e. direction.

For simplicity of notation, we restrict our attention to the case n = 2.
The higher dimensional cases offer no new difficulties except notational.

2. Preliminaries.

In this section we state the definitions and indicate the notation we

shall use in the sequel.
Let 11 be a measurable set in the Euclidean plane 7 let p = (xo, YO)

be a poi nt of R2, and let 0 be an angle (given in radians). If the weak,
strong and 0-directional densities of M at p exist, we shall denote them by

u (p, M) and respectively. These densities can be given
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by the formulae which follow, Zx indicating the characteristic function of

the set M.

For simplicity of notation we shall write I A for the Lebesgue measure
of a measurable set A. Whether it is one, two or three dimensional measure

we are considering will be clear from the context.

3. Results.

We begin with two examples which show that, for ordinary derivatives,
the existence for almost all points, of directional derivatives in almost all

directions, is intermediate to the existence almost everywhere of partial de-
rivatives and the existence almost everywhere of a total differential.

EXAMPLE 1. Let F be a residual subset of the real line such that

= 0. Let M = F X F and let f = XM. For every point p 
such that x E cv 1~ and y E co 2~ f has (vanishing) partial derivatives at

(x? y). The set of all such points p has full measure. Thus, the partial de-

rivatives of f exist a.e. in 1~2.
On the other hand, we show that at ?to point does f have directional

derivatives in any direction different from that of the coordinate axes. To

show this, we show that any line segment L not parallel to a coordinate

axis contains points of M as well as points of That L contains points
of M follows from the fact that F is dense on the real line. Now suppose
L is parametrized by the equations x (t) = at + c, y (t) = bt + d where a

and b are non-zero real numbers and t ranges over the interval [U, 1~. We
wish to show that there exists t1, 1 U ~ t~ c ~ such that and

bt1+ d E F. This is equivalent to showing that the sets - (F‘-c) and -(F-d)a b

have a point in common in the intervals [0, 1]. But each of these sets is re-
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sidual on the real line, so the same is true of their intersection. Thus f does
not possess a derivative along L at any point of .L.

EXAMPLE 2. Let M be any dense denumerable subset of R2 possessing
no more than two points on any line and let It is clear that f pos-
sesses directional derivatives in all directions at every point not in M but
that f possesses a total differential nowhere.

The main result of this article is Theorem 2, below, a result which

depends heavily on Theorem 1, which is a sort of Lebesgue density theorem
for directional densities.

THEOREM 1. Let M be a measurable subset of R2. Then for almost every
point p E M, do ( p, M) = 1 for almost every 9.

PROOF. Assume first that M is closed. Let 9N = M x [0, 2~). Let CD =
= (( p, 0) E do ( p, M) == 1). We begin by showing that (D is measurable.
For each pair of positive integers (n, k), let

Then To show that T) is measurable, it suffices to show

that for each .n and k, the set Qnk is closed. Thus let be a se-

quence of points in converging to a point (xo, yo, I 90), Let b  1 and,k
for each j = 0, 1, 2,... , let

Since y;, Oj) E Q,,k for each , We show

Now if r E f for infinitely many j, say, r E Mjm’ m = 1, 2, ...
then (xo -~- r cos 9~, is in the closure of the set 

+ r cos 9jm’ Yjtn + r sin 8~~~). Since M is closed, we infer (xo + r cos +
+ r sin 00) E M, so r E Mo. Therefore M0 n from which it follows that

8J&#x3E;S

Therefore (.xo, yo, 90) E Qnk and is closed Therefore Cj)

is measurable.
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Now fix 0, 0 ~ 0  2a. For almost all p E M, de ( p, M) = 1. Thus. for

every 0, the 9 - section of CD has zero (two dimensional) measure.

Since and 9D are measurable, it follows from Fubini’s Theorem that

i 9N - Q = 0. Employing Fubini’s Theorem again, we see that for almost
every p E 3f, the p-section of T) has (one dimensional) measure zero.

That is, for almost every p, the point ( p, 0) is in (D for almost every 0 in

[0, 2~). This means that for almost every p, de ( p, M) = 1 for almost every 0.
It remains to prove the theorem for AT an arbitrary measurable set. Let

00

{Fk} be a sequence of closed sets contained in M such that C’0 U Fk = 0.
k=l

For each k, there exists a set Zk c Fk such that = 0 and if p E Fk N Zk,
then for almost every 0, de ( p, Fk) = 1. For such a p and 9, dg (p, M) == 1.

00 00

Thus, U Fk) U U Zk, d0 ( p,M) =1 for almost all 0.
k=1

This completes the proof of the theorem.
Comparing Theorem 1 with the Lebesgue Density Theorem, we see that

if M is measurable, then almost every point of M is both a point of two
dimensional density of M and a point of directional density in almost every
direction. Neither of these two conditions, however, implies the other at

individual points as the following examples show.

EXAMPLE 3. Let M, = ~(x, y) : 0  y  X21 and let M = R2 It is

easy to verify that de (p, M) === 1 for all 0 while a (p, M) does not exist. In

fact, the lower strong density of 1~ at p is zero.

EXAMPLE 4. We give an example of a set A[ and a point p siich that
o ( p, M) = 0 while dg (p, M) does not exist for any 0. If N = R2 C’0 M then

while do (p, N) exists for no 0.

Let sk =1+ 1 + ... + I for each integer k. Consider the following2 k

sequence of sets:

where n2 is chosen so large that I A 21 ] is less than

We continue in this manner obtaining a sequence of sets such

that for each

where nk is chosen so large that nk ~ nk-i and
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For 00 a small positive number define I

Choose a sequence (0k) such that

0 and k cos Ok sin Ok --~ oo. Let Bk = ((r cos 0, r sin 8~ : 0 E G’9k and

( r cos 0, r sin 0) E A k ), 3f be the union of the sets Bk and subsets of the

coordinate axes with no linear density at (0, 0) and let p be the origin.
Then it is easy to see that does not exist for any 9. We

verify that o ( p, = 0. Let R be a rectangle with one corner at p and

the opposite one at (x, y). By symmetry we may assume (x, y) is in the first
quadrant. Let k be the smallest integer in ij : 0) and let n = nk.
Then - Since 1~ contains a point (r cos 0, r sin 0) such

that

and since k --&#x3E; oo as the diameter of R tends to zero,

REMARK. Example 3 showed that it is possible to have 
for all 0 without having a ( p, = 1. However, the relation d0 ( p, M) = 1
for almost all 0 does imply the equality This result follows

readily from the Schwarz inequality. In fact,
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Therefore

Now, if de ( p, M) = 0 for almost all 0, then the expression in brackets

approaches the value 0 almost everywhere as h -~ 0. It follows from the

Lebesgue bounded convergence theorem that, as h -~ 0, the last mentioned
double integral approaches 0 with h. We have shown that if p is a point
of directional dispersion for M for almost all 0, it is also a point of weak
dispersion. for M. By considering complements, the desired result follows.

Example 1 above showed us that the existence almost everywhere of

partial derivatives does not imply the existence almost everywhere of any
of the directional derivatives. For approximate differentiation, the situation
is different.

THEOREM 2. Let f be 1neasurable on R2. If the approxiinate partial de-

rivatives exist almost then for almost all p E R2, the approximate
directional derivatives exist for almost all directions.

PROOF. Let M be the set of points for which it is not the case that

f’ possesses approximate directional derivatives in almost all directions. We

show M I = 0. Suppose, then, that M has positive outer measure c. Accor-
ding to a theorem of Whitney [3], there exists a continuously differentiable
function g which agrees with f except on a set r~’ of measure less than ~.

The set has positive outer measure. By Theorem 1, for almost every
point in ( p, S) = 1 for almost every 0. Thus there is such a

point Now g has a directional derivative for every direction 0

at p. This directional derivative is the approximate directional derivative

of f at p for any direction 0 for which de ( p, oo = 1 ; that is, for almost
every 0. But this means p E lVl, a contradiction.

- REMARKS : It is not difficult to verify that the converse to Theorem 2
is valid. Thus, the following four conditions are equivalent for a function f’
measurable in R?.
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1. f possesses approximate partial derivatives a. e.

2. For almost all points, f possesses approximate directional deriva-
tives in almost all directions.

3. (Stepanoff) f has an approximate differential a. e.

4. (Whitney) For every E &#x3E; 0, there exists a set M whose comple -
ment has measure less than s and a continuously differentiable function g
such that f and g agree on M.

Furthermore, if we drop the term « approximate &#x3E;&#x3E; wherever it appears,
the only valid implications among the four modified conditions are indicated
in the chart below

The only counterexample remaining is 2 -~--~ 1.

EXAMPLE 5. Let 1~’ be a residual subset of the real numbers .R1 such

that I F = o. Let 8 = F ’ Then S I = 0. We shall construct a sub-

set lll of S with the properties that M intersects every horizontal line L in
a set dense in L, while intersects every other line in at most two

points. The characteristic function of .J.7J;1 has the desired properties. Let

S (y : r, s) = y) : ;  x  81 where y, r and s are real numbers. This fa-

mily has the cardinality of the continuum. Let Q be the first ordinal equi-
valent to the continuum and let the family (S (y : r, 8)) be well ordered by
.Q: ~’~ , ,~2 s ... Assuming we have for all 

such that no three of the points in the family are collinear

(except possibly collinear on a horizontal line), choose PP E So f1 S such that
this property holds now for the family ( pa : a ~ ~3~. That this is possible
follows from the fact that 8p n ~S has cardinality of the continuum while

the number of lines already chosen has cardinality less than that of the

continuum. The set a  01 has the desired properties.
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