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LOCAL BEHAVIOUR OF SINGULAR SOLUTIONS
OF ELLIPTIC EQUATIONS

MOSHE MARCUS

1. Introduction.

Let 1&#x3E;e a differential operator of order ’In, defined in a domain

of the it-dimensional Euclidean space En, of the form :

where a = (oci 7 1*1 1 a,,) is a multi-index (ai being a non-negative integer,
and D* is the partial derivative :

The coefficients au (x) are in general complex functions of x.
Suppose that L is elliptic in a sphere C R. Then if n &#x3E; 21

L is necessarily of even order. We shall suppose that m is even also in

the case it = 2.

Let u (x) be a solution of Lu = 0 in the deleted sphere 0  x - x° ( C 1~,
with a singularity of finite order at x° .

In the case that the coefficients of L are analytic at x°, h. John [6]
proved the following results :

1’ervenuto alla Rpdnzione il 19 Maggiu 1965.
This paper reprefoients part of a thesis submitted to the Senate of the Technion,

Israel Institute of Technology, in partial fulfillment of the requirements for the degree
of Doctor of Science. The author wishes to thank Professor S. Agmon for his guidance
and help iii the preparation of this work.
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(i) If u (x) satisfies the condition :

for every a such that = m - 1, j being a non-negative integer, y then in
a neighborhood of x , u (x) may be represented as the sum of a linear

combination of derivatives of a fundamental solution of L, up to order j,
and a function which is analytic at x° . ..

(ii) If (1.3) holds with j = - 1 then 1t (x) is regular analytic at x°,
i. e. the singularity is removable.

Later L. Bers [2] studied the local behaviour of it (.x.) in the neighbo-
rhood of assuming only that the coefficients of L are Holder continuous
with exponent E) in C R. Ile obtained the following results :

(iii) If satisfies the condition:

where 0  3 ~ E, then u (x) is asymptotic to cJ (x - x°), where c is a cons-

tant is a fundamental solution of the osculating operator:

Moreover, the derivatives of 1t (x) up to order uz are asymptotic to the
corresponding derivatives of cJ (x - x°).

(iv) If u (x) satisfies the condition : 
°

then the singularity at x° is removable. If the coefficients of L are real,
then in the case tllat n is even (1.6) may be replaced by the
weaker condition :

Using a theorem of Douglis and Nirenberg [4] it may be shown that, as
a result of (1.4), the solution u (x) in (iii) satisfies also the following condition:

Therefore it is seen that (iii) is parallel to (i) with j = 0.

(1) In [2] L. BERS dealt witli real elliptic equations. But it i8 easily verified that
fcautt (iii) and the tirst part of (iv) remain valid for elliptic equations with complex
coeficients
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In the present paper we generalize result (iii) to solutions it (x) with

singularities of any finite order. More precisely we obtain :

(v) Let L be an elliptic operator with Holder continuous coefficients
(with exponent E) in a sphere C R. Let u (x) be a solution of

’ such that:

where 0 is an integer and 0  8  e. 

’

Then it (x) is asymptotic to a linear combination of derivatives of order

j of the function ~T (x - x°), where J(r) is a fundamental solution of (1.5).
Moreover, the derivatives of it (x) up to order ’In are asymptotic to the

corresponding derivatives of this linear combination.
A similar result is obtained for solutions of the inhomogeneous equa-

tion where f (x) is a Hijlder continuous function (with exponent E)
in 0  C R which may have a certain singularity of finite order

at x°. ,

It is also shown that by imposing stronger regularity conditions on
the coefficients of L and the function f (x) the asympotic estimates may be
accordingly improved.

These results are further generalized to the case of an elliptic operator
L whose coefficients depend not only on x~, but also on a vector-parameter
t = (t1 , ... , tk). This generalization will be needed for certain applications
in a paper [8] on the Dirichlet problem in a domain whose boundary is

partly degenerated. In order to obtain it, we have to find first the depen-
dance of the coefficients of the asymptotic formula and the remainder func-
tion on L, 1ft (.v) and f (x). To tllis purpose we derive explicit formulas of
the coefficients, and the remainder function in terms of L, u and f and
some other functions directly related to these.

2. Definitions, notations and basic results.

The study of’ the local behaviour of singular solutions of elliptic equa-
tions is closely related to the concept of a fundamental solution. In the

case ot’ an elliptic operator with analytic coefficients, the local existence of

a fundamental solution and its basic properties were proved by F. John

[G,7]. These results will he summed up in this section since they will be
frequently required in the sequel. But first we need some definitions and

notations.
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Let (D be a domain in En. We shall denote its boundary by å0 and
its closure by cJ5. If g is a bounded set such that we shall write

(D.
Let x° be a fixed point and R a positive number. We shall denote by

Z (xO, R) the sphere  R and by Z’ (x°, R) the deleted sphere
0  x -  R. We shall also write Z(0, R) = Z (R) and Z’ (0, R) = Z’ (R).

The family of real or complex functions if (x)), such that f (x) together
with its partial derivatives up to order j are continuous in (D will be

denoted as usual by OJ (0). The set of Holder continuous functions with

exponent c (0   1) in If) will be denoted by CE ((D). Finally, the family
of functions if (x)) such that f {x) E Cj (If)) and D’f (x) E OB (If)) for = j
will be denoted by OJ+E 

If f (x~) E OJ (CD) we define :

and if ) we define also:

Suppose that the coefficients of the operator L defined in (1.1) belong
to Cm (T)). Then the operator

is defined in CJJ. L is the adjoint l operator of 1.1.

Let and let be a compact subdomain of If) whose

boundary is sufficiently smooth according to the conditions of Green’s

theorem. Then by this theorem we have :

where is a surface element of and 31 [u, z,J is a bilinear torm :

nx being the unit normal vector on at the point x, directed to the

outside of CD’. This bilinear form is not unique, blit for every operator L

we choose one of the possible forms, which will be fixed throughout t1e
discussion.
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DEFINI’1’ION 1. ~

Let v (x) be a solution of Lv = 0 with an isolated singular point y in

the domain CJ). W’e shall say that (x) is a fundamental solution of L with

pole y in (7) if for every function 2c (x) E and any open sphere
Z CC T) such that y E Z, we have

Suppose that V (x, y) (as a function of x) is a fundamental solution of L

with pole y in for every Then we shall say that V (x, y) is a

general fundamental solution of L in CD. (Here we shall use the abbrevia-

tion : V (x, y) is a of L a~t If moreover is analytic in the
domain then we shall say that it is an analytic y;f.s.
of L in (D.

EXIS1’ENCE THEOREM FOR SOLUTIONS, (F. John [71, ch. Ill).
Suppose that (I.1) is an elliptic operator with analytic coefficients in

a sphere Z (xO, Rot Let j be a positive integer such that it + j is even.

Then, there exists a function lBTj (x, y) and a sphere R~), 0  R1 C Ro ,
such that 1r) (.I’. y) is analytic in the domain

and the function

is a

Then the function lVj (x, y) satis6es the following
inequalities for (xo R2) :

where - )- = ’ x - y ! I and the constant depends on R2 . j and i. Wj repre-
sents any partial derivative with respect to ... , 9 y, ... , 7 y.,,) of order i).

The fundamental solutions (~.7) depend on j, but they are essentially
equivalent as it is seen from statement IV below. In the following we shall
write K (.1’, y) for any fundamental solution of the type (2.7).

Tn addition to the above it Inay be shown that 1( (x, y) possesses the
following property :
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sufficiently small zve have:

where the coefficients c, are analytic functions of (y, ~) and w (x, y) is ana-

lytic in (x, y) and satisfies the equation L (x, (x, y) = 0. Moreover if n
is odd then w (x, y) == 0. is even then the limit

exists and is attained uniformly with respect to $. In the case that L is real

or, more generally y strongly elliptic, it may be shown that c (y, ~) =~= 0.

(.John [7], pp. 61-65).
We note that F. John dealt in his works with a real elliptic operator.

But his treatment is valid also for general elliptic equations with complex
analytic coefficients. An exception is the last statement of result I, the
proof of which is valid only for strongly elliptic equations.

As a consequence of (2.7) and (2.x) we obtain :
II Let 0 C 1~2 C Iv1 . Then, for K (x, y) satisfies the

inequalities :

, (n odd),

, (n even),

where the constant depends on R2 and i.

The following property of K (x, y) follows from those already mentio-
ned above:

III Let be a compact subdomain of

n °0 (CD’), then :

(John [7] pp. 54-55).
An analytic g.f.s. of L is essentially unique in the following sense:
IV Let V(x,y) [respectively V(x,y)] be an analytic g.f.s. of L [re-

spectively L] in a domain in which L is elliptic with analytic coefficients.
Then we have :
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where a (y, x) is analytic in (D X If Z (x°, R) then for

p (y, x) is given by the formula :

From this result and the existence theorem we conclude that two analytic
g.f.s. of L in CD differ only by a function w* (x, y) which is analytic in

and satisfies the equation L (x, u~~‘ (x, y) = 0. (John [6], pp. 297).
The following two results of John [6] will also be needed in the

sequel.
V Let Land (D be as above. Then every solution u (x) E Om of

Lu = 0 in T) is analytic in CJ).
VI Let L be the operator mentioned in the existence theorem. Sup-

pose that u (x) is a solution of Lu = 0 in the deleted 

such that (1.3) holds. Then for we have:

where c~ are constants and (x) is analytic in Z (x°, (This is the com-

plete formulation of result (i) of section 1.).
In connection with result III we note that formula (2.9) holds also

under the following weaker assumptions :

Indeed, using some well-known lemmas of potential theory, (see Appendix
A), it follows from (2.11) and (2.16) that the function

belongs to Oml (If)’) and

for Hence :
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We note also that inequality (2.11) may be slightly improved in the
case that n is even and m + i. It follows from results II and IV, that
in this case, the factor ) on the right side of (2.11) may be
deleted. 

-

Another basic result that we shall need in the sequel is a theorem on

interior estimates for elliptic equations of Douglis and Nirenberg [4]. We
shall refer to Theorems 1 and 4 of [4] (pp. 517 and 529) as the Douglis-
Nirenberg theorem.

Let Lu = f be an uniformly elliptic equation of order 1n in (D, such
that the coefficients of L and the function f belong to where

0 -- p is an integer and 0 [ E [ 1. Suppose that 1t (x) E Then the

Douglis-Nirenberg theorem asserts that u (x) E and it provides
estimates for the derivatives of u (x) up to order at interior points
of (D.

It was shown later, in the paper of Agmon-Douglis-Nirenberg [1], (pp.
719), that under the above mentioned assumptions on L and f, if u (x) E
E then it follows already that u (x) E (rD)·

The following lemma is a consequence of the Douglis Nirenberg theorem.

LEMMA 1. 

’

Suppose that (1.1) is an uniformly elliptic operator in the sphere 
and let u (x) be a solution of in the deleted sphere Z’ sucll

that u (x) E Om (Z’ (Ro)). If the coefficients of L helong to (Z (Ro)) and
if f (x) E Cp+E (Z’ (Ro)), where 0  ~ is an integer and 0 ~~ E  1, then :

With this notation we have:

The constant C1 depends only p, E, on the ellipticity constant
of L in Zo and on certain norms ua of the coefficients ciu (x) of L. These
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norms may be defined as follows:

where Z, = Z (3Ro/4).
This lemma is obtained by applying the Douglis-Nirenberg theorem to

the equation Lu = f in the domain r/2  I x C 3r/2.
We end this section with a few additional notations which will be

required in the following sections.
If g (x) E Cj (Z’ (R~) then the notation:

where = r, means that:

Similarly if then the notation

means that :

where K) is defined as in (2.22).
In a similar way we define OJ and 
Finally, if g (x) E C; in a neighborhood of the origin we define :

where a

The following is an immediate consequence of Lemma 1 :

LEMMA 2.

In addition to the assumptions of Lemma 1~ suppose that:
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where a is positive and 8 is any real number. Then:

These results hold also if 0 is replaced everywhere by o.

3. Existence of special singular solutions.

Suppose that the differential operator (1.1) is elliptic with analytic
coefficients in a neighborhood of the origin.

Let f (x) be a function with a finite singularity at the origin, such that

where 0 C a is not an integer, 0 m .9 is an arbitrary real number and 0 C a
is an integer.

In this section we shall construct a solution 1£ (x) of Lit = f in a dele-
ted neighborhood of the origin, such that:

where P (x) is a polynomial.
The main result is based on a number of lemmas which we now pro-

ceed to proove. In the following we shall denote by 1)1 a general deriva-

tive of the form Z~, ~ I a = j, and similarly by 1)11/ a derivative of the form
with 

LEMMA 3.

Let G (x, y) be an analytic function of 2n variables
in the domain

and suppose that it satisfies there the inequalities:

where ’ 
are integers and
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Let q be an integer,
be a function belonging to (

s being a real number, - q m s  n, and a a non-negative integer.
Denote

Then u (x) E Cp+q (Z’ (R)) and if s  p then u (x) belongs also to C~ (Z (R)), s’
being the greatest integer which is smaller than p - s. Moreover we have:

where ’, if 8 in an integer and a" = a + o’ otherwise, ai.

PROOF. In order to prove the lemma it is sufficient to show that:

where and a* = a + a’ otherwise. The re-

maining statements are easily obtained from (3.9) and (3.10) by integration.
Let and 0:~;~~/4. W’e divide the sphere Z (R) into

three disjoint subsets :

.1 A Norm Slip. - Pi8a.
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and accordingly we write:

Clearly,’ 1, (x) and 13 (x) belong to ((D2). Now, let
denote

and

By (3.6) we have

for suitable y and i. Hence, by integration by parts we obtain :

where ] is a bilinear form in the derivatives of G* and f with re-
spect to y, such that the sum of the orders of the derivatives in each term
is c q - 1. If now we let e tend to zero we get

Clearly I2’ (x) is an analytic function in Also, from (3.4) and (3.5) it

follows, by known lemmas of potential theory (see Appendix A), that

I2 (x) E Cp+q (°2)’
Summing up we conclude that u (x) E Cp+q and since x° was an

arbitrary point of Z’ (R), statement (3.9) is proved.
In order to prove (3.10) we again use the partition of Z (l~) defined by
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have: O O

and finally :

where j
Estimating the first three integrals with the aid of (3.4) and (3.5) we

obtain (

Similarly we obtain :

Using integration by parts it is immediately seen that the function

is analytic for x E CJ)2’ Therefore it follows, from (3.5) and (3.20), that

In conclusion we obtain the inequality :
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for min. (1, R), where h = |/4 and the constant depends only2

on G, f and n. This completes the proof of (3.10).
As a consequence of Lemma 3 we obtain the following result.

LEMMA 4.

Suppose that the differential operator (1.1) is elliptic with analytic
coefficients in a sphere Z (R°). Let f (x) be a function of 

(0  8  1, 0 --- q an integer) satisfying condition (3.5), with s and 0 as in
Lemma 3.

Let K (x, y) be a g. f. s. of L of the form (2.7), with
in a sphere Z (RI), 0  2~  .Ro . Define :

Then u (x) is a solution of Lu = f in Z’(R), possessing the following pro-
perties :

being the greatest integer

where

and o’ is an integer ~ a. is odd and s is not an integer, then g = 0’).

PROOF. From the assumptions on f (x) it follows immediately that
in Z’ (R). Hence it follows that u (x) is a solution of Lu =,~’

in Z’ (R).
Properties (a), (b) and (c), except for the Holder cantinuity of the deri-

vatives of u (x) of order m + q, are a direct consequence of Lemma 3 and

the formulas (2.7) and (2.8) concerning K (x, y).
Let 1’ (x) be the polynom mentioned in (c) and put v~ (x) = 1),~ (it (X) - 

= q. Using property (c) and formula (3.5) it is easily verified that:
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where

(W’e use also the fact that s -~- q h 0).
Applying Lemma 2 to the equation = f# we find that v# E Cm+1! (Z’ (-R))

Hence we obtain properties (a) and (c) in the complete form.
In order to prove a similar result for functions f (x) satisfying (3.5)

with it s, we shall deal first with the special case L = 4§ , (0  v an

integer). In this case we prove the following result:

LEMMA 5.

Let f (x) be a function of Cq+, (Z’ (I~o)), (0 C E C 1, q a non-negative
integer) which satisfies condition (3.5) for a certain real namber s h n and
a non-negative integer o.

Let 0 C R C jR~ and let v be a positive integer. Then there exists a

solution zcy (x) of the equation dx u,, (x) = f (x) in Z’ (R) possessing the pro-
perties (a), (b), (c) of Lemma 4, with m = 2v.

PROOF. First we shall deal with the case" = 1. A fundamental solu-

tion of the operator LJ is given by:

where Wn is the surface area of the n-dimensional unit sphere.
Let 8 be a fixed number, 0  8  1. Then for x =f= 0 ~:~

the function J (x - y) may be written in the following form :

Where and T~ (to) are the Legendre and Tchebyshenf polynomials, res-

pectively. Every term of the above series is a harmonic function in x and

y, provided x * 0, y # 0. Also if - 1 ~ O ~ 1 then ~ 1~ ~ 1.
Therefore it is clear 1,hat the series (3.25) converge absolutely and uniformly
in 4x~ and y for I y II : ;x’ ( C 8 and 1’0 1"0 being a positive number.
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We now define the function:

For x ~ 0 and we have :

differs by a function w (x, y) which is analytic in

(x, y), (provided ae =F 0, y ~ 0) and harmonic in x (x =)= 0) for any fixed y =t= 0.
Therefore JP (x, y) is also an analytic g.f.s. of L1 in the whole space En,
except for the origin.

Let us denote:

From (3.5) and (3.30) it follows that the integral converges absolutely for
0  I x ~ I  R. We shall show that it (x) satisfies all the conditions which

are required in the case v = 1. First, we shall prove that u (x) is a solution
of du = f in 0  I C R. This statement is not evident in the present
case since, generally, f (x) ~ L1 (Z ( R)).

Let R’ be a fixed number, 0 C 1~’  R/4 and let us write:

Clearly I"(x) E C2 and

for R’   R. Now, let y be a fixed point, 0  . R’. Applying the
Douglis-Nirenberg theorem to the equation in the domain

3R’ /2   R, and using (3.30) we obtain:
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for 2 R’  x ~ C R - R’. Hence it follows that I’ (x) E Coo in the domain
2R’  ~ ~ C R - R’ and that the derivatives of I’ (x) are given by the
formula :

Since Ja: Jp (x, y) = 0 we conclude that:

This together with (3.33) proves our statement.
It will now be shown that:

where 03C31, is an integer h o ; (a1 = 0 if n &#x3E; 2 and s is not an integer).

- 

Let I’(x) and I"(x) be the functions defined in (3.32) with 0  R’ 
~ 
min (1, R). We already know that I’ (x) E Coo for4

10 D4.:u::llhT t}¡gt.

for

By (3.29) the function I" (x) (for n &#x3E; 2) may be writteii iii .:. .

where

(In the case n = 2 we have to replace Pi by Tj and to add a term containing
log . All the following remarks hold also in this case.). It is easily ve-
rified, by the method employed in the proof of Lemma 3, that F (z) E 
for I~’  I x C ~R and that
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Clearly, for x ~ 0 and

Hence it follows that , and

Summing up these results we obtain (3.36) and (3.37). Hence it follows, by
Lemma 2, that the solution u (x) possesses properties (a) and (c) with m = 2.
(in regard to (b) we remark that ni - s = 2 - s  0). This completes the

proof of the lemma in the case v = 1.
From this result it follows immediately, by induction, that the state-

ment of the lemma is valid for any positive integer v such that 

Suppose now that s - n + 2  2v and put ,

Then there exists a solution uj (x) of the equation

which satisfies properties (a), (b), (c) (with m = 2j, R = R* and P (x) = 0
in (c)). Since n - 2 c ~~ - 2j -:::-- n - 1, it follows by lemma 4, that there

exists a solution u (x) of the equation

which satisfies properties (a), (b), (c) with m = 2v.
This completes the proof of the lemma.
We come now to the main result of this section:

THEOREM 1.

Let (1.1) be an elliptic operator with analytic coefficients in a sphere
Let f (x) E Ca (Z’ (Ro)) (where 0  a is not an integer) and suppose

that :

with - [aJ a real number and 0 an integer.
Let R, be a number in the open interval (o, Ro) such that there exists

an analytic g.f.s. of I. in Z (h’1), and let 0  R  
Then there exists a solution u (x) of Lu = f in Z’ (R) which satisfies

properties (a), (b), (~’) ot’ Lemma 4 with q + e = a.
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PROOF. The theorem has already been proved for the case 8 C n (Lem-
ma 4), therefore we have to deal now only with the The proof
will be by induction on s. Suppose that the theorem was proved for - [a]

7 where n  s0 is an integer. We shall now prove the theorem for

By Lemma 5 there exists a E

, such that :

where a is an integer and if n is odd and s is not an integer then

at = a.

Since n - 2 ~ s - 2v  n it follows by Lemma 4 that there exists a

function , such that:

where P2 (x} is a polynom and o,  a, is an integer. (Again if n is odd and

s is not an integer, then a, = 02)’
Now we have:

where ~1 is a linear differential operator of order + 2v - 1 at most.

Therefore by (3.42) and (3.43) it follows that :

But by the assulnption on which we based the induction there exists a

function c’ (x) E (Z’ (R)), such that :
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where P. (x) is a polynom and a2  Q3 is an integer ; if n is odd and s is
not an integer then (12 = eg.

Summing up it follows that the function:

satisfies all the required properties.
This completes the proof of the theorem.

4. Asymptotic estimates in the neighborhood of a singular point.

Using John’s theorem (VI, section 2) and Theorem 1 we shall obtain some
results concerning the behaviour of a solution u (x) of an elliptic equation
Lu = f whose coefficients are not necessarily analytic, in the neighborhood
of a singular point of finite order. For simplicity we shall suppose that the
differential operator L which is defined by (1.1) is elliptic in a sphere Z 
and that the singular point of the solution is the origin.

First we need two definitions.

DEFINITION 2.

Let j be a non-negative integer and suppose that the coefficients of L,
defined by (1.1), satisfy the following regularity condition :

We define :

is the osculating operator of L. Accordingly we shall say that LW is

the osculating operator of L of order j.

DEFINITION 3.

Let L be the operator (1.1). We shall say that L satisfies the condition
%p i-t-, (CD),. where p and j are non-negative integers and 0 ~ ~  1, if :

We prove now the following:
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LEMMA 6.

and suppose that :

s being any real number. Further, suppose that the operator L satisfies con-
dition ~+~ (Z (R)), (0 --- j an integer).

Under these assumptions, if L(i) is the osculating operator of order j,
then :

PROOF. By Definition 2 we have:

where

Further, by (4.7) and Definition 3 it follows that :

Using (4.4) and (4.8) it is readily verified that

follows immediately from the fact that

The required estimate follows from (4.6) and (4.9).
Using Theorem 1 and Lemma 6 we prove now the following asympto-

tic estimates :
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THEOREM 2.

Let L be an elliptic operator in defined by (1.1). Let 
C,,, (Z’ (Ro)) be a solution of Lu = f in Z’ (Ro) such that :

".here n c s is a real number.

Let j be a non-negative integer. Put p = s - [s] and p = max. (0,1 +
-t- j - [s]). Suppose that L satisfies condition CRp, (Z (Ro)), with p  8  1.

The osculating operator of order j, .Lt&#x3E;&#x3E; , is elliptic in a neighborhood of the
origin. Therefore there exists an analytic g. f. s (x, y) of in a sphere

such that 0  R,  
If f (x) E Cp+- and satisfies the condition :

then we have

where q = (8] 2013 ~ q, = max. (0, q - j), c~ are constants, qv (x) is an analytic
function in Z (R), and o’ is a non negative integer.

PROOF. By Lemma 2 we have :

Hence by Lemma 6:

and therefore :

Since it follows, by Theorem 1, that there exists a
function such that:

where o’ is a non-negative integer and 1’ (xj is a polynom. FroIl1 (4.14),
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(4.16) and (4.17) it follows that the function

tion of L(j) u* = 0 satisfying the condition :
is a solu-

Hence, by John’s Theorem (VI, section 2) it follows that:

where q = [sl- n, c~ are constants and w’ (x) is an analytic function in Z (R).
The required result follows now immediately from (4.17) and (4.19).

(If j  q, then the sum

is covered by the last term on the right in formula (4.13).).

REMARK. If in addition to the assumptions of Theorem 2 we suppose
that s is an integer and ,

then by Lemma 2 it follows that :

and on the basis of John’s Theorem VI it may be shown, exactly as in the
proof of Theorem 2, that

where q, ~1 , (x) and a’ are as in (4.13). If q = 0 or j = 0 then the first
term on the right must be deleted.

Ilence we obtain :

COROLLARY 2.1. Under the assumptions of Theorem 2, if is an

integer and (x) satisfies condition (4.20), then :

is odd or n is even but 1Jl - s -~- 1  0 then the factor ( log r I in the

second formula niay be deleted. 
’
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A further result of Theorem 2 is the following:

COROLLARY 2.2. Suppose that n is even. Let L, u and f be as in
Theorem 2, with n ~ s C m --~- n/2 -~- 1 and i = 0.

Under these assumptions, if the derivatives of u (x) of order v = 1Jt +
+ - [s] belong to L2 then:

In the case that [s] c m, the derivatives of u (x) of order m - [s] are con-

tinuous at the origin.

PROOF. By Theorem 2 we have (for 1.1:  R  Ri) :

(All the notations above are exactly as in Theorem 2).
By (4.25) and the assumptions on u (x) it follows that (x) E L2 (Z(Ro))

for = w. The derivatives Dx v (x) are linear combinations of derivatives
of K (0) (x, y) of order ’In - it/2.

By (2.9) and (2.10):

where h1 and h2 are analytic functions for
g (x) is an analytic function for IIence :

and

and therefore :

where h3 (C) is analytic for |03B6| = 1.
Since (x) E L2 (Z (Ro)), it follows immediately from (4.29) that

h3 (~) = 0. Hence we obtain, by integration:
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for i = 0,1, ... , min. 2 - 1, V). Also if it follows that the deriva.1 2 / 
tives of v (x) of order v - n/2 = w - [s] are continuous at the origin.

The assertions of Corollary 2.2 follow immediately from these results

together with (4.24).

5. Explicit formulas for the coefficients of the asymptotic estimate (4.13).

In this section we derive formulas for the coefficients c03B2 and the re-

I aainder function w (x) of ( 4.13 ), in terms of L, u and f and some other
Functions directly related, to these. These formulas will be required in the

section in which we generalize the results of section 4 to the case of
; n elliptic operator L of the form (1.1), whose coefficients depend not only
. 1 x but also on a parameter t = ... , tk).

First we shall deal with the case of an operator .L with analytic coef-
cients. It this case, instead of (4.13) we havTe the formula (2.15) of John’s
’heorem VI. We shall bring here a proof of this theorem, wich will

nable us to calculate the coefficients eg and the fnnction w (x) of (2.15)
i i terms of L, u (x) and K (x, y)i For simplicity we shall suppose that the

oint x° in VI is the origin.
As in the original proof of John [6] we begin with the following

definition :

DEFINITION 4.

Let v (x) be an analytic function in the neighborhood of the origin such
that the following limit exists:

where M [v, u] is the bilinear form of formula (2.4) and the normal on the

surface of the sphere ~ I x = r is directed outwards.
Denote the space ~v (x)) of all functions satisfying the above

conditions. Clearly I is a linear space and H is a linear operator defined
on Z.

LEMMA 7.

If v (x) is an analytic function in the neighborhood of the origin, such

that:
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Let v’ (x) be any function analytic in the neighborhood of the origin.
Then v’ E E if and only if (v’)j lf v’ E ~ then

PROOF. From (1.3) it follows by integration that

Therefore, if i + k ~ 1)~ - 1 then:

Hence it follows that = 0.

The second assertion of the lemma is an immediate consequence of the

first. 
’

Denote the subspace of Z which consist of all the polynomials
of order ~ j belonging to Z.

LEMMA 8.

If 0 ~ j  m then Ij contains all the polynomials of order ~ j. The-
refore if v (x) is any analytic function in the neiglborhood of the origin,
then H [v] is defined and we have :

PROOF. Let v (x) be an analytic function in the sphere x ~ C R  
Then by formula (2.4), (with v and u interchanged) we have:

the normals on each sphere being directed ontwards. From (5.7) it follows

if and only if the integral
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exists and if this is the case then:

where Then :

where aa (x) are linear combinations of derivatives of the coefficients aa (x)
of L, (see (2.3)). Using integration by parts we obtain:

where is a differential bilinear form such that the sum of the orders

of the derivatives in each term

then by (5.4) it follows :

Hence, if we tend to zero in (5.11) we obtain :

and therefore, by (5.10) it follows:

where

6 A nnali della Sc1tola Norm. Sup. - Pisa.
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Hence it follows that x~ E I (for and

This proves the first assertion of the lemma. The second assertion follows

immediately from the first together with Lemma 7.
We shall prove now formula (2.15) in the case of j  m.

y) be an analytic g.f.s. of .L in a neighborhood of the origin
containing the sphere I x ~ 1~1. Then by Definition 1 we have :

where M is a bilinear form which belongs to L in the sense of formula

(2.4). Clearly if is a linear form belonging to L then - 11/ [v, u] is

a bilinear form belonging to L, so that in (5.17) we may substitute - 3f [K, u]
for M [u, K ]. Hence we obtain (remembering that Lu = 0 ) :

For a fixed y (0 ~ ~ the function is analytic at the origin
so that it belongs to ~. Now if we let r tend to zero in (5.18), we obtain
by (5.6):

where

is analytic in Z (R,).
be an analytic

Then by result IV of section 2 we have
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where p (y, x) is analytic in Z (R) and :

Summing up these results we obtain (2.15) for ~ C .R, in the case

j  m, with the following formulas for op and (x) :

We now proceed to the proof of (2.15) for In this case we ob-

tain by integration :

and hence by Lemma 2 it follows:

Let , Then and by Lemma 5
- 

J 
"

there exists a function uv, (x) E Coo (Z’ (R’)), 0  R’ Ro , such that :
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Denote by L* the operator and let K* (x, y) be an analytic g.f.s. of L*
in a neighborhood of the origin containing the spere I x ~ R~  R’.

The function u, (x) is a solution of L* u (x) = 0 for x E Z’ (R’) and sati-
sfies the condition :

Moreover, since it follows by the first part of the proof

in a certain sphere, say where i«* (x) is an analytic
function. Hence we obtain :

were K’ 1 and

It is easily verified that K’ (x, y) is a g. f. s. of L in Z (R3). Moreover
by result IV of section 2 it is clear that if is another analytic
g. f. s. of L in a formula similar to (5.30), with K (x, y) instead of
K’ (x, y), holds.

By (5.30) and (1.3) we have:

Now by (2.9) and (2.10) it follows tlat :

where h ($) is analytic for |03BE| = 1. From these two estimates v-e conclude

that h ($) = 0 and so:

Ileiice, by (5.~O):

and by integration we obtain :
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If we replace (5.25) by (5.35) and repeat the argument

we obtain (2.15), which is the required result. Following this

argument, the formulas for c~ and iv (x) are easily derived on the basis of

(5.23) and (5.24). Of course these formulas will now depend not only on

.L, g and u but also on and uy . We remark that by the proof of
Lemma 5, u, (x) may be constructed in terms of u (x) and a fundamental
solution of d .

It remains now to deal with the more general case described in

Theorem 2. But from the proof of this theorem it is clear that the coefh

cients c~ and the function 10 (x) of (4.13) may be calculated exactly as in
the former case with LU) and instead of L and 7f and u~‘ (x) _
= zc (x) - v (x) instead of u (x). Moreover by the proof of the Theorem 1 and

the lemmas leading to it, it is clear that the function v (x) mentioned in

Theorem 2, may be constructed in terms of L, K (j) 7 u (x) and f (x).

6. Operators whose coefficients depend on a parainetei t.

In this section we shall be concerned with an elliptic operator of the
form :

where t = (t! , ... , tk). We shall assume that the coefficients are defined im

a domain fD X 9, fD and 9 being domains in En and Ek respectively. We
shall also assume that the operator L is uniformly elliptic in T) X 5~ i. e.

that L is elliptic in CD uniformly with respect to (x, t) in CJ) X 9.
We begin with a few definitions and general remarks.

W’e denote by x, y points in and by t a general point in Also we

denote by x = (xi , ... , xn) a vector with complex components.

DEFINI’rION 5.

Let f (x, t) E Co X 9) and suppose that all the derivatives of the form
Iy t) with exist and are continuous in 
Then we shall say that f (x, t) E Cp, ~ (x ; t) in (D X 9.

If moreover the derivatives of the form D" D f (x t), with [ a 1= p and
are Holder continuous with exponent E in CZJ, uniformly with

respect to t in every compact suloomain of 9, we shall say that f (x, t) E
E C~,~E,,~(x;t) in 
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in where a is a non-negative real number

and q is a non-negative integer, and if T) contains the origin, then the

notation :

means that for every fixed t 

and that (6.3) is uniform with respect to t in every compact subdomain of 9.
The notation oa, q is similarly defined.

DEFINITION 6. 

~ 

’

Let f (x~ t) E (x ; t) in T) X 9 and suppose that the functions

( ~ o ~ ~ q), are analytic in CJ) for every fixed t in 9. Let Xo E CJ)

and let ,f ~~~ (x, t) be the analytic continuation of t) ( e f ~ q) for fixed
t E 9, in a complex neighborhood possi bly depending on t. Suppose
that for every x° E T) and every compact subset 9’ of 9 there exists a po-

sitive I~ such that the functions f ~e~ (x, t) ( ~ ~o ~ ~ q) satisfy the following
conditions :

(i) is analytic in the complex domain ~2013j?~~
(z . = 1 ~ ... ~ n).

(ii) f ~~~ (x, t) is continuous in (x, t) for x in the above complex domain
and 

Then we shall say that t) E (x ; t) in Cj) X 9.
Let R (x°, 9’) be the I. u. b. of the set of numbers (R) for which con-

ditions (i) and (ii) are fulfilled. We shall say that R (XO, 9’) is the conver

gence radius of f (x, t) about x°, with respect to 9’.

REMARKS.

(I) Let and (i = 1, .... , v) be two sets of functions such
that is analytic in CJ) and Then :

(II) Suppose that f (x, t) E stlq (x ; t) in CD X J and let x° E D. Then we
may expand t) in a power series about x°.
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Let F’ be a compact subset of and let where R

is the convergence radius. Then by Cauchy’s formula:

where g~ is the circle ) and
= + 1, ... , an + 1). From this formula and Definition 6 it is clear that

there exist fixed numbers Ba such that:

and the series

converges in the complex domain xi C R’, (i = 1, ... , n). This series
will be called a majorant of f (x, t) at x° with respect to -

(III) Clearly we have:

and these functions also possess a majorant at x° with respect to every

compact subset of 9. It is now evident that the derivatives Dt f (x, t)
( I e exist and are identical with the functions t) mentioned in
Definition t~.

(IV) Suppose that the coefficients of (6.1) belong to ,~q (x ; t) in 
and let K (x, y, t) be a g. f. s. of L (x, t, Dx) in Q, of the type constructed
by John (see section 2). John’s proof of the existence of a fundamental

solution depends strongly on the Cauchy-Kowalevsky theorem for systems
of linear partial differential equations. If we examine the proof of this

theorem in the case of a system whose coefficients depend not only on x
but also on a parameter t = (t1 ~ ... ~ then in the light of the former

remarks we conclude the following:
If the coefficients of the system of equations mentioned above belong

to (x ; t) in a domain CL) &#x3E; Sf and if x° E CJJ, then the solution u (x, t) of
Cauchy’s problem for this system with initial conditions on a non-characte-

ristic hyperplane through x°, belongs to saeq (x ; t) in a domain Q’ X 9 where
(7)’ is some neighborhood of x°.
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If now we follow John’s construction of the fundamental solution, ta-

king into account the above remark we obtain:

THEOREM 3.

Let L be the operator defined by (6.1). Suppose that the coefficients

belong to in CJ) X 9 and that L is uniformly elliptic in 

Let j be a positive integer tuch that n + j is even. Suppose that Z (x°, 7 RO) C (D.
Then there exists a function t) and a sphere 0  Ri  Ro,
such that Wj belongs to .9Îq (ae, y ; t) in the domain

(6.10) x +- y, 

and possesses the following properties :
(i) If 9’ is a compact subset of 9, there exists a number 0  I~~ C R1

such that the function :

is an analytic g. f. s. of L in Z (x°, R*) for every t E 9’.

and the constant depends

As in section 2, we shall drop out the index j of Kj (x, y, t) and we
shall denote by K (x, y, t) any g. f. s. of the type (G.11).

In addition to the above it may be shown that:

where $ = (x - y)/r. The series in (6.13) defines a function belonging to
Sill) (r, y, ~ ; t) tor (r, y~ ~) in a certain neighborhood of r = 0, y = xO and

|03BE| = 1 and t E 9. Therefore the coefficients c, (y,03BE t) E dq (y, 03BE ; t) for (y, 03BE)
in a corresponding neighborhood of’ y = x° = 1 and t E 9. The

function 2v (x, y, t) belongs to t) f or (x, y) in a neighborhood of
and For every this function has the properties

in result I of section 2. In particular for it even and ’tit 2 1t the
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limit:

exists and is attained uniformly with respect to $ (for 1 $ === 1) and t in

every compact subset of 9.

DEFINITION 7.

"Ye shall say that t V (x, y, t) is an g. Il s. of L in lj) &#x3E; 9 if for every
fixed t E 9, ~, t) is a g. f. s. of L in CD.

Theorem 3 and Definition 7 it is clear that results similar to III,
V of section 2 hold also in the case treated here. The result parallel

to IV may be formulated as follows : 
.

- 

Let [resp. be an g. f. s. of L (.1’, t, Dx) [resp.
Dz)] in a domain CJJ &#x3E; 9 and suppose that the coefficients of L belong

to .~~~ (x ; t) in D &#x3E; 9. Then :

where ft (y, .1’, t) E (x, y ; t) in
every t E 17 we have:

If .t’, y E then for

From this result and Theorem 3 it follows that two g. f. s. of L in

O X 9 differ only by a function 1V* (x, y, t) belonging to (x, y ; t) in
DxDxF

On the basis of Lemma 1 we obtain the following :

LEMMA 9.

Suppose that the operator (6.1) is uniformly elliptic in Let
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If in addition to the above we assume :

where 0 C ~ and s is any real number, then :

PROOF. In the case q = 0 this lemma is a direct consequence of Lem-
ma 1. For q &#x3E; 0 we obtain the required result by induction, using the
formula :

where At! zc is a sum of terms of the form:

with

Using the results described in this section we obtain the following theorem,
which is parallel to Theorem 1 :

THEOREM 4.

Let L (x, t, hx) be a uniformly elliptic operator in CJ) whose coef-

ficients belong to t) in this domain. Suppose that Q) contains

the sphere Z (RO). Let f (x, t) be a f’unctiou of’ (x ; t) in Z’ (Ro) X 9
(where 0 C a is not an integer) such that:

with - [a] a real number and 0 and integer.
Let ~’ be a compact subdomain of 9 and let .I~~‘ be the number men-

tioned in Theorem 3 (i). Then, if 0 C .1~  R*, there exists a solution u (x, t)
of f (x, t) in Z’(R) X 9’ such that:

(.~) If 0 - sand 8’ is defined as in Lemma 4, then it (x, t) E

Cs,, q (x ; t) in 
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where 0:::;: o’ is an integer (and if n is odd and 8 is not an integer then
a=a’) and

This theorem is proved with the aid of three lemmas which are parallel to
lemmas 3, 4, 5 by which Theorem 1 is proved. (We shall denote them by
the numbers 3’, 4’~ 5’ respectively). We write here in detail only the first

of them :

LEMMA 3’

and suppose that it satisfies there the inequalities :

where are integers and

s being a real and 0 an integer.
Denote

and

Then

Lemma 3). Moreover we l1a ve :
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a" being defined as in Lemma 3 and

The proof of this lemma is essentially the same as that of Lemma 3
since the following formula holds :

-- v, 

Lemmas 4’ and 5’ stand exactly in the same relation to Lemmas 4 and
5 as Theorem 4 to Theorem 1. Their proofs are essentially the same as the
proofs of the last two lemmas. Of course, we have to replace Lemmas 2 and
3 by Lemmas 9 and 3’. In both oases the first step is the proof of the
existence and continuity of all derivatives of (respectively 
mentioned in the formulation of the lemma (property (a;). In order to prove
the other properties t) (in Lemma 4’) we may first suppose that

q = 0 and then obtain the general result by induction on q, (see formula

(6.21)). In Letnma .5’ this induction is trivial since the operator in this case
is a power of the Laplacian J~.

The proof of Theorem 4 is exactly parallel to that ot’ Theorem 1.

By John’s Theorem (VI section 2) and the formulas obtained in the

preceding section we obtain :

THEOREM 5.

Suppose that the operator ((i.l) is uniformly elliptic in with

coefficients belonging to in Suppose Let

u (x, t) be a solution of Lit (.x~ t) = 0 in Z’ X 7, such that it (x, t) E 

(x ; t) in this domain. Let 9’ be a compact subdomain of 9 and let t)
be an g. f. s. of L in Z (R*) &#x3E; 9’ (R* being a certain number in the in-

terval (0, Ro)).
If u (x~ t) has a finite singularity at x = 0, such that for ~ - 1:

for any fixed point t E ~, and in addition to this

j being a non negative integer, then we have:
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In the case 0  22)t the assumption (6.32) is not required. Moreover
using formula (6.33) it is seen that in this case (6.32) may be obtained as
a result of this theorem.

PROOF. Formula (6.33) follows by John’s Theorem on the basis of (6.31).
We have to prove here only the assertions concerning c~ (t) and ic (x, t).

In the case 0  j these assertions follow immediately from formu-
las (5.23) and (5.24), taking into account the properties of K (x, y, t) and
the fact that in Z’ X 9. The assumption (6.32) is not

needed in this case.

If 1n the required results follow by an argument similar to that

described in the last part of section 5. For this argument we need also
estimate (6.32).

Since u (x, t) is a solution of L1t (x, t) = 0, and the coefficients of L

belong to gi, (x ; t) it follows that u (x, t) E nlq (x, t) in the domain Z’ ( Ro) X 9.
This result is parallel to V section 2 and it may be proved exactly in the
same way as result V, (John [7] ] pp. 57), using the properties of K (x, y, t).

From (6.32) we obtain by integration : 
.

and, since t by Lemma 9 it follows that :

From this point on the argument is exactly parallel to that of section 5

beginning with (5.2(;). Of course we shall use Lemma 5’ instead of Lemma 5,
and the results of the present theorem in the case j  1Jt.

On the basis of theorems 4 and 5 it is possible to obtain a generali-
zation of Theorem 2 to operators of the form (6.1) whose coefficients satisfy
certain regularity conditions. We shall formulate here only a special case
of this generalization, which will be needed later in the proof of some other
results.

THEOREM 6.

Suppose that the operator (G.1) is uniformly elliptic in Z (Ro) X 9 and
that his coefficients belong to (x ; t) in this domain, q being a non-ne-

gative integer and 0  E  1.

Let ai (x, t) be a solution of L1t (x, t) = f (x, t) in Z’ (RO) X J belonging
to (’"t,,, (x ; t) in tlais domain. Suppose tliat u (x, t) has a singularity of finite
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order at x = 0 such that:

where n ~ 8 is a real number and 0 = 8 - [s]  c.

Let be the osculating operator :

and let .g ~°~ (x, y, t) be an g.f.s. of L(O) . (In this case will be an 

g.f.s. of in .En X 9).
and satisfies the condition:

then we have, for I x  Ro and t E 9:

where

an integer.
The proof is exactly parallel to that of Theorem 2 (in the special case

j = 0). We have only to replace Lemma 2 by Lemma il, Theorem 1 by Theo-
rem 4 and John’s Theorem (V section 2) by Theorem 5.

From Theorem 6 and the remark to Theorem 2 it follows :

COROLLARY 6.1.

Under the assumptions of Theorem 6, if n c s in an integer and if

u (x~ t) satisfies the additional condition :

for every fixed t E 9, then:

where w (x, t) and a’ are as in (6.38). Hence we obtain:
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COROLLARY 6.2.

Suppose that n is even. Assume all the assumptions of Thorem 6 with
n ~ s + n/2 + 1 and in addition suppose that :

for I ’. Then:

for B 0153 = v. If moreover ls~ c 1n, the derivatives Dl (x, t), 
and 1= ~tt - [s], are bounded in every compact subdomain of Z (R,) X 9.
Also these derivatives are continuous functions of x in Z (Ro} for every
fixed 

The estimate (6.43) may be proved by an argument similar to that de-
scribed in the proof of Corollary 2.2. The last assertion of the present co-

rollary follow from (6.43) by integration. °

APPENDIX A.

We bring here, without proof, three lemmas of potential theory which
are frequently used in this paper. Although these lemmas are well known
they are usually formulated only for special cases. The essential ideas of

these lemmas may be found in the paper of E. Hopf [5].

LEMMA A.1.

Let (D and 57 be bounded domains in and Ek respectively. Let
F (z, y, t) be a function of 2~z variables which is continuos in the domain :

Suppose that F (x, y, t) satisfies the following conditions :
(i) For every compact subset K of T) there exists a constant c1, (K)

such that

= I and 0  p  1.

(ii) For every compact subset K and every positive b there
exists a constant and a function belonging to such
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that

in the set

Under these conditions the function

is continuous in 9D / 9.

LEMMA A.2.

Let F (x, y, t) be the function mentioned in the preceding lemma. Suppose

that there exists a partial derivative /)F(x,y, I) representes an operator

of the form a or 2013) which is continuous in the domain (A.1). Suppose-, 

bti
also that F (x, ,y, t) and DF (x, y, t) satisfy condition (i) and (ii) of Lemma A.I.

be the function defined by (A.4). Then the partial derivative

(x, t) exists and is continuous in If) X 9. This derivative is given by the
formula :

w

LEMMA A.3.

Let G (x, y) be a function belonging to (12 in the set
x 4= y), such that:

where

Suppose that
function

where Then the

belongs to C. (Z (R) w bile the function
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belongs to C1 (Z’ (R)), and
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