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REGULARITY AT THE BOUNDARY
FOR SOLUTIONS OF LINEAR PARABOLIC

DIFFERENTIAL EQUATIONS (*)

J. R. CANNON (a Genova)

SUMMAHY : At the boundary solutions of linear parabolic differential equations are shown
to be Holder continuous if the boundary data. is Holder continuous. Moreover, this

continuity of the solution is independent of hypothesis of continuity of the coeffi.

cients of the parabolic operator. 

1. Intt’cducttOn. Regularity at the boundary for solutions of linear

parabolic differential equations has been obtained in the form of Schauder’s
estimates [2]. However, to obtain these estimates the coefficients of the

operator were assumed to be Holder continuous and the boundary was
assumed to be smooth. In this paper the continuity restrictions upon the

coefficients will be removed in obtaining Ilolder continuity of the solution

at the boundary for Ilolder continuous boundary data. Also, the boundary
smoothness will be lightened. The principle method employed will be the

use of the maximum principle. It should be emphasized that the Holder

continuity obtained here is only at the boundary.
It is convenient now to state some notation and some assumptions

that will be used throughout. Let x = (Xi’ ... , denote a point in the

?t-diniensional Euclidean space R’t. Let Q denote an open connected set in

Rn, and Suppose that the

real valued function is C2 in 1) with respect to the real variables

xi , i = 1,..., n, that u (x, t ) is C’ in I) with respect to the real variable t and

Xi, i --- 1 ... , n, and that u (x, t) is continuous in D = D U 6D. Suppose

Pervenuto alla Retlazione il 5 Mnggio 1965.
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that u (x, t) is a bounded solution of

and f are real valued measurable functions in 1), g is a

continuous real valued function in aD, and these functions satisfy the
following inequalities uniformly over their respective domains of definition :

The paper is divided quite naturally into three distinct parts by the
three distinct parts of the boundary a I). First, the continuity of u (x, t)
will be studied at a point of o x (0) ; then, at a point of T];
and finally, at a point of 6Q x ( 0 j. In each case the construction of a new
barrier function or the modification of a previously used barrier function

will be necessary.
The author is indebted to Carlo Pucci for many helpful suggestions.

Indeed, a portion of Pucci’s treatment of’ the continuity at the boundary
for solutions of elliptic equations [31 has proved useful here and with some
modifications is reproduced below (see (1 E3)-(31 )).

2. Continuity of u (x, t) at a point of D x [0). Consider the following
theorem.

THEOREM 1 : Suppose that at (xo , 0) (xo E D),
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for all x in S2. Then, there exists a constant K which depends only upon
M, r, B, F, A, T, A, it, and

such that for (x, t) in D,

PROOF : Consider the function

As is well known [21, for I x - 1 6 and 0  T,

when p &#x3E; 1 + 2nA + 2n Bb, which implies that v (x, t) is a local barrier at
the point 0). For A = 2 and

the functions

satisfy

and

for and

By the maximum principle,

which implies that

f’or lience, l’or 1 = 2, (5) follows from (13).
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Now, consider the case of 0  A  2. For all 8 ~ 0, a function g (e) ~&#x3E; 1

will be found such that for x - ] £ 3

Then, it will follow that for all e &#x3E; 0 the functions

will satisfy (10), (11), (12), and the obvious modification of (13). The result
(5) will then follow from a careful analysis of the function 8 + g (x, t)
as a function of E.

Set r = I and consider the inequality (14) written in terms

of r as

Solving for g (E),

For fixed E the function of r on the right hand side of (17) assumes its

maximum value for all r &#x3E; 0 at the point

Substituting this value of’ r, it f’ollows that

for all If &#x3E; 0. Ilence for

it follows that for every E &#x3E; 0, (16) is valid which Ïlnplies by the maximum

principle that

for 0 and for x - 1 6 and 0 ~ t c ~’.
Consider the function
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For

A

Restricting e to the interval 0  E  J5T/~, 1 it is desirable to minimize

as a function of E for fixed (x, t). Considering the function for all E, its

minimuin occurs at

Consequently, for (x, t) such that

it follows that

Thus, under the restrictions (23) and (27), it follows from (21) that

Since

for (x, t) sucli that

the result ( ~) follows from a simple replacement of K4 by a larger constant ~5.

REMARK : The restriction on A in (3) arises nl ùral1y out of the fact
that the continuity cannot be better than Lipscliitzian in t for c
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and f. For example, consider the bounded solution of

in a neighborhood of (0, 0). The restriction on A can be removed by remo-

ving c and f.

THEOREM 2 : For c (x, t) =-= f (x, t) == 0 and

there exists a constant K which depends only upon lkl, B, A, T, v, n and 6

such that for (x, t) in D, ,

PROOF: Consider

Now, for i

when &#x3E; 2nA + 2nBb + 4vA. Hence, the result (34) follows from a111 argu-
ment similar to that of Theorem 1, (8) - (13).
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3. Continuity of at a point of The bounded

solution v (~, t) of

is given by the formula

where

LEMMA 1 : For 0 ~ 1, there exist constants Kj, and K3
which depend only to, 1 and Co such that

PROOF. The proof follows from elementary estimations of the formula

(38) and is therefore omitted.

PROOF : By the maximum principle, it follows that

Hence, the result (41) follows from an elel11entary quadrature.

1U. della Stip. - Pila.
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Since v (~, t) will be part of the barrier function used in this section,
the following lemma is of interest.

LEMMA 3. If 0  1 C 1,

and

then

for 0 ~ [ oo and 0 ~ t  to , y where fi and B are positive constants and

wliere z (~, t) is the bounded solution of

.

PROOF : It follows from (38) that a v and a 2 v are bounded solutions of
. a 

the heat equation with diffusivity k for 0   oo and 0  t  to. Moreover,
both functions are equal to zero for 0  C  oo and t = 0. Now, it can be

shown [1, pp. 189-190] that

and that

Hence, it follows that

whenever 1~ satisfies the conditions in (43). For such a k, (44) follows fronl
the nmximnm principle.
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Consider now the main subject of this section.

THEOREM 3: Suppose that Q is bounded with diameter l. Suppose
that at (xo , (xo E 6Q and 0  T),

for all (x, t) in 60 x (0, Suppose also that xo is a point on 6D such
that there exists a sphere

such n Q = Then, there exist constants .g2, K3 and ,~4
which depend only upon M, 7, B, F, a, A~ to , n and I such that for

t ~ C t ~ to , ~ C e-l, and (:x, t) in ,

PROOF : Set

and consider

I3y differentiution, it f’ollows that

when p is chosen so that
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Note that y (xo) = 0 and y (x) &#x3E; 0 for x in ii - ~xo~. Moreover, for

it follows that for (x, t) in 92 X (0, to],

for k such that

and

where v (~, t) is defined by (38) with A replaced by Å2’ z (~’, t) is the bounded

solution of (45) with the same replacement of I, and the conditions on k
are those needed to apply Lemma 3.

Let

and let

Set

where for all e &#x3E; 0, g1 (e) is the obvious modification of g (e) denned by
(24). From the previous paragraph and (61), it follows that
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Next, for C = 0 and

and and

Since av &#x3E; oi it follows that for 0  ©  1 and 1 to ~ ~ ~ ~ ,cf 2

and that

Finally, from (53) it can be shown that there exist positive constants ,ui
and P-2 such that for any x in Q,

Consequently, from the argument of Theorem 1, (16),..., (19), it follows

that for all c &#x3E; 0,

Thus, from (66), (67), and (69), it follows that 0 for (x, t) in aD.x

and for (x, t) in Hence, from (62) and the maxi.

mum principle, for (x, t) in

11
From E -~- g, (~) y (x), the first term in the result (51) follows
from a similar argument to that of Theorem 1, (22),..., (31). Writing
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the term ~4 (to - in (51) follows from Lemma 2. Finally, estimating
by Lemma 1, the second term on the right hand side of equation

(51) follows from the monotonicity of the functions C24, , C ] log ( (0 [ ~ [ e-1),
and’ and the fact that

In the case of n = 11 the continuity obtained is simply that
of the heat equation expressed in Lemmas 1 and 2. Also, for the case of

g (x, t) == q (t) for (x, t) in ôQ x (0, the term 2 is eliminated

from the result (51) leaving the continuity terms arising from the heat

equation.

4. Continuity of u (x, t) at a point of aS~ x (0). The statement of the
following theorem will essentially complete the present discussion of the
continuity at the boundary.

THEOREM 4 : Retaining the hypothesis of Theorem ~i concerning Q and
xo E suppose that at (xo , 0),

for all (x, t) in 60 X (0, T x (0). Then, there exists a constant K which
depends only upon y, B, F, a, A, At I A2 , n and 1 such that for (x, t)
in D,

PROOF : The proof is similar to those of Theorem 1 and 3, where in
this case

92 (e) is an obvious modification of 9 (s) defined by (2{)), and a2 is a suiS-

ciently large positive constant.

REMARK: For the case n = 1~ Ål is not divided by 2 since xvi + t~~ is
a local barrier at the origin, it Å1 C 1 or Å2 C 1.
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