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SOME FUNCTION SPACES DEFINED USING
THE MEAN OSCILLATION OVER CUBES

SVEN SPANNE

0. Introduection.

The purpose of this paper is to extend some recent results by John
and Nirenberg [2], Campanato [1] and Meyers [3]. These authors study
spaces of functions on a set @ in R", defined by conditions on the mean
oscillation on cubes I contained in @, i. e. the quantity

(1) 0f(I)=inf}'e(measI)—lﬂf(y)-—aldy.
ge 9

In John and Nirenberg [2] is given a characterization of the space ),
defined by the condition
(2) sup 0f(I) < oo

Ic@Q

where the set @ is a cube.
As a generalization one can study the spaces .Q(t.,) , which are defined by

(8) sup Of (I)/(meas I)™ < co
1cQ
where « is a given real number. When 0 << « << 1 (Meyers [3], Campanato [1]),
one gets the spaces Lip, and when — 1 <a <0 (Campanato [1]), spaces
first studied by Morrey.
In the present paper we shall consider a generalization of these spaces,
obtained by replacing the functions 1 and ¢, 0 << a<<1 by arbitrary
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positive non-decreasing functions ¢, i. e. the spaces .2, (Q) defined by

1
(4) sup 0 f (I} (meas I)") < oo

where @ is a given cube.
The main results are the theorems 1 and 2, which contain a characte-
rization of the spaces .2,, implying, e. g. the following results.
8
. - dt
(a) If the function ¢ satisfies the Dini condition f o (t) ) < oo for
B 0
some 6 > 0, then every function fin .2, is continuous (modulo a null fune-
tion) and its modulus of continuity satisfies the inequality w (f, )<<
=<C f @ (t) ?, where C depends on f, for sufficiently small ».

0
3

(b) If @ (t)/t is non-increasing and f @ (t)—? is not convergent, then
0
there exists a function in .2, that is neither bounded nor continuous,
not even modulo nullfunctions.

The result (a) is a generalization of some results in Meyers [3] and
Campanato [1], where it is proved that the spaces ,Q(ta) , 0 <a="1 coincide
with the spaces Lip,. The result (b) generalizes a remark by John and
Nirenberg that the function log |z | belongs to L2, (@) for each ¢ in R™

Our characterization of £, is an extension of the one given by John
and Nirenberg for /2, using upper bounds for the measure of the sets
{y|lyeL|fy) —fT)| > o}, where y(I) is the mean value of f on I.

To obtain these results, we shall use a combination of the methods
used by John and Nirenberg and of the one used by Campanato. We shall
employ the main result of John and Nirenberg in the form of lemma 4,
while the main idea in Campanato’s proof corresponds to our lemma 3.

My thanks are due to Professor Jaak Peetre for suggesting the pro-
blem of proving the result (b) and for all his encouragement and help
during my work.

1. Some preliminaries.

We use, for £ =(x,,..,,) in R* the norm |x|= max |a;| and denote

1=i=n

by T(x,7) the closed cube {y| & — y|<<r/2} of centre x, edgelength r and
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the edges parallel to the coordinate axes. In the sequel, all cubes are
supposed to have their edges parallel to the coordinate axes.

If f is a locally integrable function, defined on the cube I = I (z,r),
we denote by

(1.1) FI) = f(@,r) = 1= f 7 dy
v I

the mean value of f on I.
For technical reasons we shall use, instead of the mean oscillation
Of(I), the quantity

1.2) Q1) = f (@, r) = rﬂflf(y)—f(r)ldy.
I

This is justified by the following lemma.
LEMMA 1: Let f be an integrable function on I. Then we have
(1.3) 0f(I)< Qf (I) < 20/ (I)

PRrOOF.: The inequality to the left is evident and the one to the
right follows since

Qf(l):r‘"flf(y)—f(I)Iﬂysr‘"flf(y)—OIdy-l—
1 I
+|a—f<1>|=r—"(f$f<y>—a|dy +U(f(y)—-0) dyl)s
I 1

< 21'”"f|j'(y) — 0| dy for every o.
i

Let ¢ be a given cube in R" We write

(1.4) py(in=vy(ir; Q= sup Qf(x,r).

I, nee

Then we have the following restrictions on the multiplicative variation of .
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LEMMA 2: We have that
(L5) (a) Qf @, ') < 2 (r[r'y Of (@) if T(@', ") I (,7)
(1.6) (b) yhrys20/rry(fn) ifr<r
(1.7) (o) v, )< (Bn+ 1)y (f,7/2)

REMARK. A function 0 (f) is called almost decreasing (almost increa-
sing) if there is a constant 4 such that 0 (t)<< AB () if t=>t" (t<<t'). It
follows from the lemma that there are constants « and f, depending only
on n, such that v (f,t)/t* is almost decreasing and w(f, 1)/t is almost
increasing, and moreover, the constants A may be taken depending only
on n.

PROOF :
(a) We have

Qf @, ) =" |fly) — @, )| dy <

Iiz’, r')

< f |7 @) —f@n |y +1f(@n—f@, )| =

Iz, ")

== [l7@—r@nlay+|r= [0 —rua|=

i@, ) @, 7)

2= [ |76 = @) dy < 200 [ |719) = @y ] dy=
i@, ») T, v)
r " 3 4 7/
=2 g Qf (x, r) since I (@, r)c I (x,7).
(b) This is an immediate consequence of (a).

(c) Take I = I (x,7) in @. We divide I (by halving each edge) into
2" equal cubes I,. Let I; and I; be two of these cubes, of centres x; and
x;, baving a full (n — 1) dimensional face in common, and let I’ be a

1
congruent cube of centre ?(xk—|—w,). Then

STy —fI) | < |f (T —FI) |+ | /(L) — f(I)]
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and

If T — I < |f@) =T+ 1@ —fI)]

Integrating this inequality over I, N I’, we obtain

7 <%)n|f(1k) — I = f(lf(y) — I+ ) —F I de<

IgnI’

g[my) ~f(Ik)|dy+f|f(y)f(I')| ay <
I I

= (5] @ru+aran=(5) 2w s

Hence

| f(I) — f(L) | < 8y (f, 7/2).

Any two of the subcubes may be connected by a chain of at most =
of adjacent subcubes. Hence, for two arbitrary subcubes, we obtain

| fTe) — f(L) | < 8ny (f, 7/2)

and since f(I) = 2" X f(I;) we get
k

| fUI) —fT) | <2 4:' [Ty — f(T)) | < 8ny (f, 7/2).
This implies

Qf(w,r)sr—"flf(y)——f(f)Idy=r‘"}2f|f(y)—f(I)ldyg
I Ij

<3 f (1 F@) — FI)| + Snp (f,7/2) dy <
I

=r ,2 r/2)" (w (fy r/2) + 8ny (fy 7/2)) = Bn + 1) v (f; 7/2)

which completes the proof.
We shall need some further properties.
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LEMMA 3:

(1.8) (a) |f@yr)— fla,r)| < (r/r'V Qf (@) if T(@,r")cCI(xr)
(1.9) (b) |f@yr2=) — fa,r)| < 2 ]Elw (fyr27% if I(@yr-270) I (@,
k=0

The proof of (a) is contained in the proof of lemma 2 (a) and (b) is an im-
mediate consequence of (a).
We introduce the following notations

(1.10) @(fyr) = sup y(f,8) = sup Qf(xs)
<s=r I(x. 8) @
<<s=r

The conclusion of lemma 2 (b) and (¢) and the remark are also valid for the
function ¢.

REMARK: Obviously Qf(x, r)<<w(f, r), where o f, r)=ess sup | f@)— fy)]
|z—y |
is the modulus of continuity of f. Then we also get v (f,r )g w(f,r) and
p(in<w(f.
(1.11) m(f; ®r; o) = meas {ylyEI xy 1)y | f(y) — f(®,7)| > o)

f* (x,r; 8) = the non-increasing rearrangement on (0,0c0) of the function
| f (@) — f (=, r)| restricted to I(x,r). This is the faunction that is non-increa-
sing, positive and continuous from the right, and such that

(1.12) m(f;xr; f*er; s)=s.

LEMMA 4: (John-Nirenberg)

There are constants a,, depending only on =, such that
(1.13) m(f;2,0;a,dp(fyr) <2749, 1>1.

PROOF : According to John and Nirenberg [2], Lemma 1, page 415, we
have

(1.14) m(f;w,r;o)gBexp(-—(p—(b%—E)r”, >0

where B and b depend only on n.
Choosing «, = (| log B |+ log 2)/b, the result lollows
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If ¢ is an arbitrary function, we write

r

(1.15) (15,(3)=f<p(t)—dt—t, ifols<r, =0if s=v,
in partieular»
. dt
(1.16) v (= [viro g
and ’
dt
(1.17) o.(f0=[vis,0 5

8

LEMyvA 5: There are constants ¢,, depending only on =, such that

1 izt ) j—1
(1.18) o Sy (fir-27H < Vo (fyr. 271 < Onkz y(fyr.27%
—0

n k=0
and analoguously for &.

PROOF : According to the remark following lemma 2 there are constants
o and f such that vy (f, »)/r* is almost decreasing and v (f, r) - »f is almost
increasing. Thus

r-2’_k+1
ng gt ng - dat
Hw(f,r- )—]0g 5 .2, f wifyr-27h 0=
r.g—k
2r d A "
1 t -2 )
— . 28 ) — = 23+
<oz 24 2[ VU0 = Ty Py 270
r.o—Ji+1
and
or r.g—k+1
dt izl dt
'I’(fﬂ)?’—"z (fit)—=<
k=0 4
r.9g—i+1 r.oo—k
rog—k+1
j=1 dt j=1
gA-Z"Zf y)(f,r-2—k)T=A-2'-‘10g221p(f,r-2—")
k=0 k=0
r-2"k

where, by the remark, A, « and £ depend only on the dimension n.
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2. The spaces 2, ,

Let ¢ be a strictly positive, non-decreasing function, defined on some
interval 0 <<t <C 8. Moreover, we suppose that ¢ (¢)/t* is almost decreasing
for some a. According to our earlier remarks, this is no essential restriction.

DEFINITION: A locally integrable function f belongs to the class .2, (Q) if

(2.1) sup f (x,r)/p (r) < co
I(z, r)CQ

and we define

(2.2) [fle = 1f5 @ <P|=1(f

g

up Qf (@, 7)/p(r).
JcQ

Then || f|l, =|fle -+ ,ff(y) dyI is a norm on .2, modulo nullfunctions, and
T

it is not difficult to show that with this norm, .2, is a Banach space.

Above we have supposed that ¢ is defined at least for 0 < t<<r,
but £, depends, up to equivalent norms, only on the values of ¢ in an
arbitrary right neighbourhood of the origin. It is evident that if @ ()<< Cy(i)
in some neighbourhood of 0, then .2, is contained in .2,. We shall later
prove, in theorem 3, that if ¢ (f)/t is non-increasing, then the converse is
also true.

3. Formulation of the main results.

THEOREM 1: There are constants B, , C,, depending only on the di-
mension =, such that
(a) If f belongs to .2, (@), then

(3.1) SX(@yr; 8" << C, Do, (8)| f|o for all s >0 and I (x,7) C Q.
(b) If there is a constant k such that
(3.2) S¥ (@, r; 8" << k Dy (s) for all s=>0 and I(x,s) C Q

then f belongs to .2, (@) and |f|, << B, k.
This theorem is in some sense the best possible as.the following theo-
rem shows.
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THEOREM 2: (a) If ¢ (t)/t is almost decreasing, then f(x)= &, (|x,]|)
belongs to L, (Q) for each cube @ in R*. (b) If ¢ (¢)/t is non-increasing
and f(x) = D, (|x,|), then

(3.3) Lot =gh=cpl)

in some neighbourhood of the origin for each cube @ containing the origin.

THEOREM 3: Suppose that ¢, (t)/¢ is non-increasing. Then the inclusion
L, € L,, is valid if and only if there are constants C and é such that

(3.4) P (1)< Coy(r), 0 <7 <4

All such inclusions are continuous.
Theorem 1 has the following

4

t : . . .
COROLLARY 1: If [ o (1) (i— < oo, then every function f in .2, is con-

0
tinuous (modulo the nullfunctions) and its modulus of continuity satisfies
the inequality

(3.5) o (f, r)sc(f«r’(t) %‘)'flw
0

REMARK : Corollary 1 may be proved without supposing that ¢ (t) is
non-decreasing and without using the lemma 4. The result is that for every
function such that

6
dt
w(f, 1) T < oo, we have

0
T

. dt
(3.6) o (=6 [vihoF
0
Theorem 2 implies immediately
dt
COROLLARY 2: If ¢ (t)/t is almost decreasing and f(p () T = + oo,

0
then there exists a function in .2, that is neither essentially bounded nor
continuous
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ExEMPLE: (1) Taking ¢ (t)=1, we get the result of John and Niren-
berg that is used in the proof.

r

it e
(%Lﬁ¢uh=p,0<a§ﬂdTMnf¢U%7 4

=_ hence o (f, r) <<
0

< c¢|f|, - r by corollary 1. This proves that £Lys is included in Lip,, and

the opposite inclusion is obvious, since ¢ (f,r)<< w (f, ). This gives the

result of Meyers and Campanato.

(3) Let ¢(t) = (1—a) (log %

foca<l.

l—a
Then @, ()= (log —t—) and hence
1\l~-ea | .
(3.7) f# (Zyr;t") = O, (IOg T) |f lv if f€ 'Q'P (@)

where @ is a small cube. (Actually, @ does not satisy our conditions in
the interval 0 < ¢ <1, but this does not matter, since only the behaviour
of @ pear 0 is important. Our choice of interval simplifies the notations).
As f* and |f —f(I)| are equimeasurable, we get

n

(3.8) fF(If(y)—f(I)l)dy = / F(f*s) ds

I

for I =1 (x,r)C ¢ and F a measurable function.
1

Choose F (u) = exp (c|u|1———“). Then
1

1— 1—a

a
|1 =5

|

1 1—a
- ;C (011 '.”:,) l—a

S|~

F(f*(s)<exp [c[ Ca (log
§

1 1—a

which is integrable if |f], <a—1 (—?—) . This shows, since ¢ is a bounded

cube, that f belongs to the Orlicz space defined by the function M (u) =
1

=exp (|u|i-%) —1.

4, Proof of the theorems:

PROOF OF THEOREM 1 (a)

Let I=1I(x,,7,) and fe L, (I). We divide [ into 2/ congruent sub-
cubes I = I (xj,r, - 277) by repeated halving all edges and put rj=r, . 2.
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Then

2;’71
(4.1) my () =m (f; &y, 7y ; 0) =k§; meas {y |y €L, |f(y) — f(®y,r)| > o

According to lemma 3 have
. i=1 o
’f (i 5 75) — f (®g 5 7o) | =2 kgo ®(rg-27%) lf 'y » Choosing

j=1
o= (2"+ na,) 3 @(r,- 27| f|, with a, as in lemma 4. Then
k=0

j—1
o2l 2"">|f1rp2na»2¢ =
()

>na,j @ () ]|f|,, as ¢ is increasing. (This is the point where this condition
on g is essenmal) Hence,

meas (y]y € L, |/ y) — S @, 70 | > 0} <
= meas {ylyEIch,U‘ f$1karj)|>“nnj‘l’("'j)}s

< 2-M e by lemma 4 and thus

o jn
(4.2) my (o)< 3 27t =} = (27 rpn
k=1 ! 0
But o = (2" 4 na,) 2 (P 279 fle <

< (2" + na,) 6, Doy, (ry - 27914 | f|, by lemma 5.

Put d, = (2" 4 na,) ¢, , and suppose that ry - 27 < r <<r,. 27/t j > 1.
Then we have mg (d, Doy, (1) << My (d, Doy, (1g - 277H)) < my (0) << (277 7o) << 1™,
as m, and @, are nonincreasing functions. The result is that

(4.3) m (52,795 0)< (d’m (d 171 ))“
@

if 0 > dy Dy, (1) lft'l)
and, equivalently

(1.4) T @y v05 1) < dy Doy, ()] [ ], =7,
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which gives the theorem (a) with C,=d,, since f*(x,,7,;7") =0 for

r>nr,.

PROOF OF THEOREM 1 (b)
Suppose that f* (x,r; s") <<k Dy (s), s > 0.

Then
T'"f lf(y)—-f(w,”)!dy=V‘"/f’(wy rit)dt <
I(z,7) 0
r r 2r
du
= kr""f Dy, (1) d (t) < kr—"fftp (o) o am <
0 0 't
2r 2r 2r 3
< kr—n [ ( f W du) d (") = kr—n f L (“)( / d (t")) du
uw u
0t 0 0
2r . 2r
= kr—"fu"—l p)ydu k- r—"¢p(2r) / u! du
0 0

as @ is nondecreasing. Hence

211 2n
(4.5) Qf@r <k —p@)<4-k — 290

as ¢ (t)/t* is almost decreasing, and the conditions in the theorem imply

that f belongs to .2, and | f|, << % 9atn | I,

PROOF OF THEOREM 2

(a) Suppose that ¢ (t)/t is an almost decreasing function.
We put
e 0t
y(t) =
0 t=r,
and
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Then we have the inequality

z+h
Lo 1
mf—h—f[g(y)—oldygq)(h), z2>0,0<h<r,

x
since
1 z+h z+h z+h a
1 t
Tflg(y)“'g(w‘*‘h)ldy:'h—f fw(t)—t—dy=
x T y
xz+h ) t 4 z+h
R A \ y(t —a)
T h t (fdx)dtsff t — o c(t— x) dt
x x z
z4h h
A A

h
A
= | vit—a)dt= 4 w(t)dt=7fq?(t)dtsAqo(h).
0 0

If << —h, the inequality is still valid, 'and if —h<<2 <0 we have

z4h |2| |h—z| h
jIg(y)—a!d@/=f+fla(y)—0Idy£2[!9(1/)—0['13/-
x 0 0 0
Hence
x+—’;~
1
(4.6) mf—h—fly(y)—o|dyg2A¢(h),|h|Sro.
4 z_i
2
Now define

J@=F @y y¥n)=g(y,). Then

Qf (x,r) << 2 infr"”flf(y) — 0| dy by lemma 1
¢ I(z, )

=2 infr""f| 9@y,) —ol|dy, .. dy, =
¢ I(x. )
xl+%
=2 infj| g(y) —ol|dy, <2249 (r),r<r.
r

n— 7

We have proved that f€.2, and |f|, < 44.
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(b) Suppose that ¢(t)/t is non-increasing. We start by the case
a:—f-%

n = 1. Then Qg (x,r)= r“/[ g(y) — g (x,7)| dy and hence

-

x4 /2
@) Qg (@, 1) =1 f L9 ) — g (@, 1| dy if &> r/2.

x+—£—
As ¢/ (x) = —::(1) is non-decreasing for x > 0, we have

Yy
(4.8) 9 =y @+ fg' tat=g )+ @y —a)y’ (x),y > 0.
Hence
z+% 4 —
1 1
(4.9) q(x)=7fg(v)dy£7f(y() (y — )y (x) dy =
z—% z—T

2
1
—Tfy(y)ﬂy—J Xy 7).

2

Moreover, ifx+—£—£y£x+%,g(y)29<w+%>2y(1‘)

and we obtain

T

z+7
1 r r 1 dt
9@ = g(m"l“T)—!}(m) —‘*4’['/’(072
r
1 'P(“"I‘T) roo cp 3r
> and if we choose x = )

r
Sy
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the result is

3r 1 1
Q!/(T,’)2I()T'¥’(’)=TG—‘P(’),TSVO'
Hence
1
(4.10) (g, 7) =y (9, T)zﬁqﬂ(r)ﬂ‘é"o-

The extension to » dimensions is obvious.

PROOF OF COROLLARY 1:
Obviously, ess’ sup |f(y) —f(I)|=sup f*(x,r;s8), as the functions
yel 8
Sf*and | f— f(I)]| are equimeasurable. But sup f* (z, » ; s) = lim f* (x, r ; 8) <<
8 8—~0
d d A d 3 d
. . t t t
Culim @, )| 7}, = € [0 07 = . f penrl, < 0 a2 f P2
88—
0 0 0

if the integral converges, and

o (fyr)=esssup|f(zx)—fy)| <2 sup sup |f (@) —f ()|

lz—y|=r
where the first supremum is taken over cubes I of edgelength < .

PROOF OF THEOREM 3:

Trivially, the inequality implies the inclusion. Conversely we may sup-
pose that @ contains the origin. If 2, < £2,, and ¢, (t)/t is non-increasing,
then by theorem 2 (b), &, ,, €2, c L2,,, i.e., there is a 6 > 0 such that

@(Dy 4y )< | Piyny s - o (1), if 7y 1y < 6.
But ¢, (r) < ep (Py, 4, 7), still by theorem 2. Hence

@, (N <c| Dy ', @ (1) if r is small enough.
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