@article{ASNSP_1966_3_20_3_595_0, author = {Vesentini, Edoardo}, title = {Remarks on integral inequalities on complex manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche}, pages = {595--611}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 20}, number = {3}, year = {1966}, mrnumber = {216526}, zbl = {0173.09203}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1966_3_20_3_595_0/} }
TY - JOUR AU - Vesentini, Edoardo TI - Remarks on integral inequalities on complex manifolds JO - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche PY - 1966 SP - 595 EP - 611 VL - 20 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1966_3_20_3_595_0/ LA - en ID - ASNSP_1966_3_20_3_595_0 ER -
%0 Journal Article %A Vesentini, Edoardo %T Remarks on integral inequalities on complex manifolds %J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche %D 1966 %P 595-611 %V 20 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1966_3_20_3_595_0/ %G en %F ASNSP_1966_3_20_3_595_0
Vesentini, Edoardo. Remarks on integral inequalities on complex manifolds. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 20 (1966) no. 3, pp. 595-611. http://www.numdam.org/item/ASNSP_1966_3_20_3_595_0/
[1] Carleman estimates for the Laplace-Belframi equatin on complex manifolds, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, n° 25 (1965), 81-130; Erraturn, ibd. n° 27, 153-155. | EuDML | Numdam | MR | Zbl
- ,[2] A special Stokes's theorem for complete riemannian manifolds, Ann. of Math., 60 (1954), 140-145. | MR | Zbl
,[3] L2 estimates and existence theorems for the δ-operator, Acta Mathematica 113 (1965), 89-152. | MR | Zbl
,[4] Geometry of bounded domains, Trans. Amer. Math. Soc., 92 (1959), 267-290. | MR | Zbl
,[5] Levi convexity of complex manifolds and cohomology vanishing theorems Lecture notes, Tata Institute of fundamental Research (to appear). | MR | Zbl
,