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SOME FUNCTION SPACES DEFINED USING

THE MEAN OSCILLATION OVER CUBES

SVEN SPANNE

0. Introduction.

The purpose of this paper is to extend some recent results by John
and Nirenberg [2], Campanato [11 and Meyers [3]. These authors study
spaces of functions on a set Q in Rn, defined by conditions on the mean

oscillation on cubes I contained in Q, i. e. the quantity

In John and Nirenberg [2] is given a characterization of the space E(1),
defined by the condition

where the set Q is a cube.

As a generalization one can study the spaces which are defined by

where a is a given real number. When 0 C a C 1 (Meyers [3], Campanato [1]),
one gets the spaces Lipa and when - 1 a  0 (Campanato [1]), spaces
first studied by Morrey.

In the present paper we shall consider a generalization of these spaces,
obtained by replacing the functions 1 and ta, 0  a C 1 by arbitrary
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positive non decreasing functions q, i. e. the spaces ~~ (Q) defined by

where Q is a given cube.
The main results are the theorems 1 and 2, which contain a characte-

rization of the spaces -P,, implying, e. g. the following results.
6

(a) If the function 99 satisfies the Dini condition w ()2013; oo foro

some ð &#x3E; 0, then every function f in f, is continuous (modulo a null func-
tion) and its modulus of continuity satisfies the inequality 

where C depends on f, for sufficiently small ~~.

a

(b) If 99 (t)lt is non-increasing and g (t) dt is not convergent, then
t

there exists a function in d2, that is neither bounded nor continuous,
not even modulo nullfunctions.

The result (a) is a generalization of some results in Meyers [3] and
Campanato [1], where it is proved that the spaces 0  a ; 1 coincide

with the spaces Lipa . The result (b) generalizes a remark by John and
Nirenberg that the function log ~ x I belongs to £(1) (Q) for each Q in 

Our characterization of Eq; is an extension of the one given by John
and Nirenberg for .~~1~ , using upper bounds for the measure of the sets

is the mean value of f on I.

To obtain these results, we shall use a combination of the methods

used by John and Nirenberg and of the one used by Campanato. We shall
employ the main result of John and Nirenberg in the form of lemma 4,
while the main idea in Campanato’s proof corresponds to our lemma 3.

My thanks are due to Professor Jaak Peetre for suggesting the pro-
blem of proving the result (b) and for all his encouragement and help
during my work.

1. Sonie p.8eliminaries.

We use, for x = ... , xn) in the norm .x 1= i and denote
y i_n

by 1 (.r, )-) the closed cube j I ot’ ceittre X, edgelength t’ and
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the edges parallel to the coordinate axes. In the sequel, all cubes are

supposed to have their edges parallel to the coordinate axes.
If f is a locally integrable function, defined on the I (x, r),

we denote by

the mean value of f on I.

For technical reasons we shall use, instead of the mean oscillation

O f (I ), the quantity

This is justified by the following lemma.

LEMMA 1: Let f be an integrable function on I. Then we have

PROOF. : The inequality to the left is evident and the one to the

right follows since

Let Q be a given cube in Iln. We write

Then we lmve the following restrictions on the maltiplicative variation 
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LEMMA 2 : We have that

REMARK. A function 8 (t) is called almost decreasing (almost increa-
sing) if there is a constant ~1. such that 0 (t) C A6 (t’) if t ~ t’ (t ~ t’). It

follows from the lemma that there are constants a and P, depending only
on n, such is almost decreasing and y(f, is almost

increasing, and moreover, the constants A may be taken depending only
on n.

PROOF:

(a) We have

(b) This is an immediate consequence of (a).
(c) Ta,ke I = I (x, r) in Q. We divide I (by halving each edge) into

2" equal cubes Ik. Let Ik and 11 be two of these cubes, of centres xk and
xl , having a full (n - 1) dimensional face in common, and let I’ be a

congruent cube of centre I (xk -i- Then
2
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and

Integrating this inequality over Ik n I’, we obtain

Hence

Any two of the subcubes may be connected by a chain of at most n

of adjacent subcubes. Hence, for two arbitrary subcubes, we obtain

and since J ) we get

This implies

I , -

which completes the proof.
We shall need some further properties.
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LEMMA 3:

The proof of (a) is contained in the proof of lemma 2 (a) and (b) is an im-

mediate consequence of (a).
"7 e introduce the following notations

The conclusion of lemma 2 {b) and (c) and the remark are also valid for the
function P.

REMARK : Obviously , t

is the modulus of continuity of j. Then we also get

j* (x~ r ; s) = the non-increasing rearrangement on (01 oo) of the function

i f (~) - f’ (x~ r) ~ I restricted to I (x, r). This is the function that is non-inerea-

sing, positive and continuous from the right, and such that

LEMMA 4: (John-Nirenberg)

There are constants a.,,, y depending only on n, such that

I’ROOF : According to John and Nirenberg (2~, Lemma 1, page 415, we
W ve

where lE &#x3E;ind b depend only on n. _

Choosing (fn = (I [ + 2)/b, the result follows.
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If q is an arbitrary function, y we write

in particular

and

LEMMA 5: There are constants cn ~ I depending only on n, such that

and analoguously for 0.

PROOF : According to the remark following lemma 2 there are constants
a and fl such that 1p (j; r)lrl is almost decreasing and 03C8 (f r) . is ahnost

increasing. Thus

and

where, by the a depend only on the dimension &#x3E;1.
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2. The spaces 

Let 99 be a strictly positive, non-decreasing function, defined on some
interval 0  t C a . Moreover, we suppose that ~ (t)/ta is almost decreasing
for some a. According to our earlier remarks, this is no essential restriction.

DEFINITION: A locally integrable function f belongs to the class (Q) if

and we define

Then is a norm on modulo nmllfunctions, and

it is not difficult to show that with this norm, is a Banach space.
Above we have supposed that g is defined at least for 0 C t ~ ro , 7

but depends, up to equivalent norms, only on the values of 99 in an

arbitrary right neighbourhood of the origin. It is evident that if’ g~ (t) C 
in some neighbourhood of 0, then is contained in E1p’ We shall later

prove, in theorem 3, that if 99 (t)lt is non-increasing, then the converse is

also true.

3. Formulation of the main results.

THEOREM 1 : There are constants Cn , depending only on the di-

mension n, such that
(a) If f belongs to (Q), then

(b) If there is a constant such that

then f belongs to ( C~~ and f ~~  Rn k.
This theorem is lIl some sense the best possible as the following t,heo-

rem 
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THEOREM 2 : (a) If g~ (t)/t is almost decreasing, then

belongs to (Q) for each cube Q in (b) If 99 (t)/t is non-increasing
and f (x) = ), then

in some neighbourhood of the origin for each cube C~ containing the origin.

THEOREM 3 : Suppose that Pt (t)lt is non-increasing. Then the inclusion
C Erpt is valid if and only if there are constants C and 03B4 such that

All such inclusions are continuous.

Theorem 1 has the following

COROLLARY 1: If then every function f in j2~ is con-
0

tinuous (modulo the nullfunctions) and its modulus of continuity satisfies
the inequality

RElB’IARlí:: Corollary 1 may be proved without supposing that q (t) is

non-decreasing and without using the lemma 4. The result is that for every
function such that

Theorem 2 implies immediately

COROLLARY 2 : If 99 (t)lt is almost decreasing and
0

then there exists a fnnction in that is neither essentially bounded nor

continuous
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EXEMPLE: (1) Taking 4p (t) =1 , we get the result of John and Niren-
berg that is used in the proof.

!~~- c,’if 1, - r by corollary 1. This proves that is included in Lip., and
the opposite inclusion is obvious, since ~ (/, r) (/, r). This gives the
result of Meyers and Campanato.

where Q is a small cube. does not satisy onr conditions in

the interval 0  t C 1, but this does not matter, since only the behaviour

of ~ near 0 is important. Our choice of interval simplifiers the notations).
As f* and 1 are equimeasurable, we get

for and F a measurable function.

Choose F (u) = exp Then

which is integrable if I This shows, since Q is a bounded

cube, that f belongs to the Oriiez apace defined by the function M (u) =

4. Proof of the theorems:

PROOF OF THEOREM 1 (a)

Let and (I ). W’e divide I into congruent sub-

cubes Ijk = ro . 2-j) by repeated halving all edges and = r,) - 2 --1.



603

Then

According to lemma 3 have

Choosing

with a’n as in lemma 4. Then

~ nanj q (i-j) f as q,, is increasing. (This is the point where this condition
on q is essential). Hence,

by lemma 4 and thus

Put = (21£ + na’n) Cn , and suppose that
Then we have 1Uo (iln Ø2ro (1~)) ~ 1no (dn Ø2ru (?.~ . 2-I+I )) ~ mo (~~(2~’ 
as 1no and are noninereasing functions. The result is that

and, equivalency
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which gives the theorem (a) with

PROOF OF THEOREM 1 (b)

Suppose that,
Then

as g~ is nondecreasing. Hence

(t)/ta is almost decreasing, and the conditions in the theorem imply

that f belongs to and I

PROOF OF THEOREM 2

(a) Suppose that cp (t)/t is an almost decreasing function.
We put

and
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Then we have the inequality

since

I

x

Hence

(4.6)

Now define

W’e have proved that
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(b) Suppose that is non-increasing. We start by the case
r

Then.

is ncn decreasing for x &#x3E; 0, we have

Hence

Moreover, if

and we obtain
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the result is

Hence

The extension to n dimensions is obvious.

PROOF COROLLARY 1 :

Obviously, essa 
° 

sup as the functions

tre equimeasurable. But sup
8

if the integral converges, and ’

where the first supremum is taken over cubes I of edgelength c ~°.

PROOF OF THEOREM 3:

Trivially, the inequality implies the inclusion. Conversely we may sup-
pose that Q contains the origin. If ~,~1 C ~~,9 and CPt (t) / t is non-increasing,
then by theorem 2 (b), To E Eql C £q2’ i. e., there is a 6 &#x3E; 0 such that

11 tit ({J 1 still by tlleorem 2. Hence
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