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INHOMOGENEOUS BOUNDARY VALUE PROBLEMS
IN A HALF SPACE

by J. BARROS NETO

We discuss in this paper the Dirichlet problem for elliptic operators
with variable coefficients defined in a half space. General inhomogeneous
boundary value problems have been extensively studied by Lions and Ma-
genes in a series of papers [6]. In the papers, they consider elliptic operators
with smooth coefficients defined on a bounded domain, except in the first

of [6] where the case of an operator defined in R+ is considered.
Our approach is however different. We use, rather than the Sobolev

spaces H1n, the spaces obtained by completing the space of 000 func-
tions with compact support, with respect to the Dirichlet norm [4]. These
spaces which coincide with Hm when the domain is bounded are in the

case of unbounded domains larger. In order to deal only with spaces of
functions we have to impose a restriction on the dimension n of the Eu-

clidean space, namely, we suppose always that n &#x3E; 2m, what implies that

is a snbspace of (&#x26; 1). The spaces 1Ðm are then
q (m) 2 n 

"

normal spaces of distributions a fact very convenient in order to characterize

the trace of elements of (§§ 4 and 5), to study the transposed problem
(§ 8) and to apply the interpolation theory (§ 9). Our results apply to the
Laplace operator in a three dimensional space.

The plan of the paper is the following. First we define the spaces

, (le+), its dual as well as and give some of their

properties. An integro differential homogeneous of degree
verifying an ellipticity condition (2.4), vith smooth coefficients satisfying

conditions i), ii) and iii) is considered and we prove that the corresponding
partial differential operator A establishes an isomorphism from ]Ð~ (Rn) onto
~-r~ (R+) (theorem 2.1). This solves the homogeneous Dirichlet problem for
~ 

Pervenuto alla Kednzioue il 9 Gennaio 1965.
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A. To study the inhomogeneous problem we characterize the trace on 
of the elements belonging to JDm (R~...). With the help of the trace theorem

(theorem 5.1) and the isomorphism theorem (theorem 2.1) we prove theorem
6.1 solving the inhomogeneous Dirichlet problem for A.

The next step is the regularization of the solution. Theorem 7.1 proves

regularization up to the boundary while lemma 8.1 proves the interior re-

gularity.
After regularizing the solution we transpose our results (§ 8). Here,

in order to carry through our argument we need another trace theorem

(theorem 7.2) which extends theorem 5.1. We should point out that in § 8 we
do not consider the transposition problem in its full generality (a question that

presents many technicals difficulties) but rather study a particular case that
leads us to the solution of the Dirichlet problem for a given function in
JD-m (R+) and given boundary values assigned in Sobolev spaces Ha ( R’1-’ )
(theorem 8.3). Obviously, by choosing another elements in the dual of

(R+) n D~7 (R+) (see § 8) we can get isomorphism theorems of the same
type as theorem 8.3 but involving only the spaces JÐm defined on Rn
and Rwl.

Finally, we apply the interpolation theory and prove theorem 9.1. When

interpolating between two given spaces one gets an abstract family of spaces
that one likes to characterize. This is the aim of theorem 9.2 which follows

as a particular case of theorem !3.a, a theorem about interpolation of spaces
of integrable functions with change of measure. Our result is similar to a

previous one of Stein and Weiss [11] ; the methods are different.

For simplicity we have considered throughout this paper only the case
of Ri but it is clear that our results can be extended with slight modifi-
cations to more general unbounded domains. For instance they can be ap-
plied to the case of a complement of a ball in 

The main results of this paper appeared without proof in (12]. We are
indebted to J. L. Lions and E. Magenes for suggestions and criticisms.

1. Preliminaries.

Let Rn be the Euclidean space of y R" the half space

(x = E 7~ : 01 and A’3 the closed half space, i. e. the set of
all elements x E /U?i such that xn ~ 0. If a = ... , an) is a n-tuple of

integers ‘we indicate by 2~ the partial derivative of
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order I at I = a + ... + (X1t. Let OCOO ( Rn) (resp. ( R+ ), resp. Ccoo (Rn )) the
space of infinitely differentiable functions with compact support in lln (resp.

R+, resp. R+). The dual of (resp. is the space of distri-

butions in ~’~ (resp. that we denote by (resp. (D’ (R+)).

DEFINITION 1.1. 1Ve denote by ]Ðm (Rn) the completion of Ce°° 2oith

respect to the folloiring 

Clearly, (Rn) is a Hilbert space. However, if ~, &#x3E; 2~~t, according to
Sobolev’s inequalities (10) we have :

Then, (Rn) is a normal space of distributions (1) since from (1.2) it

follows that D’n (h’") C (R7t) and the imbedding is continuous. The dual

ym (Rn) of (Rn) is a subspace of CJ)’ (AJn). We shall consider throughout
this paper, only the case n &#x3E; 2m.

Consider, now, the space V of functions u of (Rn) such that

Equipped with the norm

V is a reflexive Banach space.
W’e shall prove the

THEOREM 1.1. The (Rn) can be identified in the algebraic and
topological senses to V.

(t) A topological vector space E is a normal space of distributions if C§° (Rn) c Ec
c 0’ imbeddiiigs being continuous and Ct being dense in R.
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PROOF. If we have, for all the inequality due
to Sobolev ([10])

where

the constant c depending only on p and n.
It is easy to see using (1.5) that the norms (1.1) and (1.4) coincide on

(R"). Thus, to prove the theorem it suffices to show that C~ ° (Rn) is dense

in V.

Let be a function of equal to 1 for ~ ~ 1 and to 0 for

| x | &#x3E; 2 ; let x where R is a positive real number and
R /

write UR = XR - U for each u E V. To prove that is dense in V,
it suffices to prove that the functions VR belong to a bounded set

of V. In fact, if it is so, then, since V is reflexive, there is a sequence
such that (uRn) converges weakly in V. It is easy to verify that 

converges to u. Next, by regularization, we prove that the.re is a sequence
of elements of (R12) which converges weakly, in V, to u. The proof fol-
lows from the well known criterion of density in Banach spaces.

To prove that belongs to a bounded set of V, it suffices to prove

that Da UR belongs to a bounded set of 1.’~~~’zW u I) (h’n), for all 0 ~ ( a ~ c ?it.
yvrite :

Since · Da u converges to in (h’’t) it suffices to verify that
DY u belongs to a bounded set in 

and write

(The integral at the right exists because, (itt - k) (m - j)). 13y
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Holder’s inequality we have:

1 1
where 1 + 2013 = 1. Now, we choose a such that q (1)1t - j) . 6 = q (1n - k),
that is,

From (1.6) and (1.6’) we get:

because q.e.d.

Consider, now, the sesquilinear form :

defined on !)m X !)m (AIU). We assume that the coefficients (x) are
functions belonging to C2r" (/U?» and that (1.7) is continuous in ~’~ (Rn) X

(Rn). Furthermore, assume that there is a constant c &#x3E; 0 such that

Let us point out that the following set of conditions is sufficient in order
that (1.8) holds :
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i) Suppose that the coefficients apq (x) belong to C2m (Rn) and are uni-

formly bounded together with all their 
ii ) There are constants 0153&#x3E; 0 and ~8 --&#x3E; 0, such that Pie app (x) ~~ 0153 &#x3E; 0

and acpq (x) I f::-: fl, for all p * q ;
iii) Finally, suppose that (a - &#x3E; 0, where y is a positive constant

such that

where 17. (a = (ai 1*1* 1 are positive real numbers ;
then, it is a matter of verification that

Clearly, (1.9) implies (1.8) taking c = x 2013 fJy2.
Next, suppose that f is a given element of ~-~n (fW) and that we want

to find an element such that

where (, &#x3E; represents the pairing between 1Dm (f~n) and (IW). W’e observe
that for a fixed element it of 1Ðm (Rn) the anti-linear form v -+ a (u, v) is

continuous in There exists, then, a unique element -gi u E 1D-m (Rn)
such that

It is easy to see that -vt E shace of’ continuous linear operators
form ]Dm (Rn) into ym (R"i). Relations (1.10) and (1.11 ) show that if’ u veri-

fies (1.10) then and conversely. ()ne can see, using (1.8), that the

image A Dm is closed in and that -(-I is one to-one. Also, one can see,
easily, that is dense in ID-m. Consequently, &#x26;4 is an isomorphism
from ~’n (Rn) onto y’n (R’~). We can summarize these results in the follo-

wing.

THEOREM 1.2. Given f E there exists a unique element,
u E 1Dm (Rn) such that (1.10) holds. have Au = f’ in the serzse of distribu-
tions where :

Furthermore, A establishes an isomosphism of



337

2. The honiogeiieous Dirichlet problem iii R+ .

The results discussed in section 1 suggest the following.

DEFINITION 2.1. Denote by ~’~ (R’+) the space

equipped with the 

where is given by (1.4).
It is a reflexive Banach space. Denote by ~o (R+) the closure of

in ~~ (h’~) is a normal space of distributions, its dual

we denote by It can be, easily, seen that the elements of

can be represented as ~ Dafa where fa E (/2$) ; here

q’ (n1 - j) denotes the conjugate exponent 
In D§’ (Ri) consider the norm

According to SobolevT’s inequality (1.5) which holds also in R+ it follows
that in the two norms (2.1) and (2.2) are equivalent. 

-

Let

be defined in (R~_) X Jl)’m (R+), suppose that the coefficients apq (.r) are
smooth functions defined in h’’+ and assume that

With the same argument used in section 1, we can prove the following.
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THEOREM 2.1. The operator A = ,¿ establishes an

isonorplaiso from ( Rn+.) onto 
As we shall prove latter (section 5) the elements of ~~ (R’+~ have zero

Dirichlet data at the boundary of 1B’+, i. e. = 0, 0~~~ 2013 1~
for all u E D7 (R’+), where rjU denotes the restriction (in a sense to be pre-

cised) to J(n-l of the normal derivative y u E R . The theorem 2.1) 
ax; 

( +)
n

states that there exists a unique solution of the homogeneous Dirichlet

problem

for any
In order to study the inhomogeneous Dirichlet problem

we need to define the restriction (or trace) of elements of (R’+) to the
boundary Rwl. Before doing this, we shall establish two properties of the
space 1!)m (R+) and w e shall introduce the spaces real.

3. Two properties of ~~ 

THEOREM 3.1. In the 

tiable functions with compact support in l + _ dense.

PROOF. Let z and xR be as in theorem 1.1 and consider their restric-

tions to which we shall denote with the same notation. If u E !£)m (l~+)~
let As in theorem 1.1 we can prove that weakly in
]Dm (R¡) when R - + 00.

Let, then, u be a compact supported element of 1)m (R+), define t’e (x) ==
= u (x’, Xn + e), e ~ 0 and denote by Us (x) the restriction of t’E; (x) to ~~.
It can be seen that vr (x) E ~’n (R’+) and ~(.r)2013~(.r) in We can

then assume that u is the restriction to 1(+ of a compact supported element
V¿ (Rn-e) where --‘- (x E Rn : xn&#x3E; - e). ’rake, 8 a function
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defined in R, equal to 1 0 and = 0 when xn  - 2 and define2

w (x’, xn) = 0 (xu). v (x’, W’e have : i) iv E i)m (Rn- E) : ii) zn = 0 in a neigh-
borhood of x,, _ - ~ and iii) the restriction of iv to A~ is 1t. Extend tv to

defining it equal 0 for x,1  - e and denote by M? this extension. ’rhen,
Z E 1Dm (Iv’’~) and can be approached (thm. 1.1) by elements 1p E C~ ° (,f~n) which
can be assumed having support contained in k"-,. It follows that u can

. 
be approached in (Rn+) by the restriction q; of 1p to Rn+, q. e. d.

THEOREM 3.2. Tlcere exists a continuous linear map P : ~m (R+) --~
(Rn) such that Pu = it in 1(+.

PROOF. Using theorem 3.1, it suf’fices to show that there exists a linear

map P defined on C°° (h’+) with values in such that

for all E (R’+), and Pcp in 1(+.
Define P in the following way :

the constants ), being given by

()ne can check that 1’ has the required properties, q. e. d.

4. Spaces ID, 

In this section, 03BE _ (03BE1 , ... , 03BEn ) and x = (x1 , ... , denote points of
Let be the space of infinitely differentiable functions which are

rapidly decreasing at oo and let he tlle space -of telnperate distri-
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butions (dual of cS Let 7 be the isomorphism between cS’ and cS’ given
by Fourier transform ([9]) and let ~-1 be its inverse. If (resp.

we shall denote its Fourier transform b,y ~ (~) _ (~g~) (~) (resp.
T== 7T).

Suppose that s is a real number such that

is locally integrale with respect to the Lebesgue measure in I2~ and we
can consider the measure p, of density [ $ 12’ with respect to the Lebesgue
measure in Let .Lz be the space of square integrable functions with
respect to The dual of L2 (p,) can be identified to L2 (,u_8) with its

natural pairing. 
-

Furthermore, L2 C c5’ (Rn). In fact, for each g E L2 (It,), define

for E-cS. We want to verify that the linear functional L9 is continuous.
, 9

in the topology of d. Firstly, we have :

it

Secondly y we observe since - I C 8  -r" ? then

On the other band, let k be an integer, large enough such that:

From (4.2), (4.3) and (4.4) we get:
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-

If, now, 99 converges to zero in cS, the two sup in the right-hand side of
(4.5) can be made as small as we want, what proves that LA is continuous

9,
in cS. Finally, we observe that if .L 9 is zero in c5 then g = 0 a. e. in

Rn. Consequently, the map g E L2 (,u8) - L  E cS’ gives an imbedding of
9

of L2 (ps) into CSI {Rn). 
g

DEFINITION 4.1. Let - n  s  n · We define (Rn) as tlze comple-2 2

tion of cS (Rnl with respect to the norm :

When s is an integer we get the space introduced in the definition

1.1. Clearly, the space (Rn) is the inverse image by 9 of L2. (IA,). Further
properties of L2 are discussed in [2] and [4].

5. of elements of 

To simplify our notations, we shall denote the variable x, by t and

the partial derivative Dn, either by Dt or will represent the partialat 
-

Fourier transform with respect to the variables .==(.x7i,...,.yi); q t)
will be used to represent the partial Fourier transform of a

smooth function p. (x’, t) E C7° (R§), we define .

for all 

THEOREM 5.1 : There exists a continuous linear map

u,itlt tlre properties :

-). Aittiali detta Sctlola Norm. Sup. - Piga.
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PROOF. 1. We shall prove, first, that

from equipped with the topology induced by into
m-i 

- 

m-i . 1

77 with the topology induced by /7 is a conti-
y=o j=o
nuous linear map. Next we extend, by continuity, 7 to ID m 3.1).

Let, then, qJ be an element of (~!}-). Write :

0 C j C ~n - 1, where From here we derive :

The integral on the right can be estimated by:
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Denote by 1, (resp. I2) the first (resp. the second) integral in (5.4). We get:

where the last estimate is obtained by inverse partial Fourier transform
and taking in account the norm of ]Ðm (~-)’ Next, we have :

and, as one can see, the two last integrals can be estimated by a constant
times II v * get :

+

Combining now (5.3), (5.5) and (5.6) we get:

m-1 _ 1
2. To prove that y is onto we shall prove that given fE )

j=0

we can find an element u E Dm (Rn) such that its restriction to which

is an element of ~m (R’+) (thm. 3.2), has trace f (i.e., on 

. 1
For this it suffices to show that given f; E ~~~’ 2 (Rn-l) we can find u E

E (Rn) such that :

Let:
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where q (s) E Oc (R), q (0) = 1, where aj, ... , are to be choosen in order

that (5.8) holds. One can check, easily, that choosing

then the relations (5.8) are veri6ed.
Next, let us prove that all the m-th order derivativeg of u belongs to

.L2 or, equivalently, that (~)~ ~- E Z2 I + l = m. Using
at

(5.9) and (5.10), we can write :

where

To verify that , it suffices to verify that :

But we have:

It suffices then, according to (5.12) an (5.13) to prove that:

where Let us compute :
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But:

Replacing (5.15) in (5.14) we get :

what proves that the m-th order derivatives of u belong to L2 (Rn).
To complete the proof of 2, we use the following result ([9]), II pg. 40,

remarques ; also [3]).

LEMMA. Suppose T is ac distribution on whose first order derivatives

Di T, 1 c i --- n, belong to LP (Rn), 1  p  -[- oo, then

Applying this lemma to our situation we conclude that each derivative
of order ’In - 1 is the sum of a function belonging to 

1 
_ 

1 1

20132013 = 2013 2013 2013, plus 
a constant. But we can show that in our case, the

q (1) 2 n 
’" 

constant must be zero. In fact, let v be á derivate of order m - 1 of u;

we can writer &#x3E; using partial Fourier transform in x’ &#x3E; v = (’ ) a . where
oc

I a ‘ -+- - 1. According to the lemma and to the fact that the m-th

order derivatives of u (hence, all the first order derivatives of v) are in

L2(Rn), we have:

Take, now, and consider :
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(where ~ , &#x3E; represents, here, the pairing between CO’ (7~ ~) and CD’ (Rn-1)).
We can write :

An easy estimate shows that the integral in the right side of (5.17) equals
n-2

0 (p) . (Jlt 2 ), hence goes to zero when because n &#x3E; 2m. Also,
~,a belonging to t Rn), then :

as a function of t, goes to zero when t --~ -+- oo. Thus, from (5.16) and our
hypothesis on q; it follows that C = 0, consequently all the derivatives of

order m - 1 of u belong to (p,,n). By induction, using the lemma and
the same argument as above, we shall conclude that u E ( Rn).

3. Let us prove that (0) = (R+). First of all we remark that if
u E (R+) then yu = 0. Conversely, suppose that u E :IDm and yu =0.

Consider the function

(k is an integer &#x3E; 0) and set Uk (x’, t) = cx~ (t) . u (X’7 t). It suffices to verify
tbat Uk (x’, t) E JDm (R+) and that Uk (x’, t) ~ u (x’ t) in (R+) since, by
regularizing the functions uk s we get a sequence of functions of Cf° (R’)
which converges to u in JDm hence u will belong to D7 (~~-). To prove
that uk-u in JDm (R+) it is enough to prove that in 

for all 0 ~ It is clear for = 0. We shall sketch the proof for
the derivatives of order 1 ; the proof for derivatives .of lvigler order is

essentially the xanie.
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One can verify that the only thing to be proven in that ak (t). u (x, t)

converges to 0 in (R+), as k --~ + oo. Write

By Holders inequality we get:

Hence, it follows :

Finally

and the right hand side - 0 as + oo, q. e. d. The proof of theorem 6
is complete.

6. The inhoniogeneous Dirichlet problem.

Let a (it, 1’) he tlve sesquilinear form (2.4) and suppose that (2.5) holds. Let
y be the continuous linear map defined in theorem 5.1. Then:
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THEOREM 6.1 (A, y) is an isomorphism from

PROOF. First we remark that by theorem 2.1 and theorem 5.1 (A, 7)
is continuous and one to-one. Next, to see that it is onto, let ( f, go, ... , gm-1)

be an element of There is (theorem 5.1) an

element v E JÐm (R§) such that ’Yj v = g; , 0 ~ j C m - 1. Since Av E (R+),
by theorem 2.1, there is a unique uo E D7 (R n such that:

Then u = uo + v is the unique solution of (2.7). The fact that (A, y) is an

isomorphism follows from Banach’s isomorphism theorem, q. e. d.

7. Regularization of solutions of the Dirichlet problein.

Suppose that the sesquilinear form (2.4) has smooth coefficients defined

in and suppose that conditions i), ii) and iii) of section 1 hold.

THEOREM 7.1. Let f be an elenient of and let

u E ~R+) be the unique solution of the homogeneotts Dirichlet 
all the partial derivatives Dj 1t, 1 -- n, belong to (Rn).

PROOF 1. As in [8] (see also [11), we start by regularizing the tangen-
tial derivatives. We have :

Let A = (0~ ... , 0,li; , 0,..., 0), 1 ~,j c n - 1, and denote the difference

quotient

Since bh v E we have also :
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Write : o o

Replacing in (7.2) get the inequality :

Since. we have :

provided that I h I is small enough. On the other hand,

hence
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where y is the constant which appears in condition iii) of section 1. Con-

sider, now, the left hand side of (7.3). WTe have:

Re
I

Re

From (7.3), (7.4), (7.6) and (7.7) it follows.

Re
1

Now, replacing v by bh u and noticing that Re app &#x3E; a &#x3E; 0 (assumption ii

of section 1) we get f’rom (7.9) the inequality : 
.

and finally

By a standard argument we conclude that

2. Next we have to prove Dn u E IDm (1(’+). Write
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where D= denotes a tangential derivative of order I q 1. Let

Since u E (R’+)~ it follows that gEL2 (R+). On the other hand, Dy u E 
1 -:::-_- in - 1 hence, Di g E L2 (I~’+), 1 ---- i ---- ~~ - 1. Finally, since Au = f;
we get using (7.11):

and it is easy to verify that all the terms in the right hand side of (7.13)
belong to ( h’+ ). V-nder these conditions, i. e. :

We can conclude, using a result due to Lions ([6], lemma 11.2), that

let us prove that, for all In fact, we
have, for all because u E ~"’ (R+). Also 
== E Z2 1 C j c n - 1. Thus we have to verify that

D’L (DP u) E L2 It is trivial if D~ contains at least a tangential deriva-
tive. have to prove that belongs to L2 (R+). Rewrite g as
follows:

(here to simplify our notations we replaced q, = (0, ... , 0, 1n) by By as-

sanytion Re (x) &#x3E; 0, thus, we get:

It is a natter of verification that all the terms of the expression between
brackets belong to L2 (l~’+). Taking the derivative D¡¿ of both sides, we
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also get that the right liand side belongs to L2 (R+) ( just use the fact that
9 E Hi i and that tangential derivatives of order one of u belong to JDm).
Thus E L2 ( l~.

Next, let us prove that, for all Dp u E W 1, q(l) (R- + ). In
fact, let ip I = 1n - 1 and let l’p = have vp E Lq(1) because u E JDm.
On the other hand, any first order derivative I)vp is equal to a derivative
of order m of u that, we proved above, belongs to HI (R n ), hence to LI(l) (R+)
according to Sobolev’s imbedcling theorem. By a recurrence argument, we
can prove that for all p ~ I = 1n - j (0 c j  m), DP it E 1,V 1, q(j) (,Rn ) what
proves, finally, that E (le" ) for j = 1 , ... , n, q.e.d.

For any open set Q c let lVk,,7 (Q) be the Sobolev space of functions
u E Lq (Q) with derivatives DP u, in the sense of distributions, belonging to
L’~ {Sl) for I p C k. When q = 2, we denote by Hm (Q).

The result of’ theorem 7.1 suggests the following.

DEFINITION 7.1. Denote by (lc integer :~~! 0) the space of 
tions u E ~k (R’+) such that DP u E, 1V (R’+) for 0 c = j ~ m,
equipped ioitlz the 

Clearly B~(~i-) is a Banach space. It is easy to verify that 
if and only if D~’ ~c E ~m (l~~), 0 c_ ~ p ~ ~ k. Then we can re-phrase the

conclusion of theorem 7.1, by saying that 
h .

We also point out that if we take / in .r1 1D-(m-J) (/12) then the solu-
)=0

tion u of (2.6) belongs to k’"t ( l’+) fl ‘ ( n’+). The proof uses an in-

duction argument and the same tecnique as those used in theorem 7.1.

We shall state, a trace theorem for elements of that we

shall use in next section.

THEOREM 7.2. There i.s a continz.cous lineat. 
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such that :

Here, Dk m denotes the closure in D0km (Rn+) of Coo ° (h’+). On
k n 

+ 

_ _1 +
n (Rn-1) we consider the sup topology and Hm+k - j2 ( Rn-1) is
i=o

the Sobolev space that in our situation can be easily defined by means of
Fourier transform. Clearly theorem 7.2 generalizes theorem 5.1. Its proof
goes in the same way as in theorem 5.1. First, we have to prove that

(R+) is dense in (see thm. 3.1 ) and that there is a continuous
linear map P : -+ (An) snch that tlle restriction of Pu in 1B+
is u, for all for any q E Ccoo (R") we represent yj p restric-
tion of the normal derivative aj to by meaus of (5.2). Going throughoxjIt
a similar estimation as in thm. 5.1 we prove that (;- .18) is continuous on

elements of C°° (R’+) and then, i-t can be extended continuously to 
The proofs that y is onto and that its kernel is 1D~,m are similar to

the ones given in tlieoreiii 5.1 and, for this reason, are left to the reader.

8. Transposition.

We assume that tlle sesquilinear form (2.4) verifies the same assump-
tions as in the previons section. Let a* 1~) = it (v, n) and let A. be the

formal adjoint of A. The following relation

m’here a+ are elements of and are differen-

tial operators of order 2’in - j -- 1 in I:’w1~ is easily obtained by integration
by parts ([6], II, pg. 144).

If we suppose that a* (u, r) verities condition (2.5) then all the results

in the previous sections hold for .11 *. In particular, if follows from our
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remarks after definition 7.1 that

(8.2) A. is ait igomorphisiii from

By transposing this result and applying it to a particular case, we shall
be able to get another isomorphism theorem concerning the Dirichlet pro-

1
blem. Namely, each element II F 2 define a

;=o

continuous antilinear functional L on by setting

where the first pairing is between (Rn+) and D-m (Ri), while the pairing0 1 
+ 

. 1
in the summation is between HJ+2 H-J-2 one can see,

m-1 . 1

ID-m (Rn+) · can be identified to a subspace X of the dual
j=O

of 1Dm,m n 1D:;". By (8.2), there is a unique u belonging to Z, dual of

m .

n 1D-J (R+), such that
j=o

for all ro E n i),, - (The pairing in the left hand side of (8.4) is between
m .

and its dual Z). In particular, if v = rp E (R+), it folJo,,’s from
i=O 

+

(8.4) that Au = f in the sense of distributions.

DEFINITION 8.1. Denote by H the space o~’ functions u E Z szcclc that

Au E (R+) equipped the 

It is a Banach space. Let, now, Y be the closure in 11 of subspace
formed by those elements u E Z that verify (8.4) when ( f, (g~)) is arbitrarily

given in X. We are going to see that u E Y if and only if Au E 1Ð-m, 
.L 1

and 0 j  m - l. The first assertion follows from the
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definition of Y. As for the second, we need to determine the trace of ele-

ments of Y.

TEOREM 8.1. is dense in H.

PROOF. Each continnous anti-linear functional M on H can be represented
in the following way :

m .

where ex E n 1£)-1 (R) ) and # E (R+). On the other hand, an element 03BE E Z
;~o

m

dual of j’2o 1D-j, can be represented (not necessarily in a unique way) as a

where (here B)S()=(Rn+)). Hence, the pai.
;=o

ring between and is given by : ~

and (8.7) does not depend on the particular representation of ~ as a sum

of elements Ej E (A~), 0 C j ~ It follows that, if ~ = cp E Cc ° (Rn) then
(8.7) reduces to

Suppose, now~ that M (q) = 0 for all 99 E CQ (R+). Then we have :

Let a (resp. /3) be equal to a (resh. /3) in R" and equal to 0 in R1 . We
~ N

ha ve, ; E L2 (Rn) It follows from (8.9) that
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We get

Since P E 1£)m then E thus ’i E L2 (Rn) (Rn). We can

prove (lemma 8.1, below) that under our assumptions on A* and a the
solution it of (8.11) belongs to Conseqnently, fl must belong to
1£)~’ Thus we have :

Replacing this relation in (8.6) we get:

Using (8.11), it follows that M (tv) = 0 for all za E H; consequently 
is dense in H.

To complete the proof’ of theorem 8.1 we need to prove the

8.1. Let a (u, v) be sesquilinear form (1.7). that the

coejftcients are s1nooth and that conditions i) ii) and iii) hold. Let f be an
ele1nent of L2 (Rn) n 1D-rn (Rn). Then the unique ele1nent u E (R~~), solution

of Au = f, belongs to m 

PROOF. Consider iterated difference-cluotients of order m, bpv where
p = 7 ... pn) is a n-tuple of positive integers such that p = m and h =

_ (hi , ... , ..., 7 ... lip) is a of’ positive real numbers.

The difference quotient 31’v is easily defined by induction starting witli

difference-quotient of order 1 (see section 7 ). If’ n E (l~’~z)~ it follows front

our assumptions that :

where C depends on f but not on v. With the sa,me technique ased in part
1 of the proof of theorem 7.1 we can conclude that f’or all

Denote by vp the derivative Dp u. Since it E 1Dm (Rn), t’p belongs
to L2 (Rn). Also, since vp E (1~n), all derivatives of order iii of vp, belong
to L2 (Rn). We conclude, by Fourier transform, that vp E 11m (Rn) for all

this we shall derive that u E E)III, - (/Vln). If fact, according to otil-From this we shall derive that "’ (/2n). If fact, according to ou r
remark just after definition 7.1, we have to prove that l’u = l)au E 
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for all 0 c ~ c m. It is trivial for = 0. Also, it is trivial for a ~ = m
because H m ( Rn) C Dm ( Rn). Let us prove that v. E D- (Rn) for all 0  C m.
By definition of 1I)m (Rn) it is enough to prove that 

E Lq (In-Ip I) (Rn) for all 

First, suppose that Then,

because Ip -+ = m + r with r &#x3E; 0 and r  p. But we know by Sobo.
lev’s imbedding theorem that 

Next, suppose that We claim that it is enough to
verify that :

In fact, we have 

the last space is contained in again, by Sobolev’s theorem,

because and

(see (1.4)). To prove (8.15) we proceed by induction on p. First let us verify
that then

We have

because and

Let V be a n-tuple of positive integers such that

0   It is easy to verify that

_ nt - - 1. Suppose, now, that (8.14) is true for all p such that
- k and let us prove that it is true for I -

- (k + 1). We have for such p

I)ecause u E ID- and

ti A unali della 4icuola Norm. Sup.. Pisa.
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Let and write

where

Now, DDp va is a derivative of order m - I a - k y hence, by our
induction hypothesis, belongs to It follows, then, that

must belong to space which is con-

tained in Lq(k+l) by Sobolev’s theorem. Thus Dp va E lvm, q(k+l) (Rn) for

all q. e. d.
THEOREM 8.2. There is a continuous linear miap y’ === (/o ... , 

such that, for all

PROOF. Let

such that

There is ~c~ E ~.~2"t (~~..)

([6], II, pg. 145, lemma 1.1). Clearly H(/4)n:E(/.) by Sobolev’s
imbedding theorem. Let u be an element of Y and consider the form :

m /

where the first pairing is between Z and n D-J since it is easy
j=0 B

m B

to see that and the second pairing is between and 
;=o /

One can verify that Lh (u) does not depend on the choice of 10 but

only on h = (ho, ... , Furthermore we have :

Thus, we can write:
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_1 
1

with Also we can verify that aj (0  j  lit - 1) is

continuous on Y.

Finally, if we take hj E C °° (Rn-1), 0  j  M _ 1, it is known ([6], II)
that w can be taken in Also, if u is in C °° (R n), then taking in
account (8.1) the right hand side of (8.18) can be written as

It follows that for all u E we have aj (u) == 7j (u) because C ° (R"-1)
-.1

is dense in each If 2 (Rn-1). Thus for all because

C7 (R ") is dense in Y. The proof is completed.
Summing up all the previous results, we can state the

THEOREM 8.3, is an isomor-

phismi onto. 
’

9. InterpoIatioM.

In this section we apply Lions results on interpolation theory [5] to
the two isomorphism theorems 6.1 and 8.3 and get, this way, another iso-
morphism theorems concerning the inhomogeneous Dirichlet problem. Next,
we interpret the interpolated of the boundary value spaces; the theorem

we prove contains also a result of Stein and Weiss about interpolation
with change of measure.

We recall some definitions and properties of [5]. Let A and B be two
Banach spaces contained in a topological vector space E. Let p and q be
such that 1  p, q  + oo and suppose that a and fl are real numbers

such that 0 = 1 -+- a and 0, = 1 lie in the interval (0, 1). Define
p q

W (p, a, A ; y q, as the space of vector valued functions u (t) verifying
the properties :

,v here u’ (t) denotes the derivative of’ u (t) in the sense of distributions.
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Equipped with norm

~V is a Banach space. Lions has shown ([5]) that one can define the trace

u (0) of u E W. The space of traces T (p, q, fl, B) equipped with the
norm

is a Banach space. It verifies the interpolation property, namely, if A 1
and B1 are two other Banach space contained in a topological vector space
El and if 4Y is a continuous linear map from A into At t and a continuous
linear map from B into Bi such that

then 0 is a continuous linear map from T ( p, cc, A ; q, f3, B) into

T (p, oc, Bi) and its norm is  C~’~ . of, where y= 1)1 + 0 1 - 0, *
We apply these results to theorems 6.1 and 8.3, taking p = q = 2 and

ex = ~. After an obvious change of notation we can state

THEOREM 9.1. (A, y) is an isomorphism froni T(2.x: onto

The following theorem give us a characterization of the boundary value
spaces which appear in theorem 9.1.

THEOREM 9.2..The space 1’(2. a ; can be

identified to the of C °° with respect to ‘the 
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PROOF. Using Fourier transform in Rn-1, we can see that the space

coincides with the space of functions

u (t, ~’) such that

and

i. e., to the space i where vt denotes the

measure (1 + I ~’ 1)21 d~’. Theorem 9.2 will follows from the more general
result 

°

THEOREM 9.3. Let X be a locally compact topological space, ~u a Radon

measure on X, go (.x) and g, (x) two functions &#x3E; 0, locally integrable with re-
spect to ,u and such that the set ¡where go g1 is zero, has meacsure zero. Suppose

that 1 and let r be defined by

Then :

’lvhe1re

Furthermore,

lfhere the coitstant c depends only on p, a, q and fl.
The proof of theorem 9.3 uses the following

LEMMA 9.1 ([5 D. Let v be a ftinction defined a. e. in (0, oo) and such that
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Then

where c depends only on p, a, q and p.

PROOF OF THEOREM 9.3. If f E T, there exists u E .Lp 

q, fl, Lq (gl p)) such that u (x, 0) = f. For x fixed in X, the function t-~. u (x~ t)
verifies (9.9). Then we have :

a. e.- in x. From (9.11) we derive

Using Holders inequality we can estimate the right hand side of (9.12) by

where Now, choose y such that

We have,
then get:

We
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It follows that f E Lr (v~~ where and

for each u E W such that u (x, 0) = f. According to lemma 2.1 of Lions [51
we have :

Hence (9.14) and (9.16) yield

Conversely, suppose f E Lr (v), assume from now on that the constant

in (9.10) is the best possible. Given B &#x3E; 0, let (v, t) be a function verifying
the conditions of lemma 9.1 and such that

.Furthermore, we can assume that v (0) = 1. Define (a. e. in X) :

where A is a real number to be fixed latter. Clearly, y u (x, 0) = f f x) a. e.

We want to prove that u E q, fl, Lq (g, /t)) what amounts

to prove that
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and

Consider the integral

Taking in account (9.18) we can see that

Now, if we choose such that p - = r, then the integral on the right
hand side of (9.22) is finite because _

I

The real number A being fixed, consider the integral

A simple computation shows that

Since to prove that I2 is finite we only have to check

that q (l + 1) - = r. This follows, easily, from our relations -

and p - = r. Thus, f E T (p, a, -Lp (go p) ; q, fl, Lq (U1 p)). 
- ....

Finally, let us prove (9.8). From (9.15) it follows using (9.22) and
(9.24) : 

’

From (9.17) and v (o) - 1 we get :
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hence, making t --~ 0 :

Relation (9.8) follows from (9.16) and (9.26), q.e.d.

REMARKS. 1). Theorem. 9.3 contains proposition 4.2 of [5].
2). In [11] Stein and Weiss proved, using complex intero-

lation that Lr (y) is an interpolation space betvfieen LP and Lq (9. /).
This result is contained in theorem 9.3 where, in addition, we proved that
Lr (V) is a trace space in the sense of Lions ([5]).

University of Montreal.
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