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A BOUNDARY VALUE PROBLEM ASSOCIATED
WITH THE TRICOMI EQUATION

by ALBERT E. HEINS

I. Introduction. We shall be concerned here with a boundary value

problem associated with the generalized Tricomi equation, that is, with

where Re lh0, although we shall only discuss the case in which Re ~,&#x3E; 0. When
the parameter m is a positive and even integer, the equation (1.1) is elliptic
in the x, a plane. On the other hand, when m is odd and positive, this
equation is either elliptic or hyperbolic depending on whether a is positive
or negative. The boundary data we supply, will be given on the line o = 0
and we shall be concerned here with the elliptic domain, that is 0. In

this case, the only restriction on nt is that it be positive. The example we

shall consider in detail supplies 4p (x, a) for 6 = 0, x C 0 and 2013*- for
a ig

o = 0, xh 0. Here we recognize that we are dealing with a boundary value
problem which is a generalization of a classical example in two dimensional
diffraction theory. Indeed, for m = 0, the above data (save for conditions at
infinity) provide information for formulating the celebrated balf-plane problem
of diffraction theory.

Such a problem as we have described above falls in a class recently
considered by C. C. Chang and T. S. Lundgren [1] and W. E. Williams [2].
These writers observed that since equation (1.1) has a variable coefficient
which depends only on a, that Fourier analysis might be applied with
respect to the variable x. Aspects of this analysis have already been discussed
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by P. Germain and R. Bader [3]. For the case described above, we

expect that the method of Wiener and Hopf would be available, although
it would be difficult to justify it for the case Å. = 0. As we shall see,

however, there is no need for such machinery. In fact, if we take into account
A. Weinstein’s [4] basic remarka on the Tricomi equation and its fundamen-
tal solution and R. J. MTeinacht’s [5] discussion for the case Å. # 0, as well
as the recent function theoretic efforts of R. C. MacCamy and the present
writer [6, 7], we shall see that the boundary-value problem we have described
is susceptible to the methods of analytic function theory. Indeed, the final
results appear in a form which is different from the results of Williams and

has the added advantage of being justifiable as well as somewhat

simplified.
The method we employ here was inspired by one of the earliest funda-

mental papers on singular integral equations of T. Carleman [8]. A distinc-
tion which occurs between Carleman’s method and the one we employ is

the following. While he converted an Abel type integral equation with con-
stant limits into one which depends on variable limits which could be solved

explicitly, we have arranged matter so that there is no need to solve an

integral equation. The solution of the boundary value problem is reduced

to the determination of an analytic function in terms of data to be found

on the line o = 0, - The integral equation we derive serves

only to provide properties of the analytic function.

II. Preliminary Reduction of Equation (1.1) and on Integral Re-
presentation. In order to reduce equation (1.1) to a more tractable form,
we take advantage of the fact [4] that it may be cast into an axially sym-
metric wave equation by the substitution y = Aaa where a = (2 + w)/2 and
A = 1/a. With this change of variables, we have for equation (1.1)

where lc = m/(m + 2) and ~2 &#x3E; 0.
We now ask whether we can find a representation for a solution of

this equation in the half-plane y &#x3E; 0 in terms of the boundary data on the
line y = 0. Let us recall that Weinstein [4] has given the fundamental

solution of equation (2.1) in the case A = 0, while vVeinaclJt [5] has given
it for the case in whicli I is pure imaginary. The modification for the pre-
sent case is direct. Indeed, the function
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where cos (X ]1/2 is such a function. Here

u

The function KJI (x) is the MacDonald function, that is it is a singular so-
lution of the equation

Indeed if for v &#x3E; 0, equation (2.2) has a solution Iy (x) which vanishes at
the origin when v ~ 0, we may define

This fundamental solution of equation (2.1) has the following three impor-
tant properties :

(i) The y derivative of Z vanishes for y = 0.
(ii) Z has a logarithmic singularity at x = x’, y = y’ and it therefore

has a nonvanishing « residue » in the sense of two-dimensional potential
theory. This leads us to expect a representation theorem of the Helmholtz

type, that is, the case iii = 0.

(iii) For x’, y’ finite and I Z(x, y, x’, y’) is asymptotic to

A similar form exists upon interchanging x, y with x’, y’. This function
Z (x, y, x’, y’) which we have given, can be constructed along lines suggested
by Weinacht [5] J and avoids the machinery of the Fourier integral theorem.

simple form of Z (x, y, x’, y’) is noteworthy and it assumes an even

more simple one at y = 0.
In order to derive the representation theorem, we rewrite equation

(2.l ) as 
- -

and observe that Z satisfies the same equation save at the point x = x’,
y = y’. W’e form the surface integral
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over an area bounded by the exterior closed curve C which is a portion
of the x axis and a circular arc whose center is at the point P (x’, y’)
(y’ &#x3E; 0) and of radius R. The interior closed curve C, is a circle of radius
e  y’ and center at the point P (x’, y’) is deleted, of course, because of
the singularity which Z possesses at this point and therefore prevents a
direct application of Green’s theorem to the entire area interior to C. We
shall assume, henceforth, that cp is twice continuously differentiable in the
entire area inside C, and it is clear from the structure of Z that such is
the case, save in the neighborhood of the point P (x’, y’). The integral (2.3)
can now be written as the sum of two line integrals

and because of the regularity properties of Z and lp, this line integral
vanishes. The path C is traversed in a counter-clockwise sense, while C, is

traversed in a clockwise sense. The normal derivatives are exterior ones

and s is the arc-length parameter along C and °1,
We first ask what is the effect of permitting E - 0. Since

where y +- 0, y’ # = ((x - r’)2 + (y - y’)2]1/2 and Q (x, y) is a function

which may be neglected when calculating the « residue &#x3E;&#x3E;, we obtain the
following along Cl . We parameterize C1 by writing x = x’ + 8 cos 9, y =
= y’ + 8 sin 0 with 0 ~ 0 C 2~ and note that ds = e d9. Then since yk =
== (y’)k and E In e --~ 0 as E --~ 0, the first line integral over 01 vanishes.
The second line integral over 01 has the limit

On the circular arc of radius R we shall assume that the leading terms
in g~ (x, y) satisfy a « radiation condition » when R 2013~ oo. That is,

uniformly for all 0 = arctan y/x, y &#x3E; 0. This radiation condition is adequate
to eliminate the contribution along the circular arc of radius .R as R- oo.
It may be noted that the above asymptotic condition is the same for the

fundamental I solution.
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Since on y = 0 (or (} = 0) and since 
on y = 0, the integral along the x axis takes the form

in the --~ oo. Hence we have the representation [9]

upon interchanging z and and y’ by y. If ~a ~~~, 0) is known for
- oo  x we have a means of calculating p (z, y) for all x and y
since this representation is even in y. However, for the problem we wish
to ~~~ 0) is known for x C U and (x, 0) is known for x ~&#x3E; 0.

Hence (2.4) provides an integral equation for the unknown function

If. (x, 0), x - 0.

III. The Boundary Value Problem and its Solution. On the line

y = 0, equation (2.4) becomes a representation for 97 (x, 0) in terms of f/’. (x, 0).
Indeed we have

where

and k = + 2) C 1 since m is a real positive number. Since w &#x3E; 0)
the kernel of the integral equation (3.1) is integrable in the neighborhood
of the x’. It’ if. (x, 0) is known for -  oo we have a

representation for finding (p (x 0). If on the other hand we assign 9’ (x, 0) _

= f (z) and g~a (a~~ o) = o~ (x) equation (3.1) becomes an
integral equation for fl. jx, 0). C 0, we have
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If we know the first integral in (3.2) for x &#x3E; 0, we have a means of com-
puting 99 (x, 0) for x &#x3E; 0 by equation (3.1). Further, it is possible to find

(p (x, y), y &#x3E; 0 in the large by the Poisson type representation [10]

where 2v = k and which incidentally requires the continuation of 99 (x, 0),
- oo C x  cxJ into the complex domain. A further alternative is available

in that we may solve an integral equation of the Abel type for (x, 0)
and may therefore use equation (2.4) to find cp (x, y) in the large.

We shall concentrate our efforts in this paper on finding the unknown
portion of (p (x, 0), that is for x &#x3E; 0. Following Carleman, we introduce an
analytic function 1~ (z) which is regular in the plane cut along the negative
real axis and is given by the integral

Let us assume~ for the time being, that there does exist an appropriate
tpu (x, 0), x  0 which will produce such a function ~’ (z) and inquire why
such a form was chosen. Clearly for x &#x3E; 0, y = 0, a knowledge of 

will give us 99 (x, y) x &#x3E; 0. In fact, for x &#x3E; 0

From this we see that there are immediate integrability requirements on
g (x), although they are not particularly severe in the light of the asymp-
totic form of -+ oo. 

We now define the following limits, assuming for the present, that they
exist. Let

an(I
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These limits are, of course, dependent (x, 0) for x C 0, . a function
which we do not know yet. For x C 0

and

Upon simplifying the expression for F (x + i 0) and . -’ we get

and

The integral equation is equivalent to
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where V (x) is a known function which depends on f(x) and g (x). It

is possible to eliminate all integrals in these last three equations and ob-

tain a linear relation F (x - i 0) and 1p (x) which will
be valid for x C 0. We obtain thus

A simplification can be effected if we put F(z) = z" 4Y (z) where fl will
be ultimately chosen conveniently.  The branch which we choose is cut

along the negative real axis, so that

and

Hence equation (3.5) becomes

If we now choose 2fl + k = 1, equation (3.6) becomes

and

Hence we have information regarding 0 on the line = 0 which will
enable us to determine 0 (z), once we know the behavior of 0 {z) at infinity.
This, of course, can be determined by a careful study in the closed
sector S arg z C ~z, recalling the assumption we stipulated for

(x, 0), x  o. Indeed, find [6,7] that possesses an exponential
factor exp (- lz) in this closed sector of j z 1-»- oo and we eliminate it by
writing

so that we get
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and

Now since P (z) = F ~z) z-fl exp vanishes for I
we can determine it with the aid of a Cauchy type representation as

or

where B (z) is an entire function.

We have not yet put down any conditions on f {t), t  0 and g (t), t &#x3E;0.
Without these, we cannot demonstrate the validity of our calculations, for
example that the F(z) we found possesses appropriate properties which

will generate an acceptable (x, 0), x  0. We shall devote the next sec-

tion to a discussion of such questions.

IV. Verification. Before we can demonstrate that the we have

given in (3.12) is an acceptable one, it is necessary to supply some condi-
tions for f (t) and g (t) which will insure the existence of certain integrals.
We also require some conditions which will give us some information about
F (x) for x ~ ~ 0 and Such information will enable us to deter-

mine the asymptotic behavior of 9) (x, 0) for x -~ 0- and x -+ oo as well

as well as some of the properties of (x~ 0) when x -~ 0-’ and x -~ - oo.
One such set of conditions will be given but it will be clear that others

may be found. We shall only treat the case for which 0).
To include this term will only lead us to some detailed analysis which will
not add any interesting ideas.
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We start then, by examining the behavior of the function

for 2013&#x3E;- 0 2013~ = 0. Let us note that the integral is either a
Stieltjes transform and is a function of the complex variable z or it may
be viewed as a Hilbert transform when y = 0. Suppose that f {- t) is real,
quadratically integrable for 0 ~ t ~ oo and E C’ and further that f (- 0) = A i
(a constant). Then a direct application of the Schwarz inequality guarantees,
in view of the restriction on ~3, the existence of the integral

for all positive t. W’e denote the limit of’ this integral as t --~ 00 by A2 .
Since we may define f (- t) = 0, for t C 0, w-e observe that ,f (- t) t-fl exp
(- Ar) is quadratically integrable along the entire t axis and therefore the

integral in (4.1) defines a quadratically integrable function almost everywhere
for real z (11, p. 121]. This assures that the integral in (4.1) vanishes for

~x~--~oo~y=0.
We can, however, obtain more precise information with our hypotheses

on f (- t). According to an Abelian theorems for the ordinary Stieltjes trans-
form [12, p. 185] (that is, the integral in (4.1) with y = 0, 0) we have

that the integral in (4.1) is asymptotic to x - 0+ and to B2 x-1,
x -+ oo where B, and B2 are known constants. lience, we have that

and

It follows that F1 (x) = 0) obeys the « radiation condition » when

x ~ -~- oo . It is possible to carry through this discussion for A complex
and suitably limited, that is Re 1 ~ 0 but we shall not pursue these details

here.

Further information is available from the theory of the ordinary Stieltjes
transform. Let us suppose that  arg z [ ~. Then the integral in (4.1)
converges and in fact represents a single-valued analytic function of z

which has a cut along the negative real axis, provided that f’ ( - t) is sub

ject to the conditions we gave For ,1) real and negative, we have an 
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of the limiting value of a Cauchy type integral from which we may derive
for x  0

and

The integrals are taken in the sense of the Cauchy principal value.
We shall have need of the asymptotic behavior of (4.1) in the limit

x - 0- , (y = 0), since as we shall see presently, it will be needed to pro-
vide information regarding the behavior of era (x, 0), x ~ 0. In order to de-

termine this behavior, we write

where 0 C - x C 2. The last integral is clearly 0 (1) as x - 0-. The se-
cond integral may be examined with the aid of the theory of Abelian asymp-
totics of such principal value integrals. W’e pllt t = 1 + 1 and - x = 1 + (.
Then

We may write f (--- 1 - r) = At 1 -~- 0 (1) where 0 (- 1) = 0. If we now im-

pose the additional requirement on 0 (1), that it obeys a uniform Lipschitz
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condition of positive order E &#x3E; fl, we may apply Tricomi’s discussion to get

Now we have information which win enable us to examine (p, (z, 0)
for x C 0 and E (z). To begin with, we note that

This relation implies that (z), an entire function of z, varnishes at infinity
and therefore vanishes everywhere. Hence

For x  0, we have

Upon using the definition of terms of Ik’/2 êuul
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Abel-type integral equation for (x, 0), that is

In the neighborhood of the left side of the origin, that is a? 2013~ 0-,
B (sin kn/2)f(x) = B (sin kn/2) A1 + 0 (x), while the term containing the

principal value integral is equal to - B (sin lcn/2) At + 0 ((- x).81. Hence
the right side of the equation (4.4) is x -~ 0-. From these

remarks we may conclude that (x, 0) is integrable in the neighborhood
of the origin, that is as x - 0-.

We are now left with the task of describing lpa (x, 0) when x - - oo.
In order to do this, we note that

is asymptotic to

when x - oo and D is a known constant. The x dependence agrees with that
of F, (x) when x --~ oo~ so that we are left with the implication that the
integral

exists. Thus (t~ 0) cannot have an exponential growth which exceeds

exp (- 1t), t -+ - oo and indeed may be less than this. If we now replace x
by - x and t by - t in equation (4.4), it will assume a more conventional

ibrin from which we can read off some of the properties of (A).
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Let us observe that the unilateral Laplace transform of Ik/2 Plot), that is

is analytic in the right-half plane Re s &#x3E; ~, &#x3E; 0 of the complex s pla,ne,
while the first and second terms on the right side of the eqaation have
unilateral Laplace transforms which are analytic in the right half planes
Re s ~ 0 and Re s &#x3E; ~, respectively. Hence the unilateral transform of

(- t, 0) is analytic in the right half-plane Re s &#x3E; A. This transform in

turn can be represented as the quotient of two unilateral Laplace trans-
forms and is t’l (s~-1) for Re s &#x3E; 1 and 8 1-+ 00. Since fl  1, I this quoti-
ent vanishes at infinity in this half plane.
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