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INHOMOGENEOUS BOUNDARY VALUE PROBLEMS
IN A HALF SPACE

by J. BARROS NETO

‘We discuss in this paper the Dirichlet problem for elliptic operators
with variable coefficients defined in a half space. General inhomogeneous
boundary value problems have been extensively studied by Lions and Ma-
genes in a series of papers [6]. In the papers, they consider elliptic operators
with smooth coefficients defined on a bounded domain, except in the first
of [6] where the case of an operator defined in R’ is considered.

Our approach is however different. We use, rather than the Sobolev
spaces H™, the spaces D™ obtained by completing the space of C= func-
tions with compact support, with respect to the Dirichlet norm [4]. These
spaces which coincide with H™ when the domain is bounded are in the
case of unbounded domains larger. In order to deal only with spaces of
functions we have to impose a restriction on the dimension n of the Eu-
clidean space, namely, we suppose always that m > 2m, what implies that
™ is a subspace of LM, q_(lm—)= %_% (§ 1). The spaces ®™ are then
normal spaces of distributions a fact very convenient in order to characterize
the trace of elements of ™ (§§ 4 and 5), to study the transposed problem
(§ 8) and to apply the interpolation theory (§ 9). Our results apply to the
Laplace operator in a three dimensional space.

The plan of the paper is the following. Tirst we define the spaces
Dy (R, its dual BT (KY) as well as B (X)) and give some of their
properties. An integro-differential operator a (u,v), homogeneous of degree
m, verifying an ellipticity condition (2.4), with smooth coefficients satisfying
conditions i), ii) and iii) is considered and we prove that the corresponding
partial differential operator A establishes an isomorphism from B¢ (X}) onto
D™ (X&7) (theorem 2.1). This solves the homogeneous Dirichlet problem for
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332 Barros Nkro : Inhomogeneous boundary

A. To study the inhomogeneous problem we characterize the trace on R"—!
of the elements belonging to ®™ (X7%). With the help of the trace theorem
(theorem 5.1) and the isomorphism theorem (theorem 2.1) we prove theorem
6.1 solving the inhomogeneous Dirichlet problem for 4.

The next step is the regularization of the solution. Theorem 7.1 proves
regularization up to the boundary while lemma 8.1 proves the interior re-
gularity.

After regularizing the solution we transpose our results (§ 8). Here,
in order to carry through our argument we need another trace theorem
(theorem 7.2) which extends theorem 5.1. We should point out that in § 8 we
do not consider the transposition problem in its full generality (a question that
presents many technicals difficulties) but rather study a particular case that
leads us to the solution of the Dirichlet problem for a given function in
B~"™ (R’) and given boundary values assigned in Sobolev spaces H*(R"™)
(theorem 8.3). Obviously, by choosing another elements in the dual of
D™ ™(RY) N By (K7) (see § 8) we can get isomorphism theorems of the same
type as theorem 8.3 but involving only the spaces ®™ defined on R}
and BRI,

Finally, we apply the interpolation theory and prove theorem 9.1. When
interpolating between two given spaces one gets an abstract family of spaces
that one likes to characterize. This is the aim of theorem 9.2 which follows
as a particnlar case of theorem $.3, a theorem about interpolation of spaces
of integrable functions with change of measure. Our result is similar to a
previous one of Stein and Weiss [11]; the methods are different.

For simplicity we have considered throughout this paper only the case
of K% but it is clear that our results can be extended with slight modifi-
cations to more general unbounded domains. For instance they can be ap-
plied to the case of a complement of a ball in A™,

The main results of this paper appeared without proof in [12]. We are
indebted to J. L. Lions and E. Magenes for suggestions and criticisms.

1. Preliminaries.

Let R" be the Euclidean space of dimeusion m; &% the half space

(= (2, ., @) €ER": ®,>> 0} and A’} the closed bLalf space, i. e. the set of
all elements x € A* such that x,>0. If o= (a;,...,a,) is a n-tuple of

. . a1+m+a”
integers «; >0, we indicate by D<= the partial derivative —_—
QT . O
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order || =, 4+ .. + a,. Let C° (K" (resp. C.°(K%), resp. C;°(R")) the
space of iuﬁﬂi_tely differentiable functions with compact support in R™ (resp.
R%, resp. R%). The dual of C.°(K") (resp. C;°(K)) is the space of distri-
butions in K" (resp. A7) that we denote by D’ (R") (resp. D’ (R})).

DEFINITION 1.1. We denote by D™ (K") the completion of C,~ (R") with
respect to the following norm :

(1.1) ” @ 'lm’lﬂ(Rﬂ) =( 2 IY De 7 ”12(1‘1.))”2.

lal=m

Clearly, D™ (R") is a Hilbert space. However, if n > 2m, according to
Sobolev’s inequalities (10) we have:

1 1 m
(1.2) o ”L'I("')(n"\ <C-|o ”mm(gn) y Where q (m) =5

n '

Then, ™ (K™ is a normal space of distributions (!) since from (1.2) it
follows that ™ (A" c L (R*) and the imbedding is continuous. The dual
B-™ (R") of ™ (K") is a subspace of ()’ (A"). We shall consider throughout
this paper, only the case n > 2m,

Consider, now the space V of functions u of L™ (R such that
Dewe L= (R, |a|=j, 0 <<j<m, where

1 1 m— j
1.3 —_— = — : j .
(1.3) q (m—j) 2 n d=j=m

Equipped with the norm

m

(1.4) lull= |a2 | D* 2 [ Lgtm—i gemy »

|=v

V is a reflexive Banach space.
We shall prove the

THEOREM 1.1. The space ®™ (R") can be identified in the algebraic and

topological senses to V.

() A topological vector space E is a normal space of distributions if Cz" (e Ec
C @' (R") the imbeddings being continuous and C° (Rn) being dense in K.
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PRrOOF. If 1 <<p <n, we have, for all p€ C;° (R"), the inequality due
to Sobolev ([10])

n
(1.5) K% ”L(I(Rn) = 6551“1)" ' “LP(R")
where
1 1 1
— = 7T

the constant ¢ depending only on p and .

It is easy to see using (1.5) that the norms (1.1) and (1.4) coincide on
C.” (R™). Thus, to prove the theorem it suffices to show that C,°(R") is dense
in V.
Let Z(x) be a function of C.° (R") equal to 1 for |x|<1 and to 0 for
|| =2; let Xp(x)=2% (%) where R is a positive real number and

write up = X . u for each € V. To prove that C,°(K") is dense in V,
it suffices to prove that the functions wug belong to a bounded set
of V. In fact, if it is so, then, since V is reflexive, there is a sequence
(#n) such that (ug,) converges weakly in V. It is easy to verify that (ug)
converges to u. Next, by regularization, we prove that there is a sequence
of elements of C;°(R") which converges weakly, in V, to u. The proof fol-
lows from the well known criterion of density in Banach spaces.

To prove that ugp belongs to a bounded set of V, it suffices to prove
that D* up belongs to a bounded set of I 90n-l«l (An) for all 0 <<|a| << m.
‘Write :

Drup=Z%p« D*u -+ > Coy DEXy - D7,

[1B1+1ly' = «l
181>0

Since Xg . D*u converges to D*wu in Lutn=l«D) (A7) it suffices to verify that

D8 X, - DY u belongs to a bounded set in Lim—leD(A™), Let |a|=j, |y|=k
and write

(1.6) /! Dfyp o DY |tn=d dr <<
Y

¢
Ty | [Pl e
\

|z|=2R

=

(The integral at the right exists because, here, ¢(m — k) > ¢ (m — j)). By
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Holder’s inequality we have:

(1.6) | D |9 dp <
|z]| =2R

, 18 1y
- l Dr l‘l("‘-])"’ da,) . ( /- d.l‘) ,
|z|<2R |z|<2R

1 1
where 5 + 7= 1. Now, we choose & such that g(m —j). 8 =q(m — k),
that is,

n— 2m -+ 2j and 6,=n—2m+2j

6=n——2m+2k 2(—k

From (1.6) and (1.6¢’) we get:

fl DF IR * Dru "1("'-—1') de <<

R"

2n( j—k) ;i—'2_m+2k

cy - Rn—2m+2j ome Vn—ém-{—?j
= = RG=Ra0n=j) | Dy frin=h) da =0

N R

2n

— T T e 14 q(m—k) ( fon
n— 2m + 2j et Dru€ Lt (RM), q.e.d.

because q (m — j) =
Consider, now, the sesquilinear form :

(1.7) a(u, v) = (— 1™ ) fa,,q (eyD*w . D1vdr,
lpl="ql=m
RV

defined on I™ (R") >< B (A"). We assume that the coefficients ay,, () are
functions belonging to C*" (A™) and that (1.7) is continuous in B™ (R") >
D™ (R"). Furthermore, assume that there is a constant ¢ > 0 such that

(1.8) a(,v) =c¢| rlg,,,(h,,, for all ve D™ (R™).

)

Let us point out that the following set of conditions is sufficient in orde:
that (1.8) holds:
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i) Suppose that the coefficients apq(x) belong to C?™ (R™) and are uni-
Jormly bounded together with all their derivatives ;

ii) There are constants « >0 and B = ¢, such that Re ayp(x)=a > 0
and | ayy (2) | < B, for all p % q;

iii) Finally, suppose that (x — fy%) > 0, where y is a positive constant
such that

( l{ Pt =y"1 3 .,

| la|=m

where o (@ = (0t youo y &y)) are positive real numbers ;
then, it is a matter of verification that

(1.9.) Re a (v, 0) = (& — By?) || » [[gymzny » for all veB™ (Am),

Clearly, (1.9) implies (1.8) taking ¢ = a — fy%
Next, suppose that f is a given element of ®—™ (A") and that we want
to find an element v € ®™ (R") such that

(1.10) a(u,v) = f,v) for all ve D™ (An),

where (, ) represents the pairing between B (A") and ®—™ (A™). We observe
that for a fixed element u of ™ (A™) the antilinear form v— a (u,v) is
continuous in ™ (A™). There exists, then, a unique element of u € B—m (An)
such that

(1.11) a(u,v) = A uv) for all ve D™ (An).

It is easy to see that of € 2 (B, ®—™), space of continuous linear operators
form ®™ (R") into B—™ (A"). Relations (1.10) and (1.11) show that if u veri-
fies (1.10) then of v = f and conversely. One can see, using (1.8), that the
image of ®™ is closed in ®—™ and that ¢ is one to-one. Also, one can see,
easily, that of ®™ is dense in ™. Consequently, ¢{ is an isomorphism
from B®™ (R") onto B~ (A"). We can summarize these results in the follo-
wing.

THEOREM 1.2. Given f€ B~™(R") there exists a unique element,
u € D™ (R™) such that (1.10) holds. We have Au = f in the sense of distribu-
tions where :

(1.12) Au = z D1 (apq (x) D¥ u).

lpl=1gl=m

Furthermore, A establishes an isomosphism of D™ (R") onto B—™ (7).
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2. The homogeneous Dirichlet problem in & .

The results discussed in section 1 suggest the following.

DEFINITION 2.1. Denote by ®™ (k%)) the space

D™ (R}) = (ue L™ (&) : D*we L (RY), |a| =j; 0<j < m)
equipped with the norm

m
2.1 u L = >y | D* w )
( ) ” ”Dm(R-f-) 0 I ”LQ(”

lal <j= ity
where ¢ (m — j) is given by (1.4).

It is a reflexive Banach space. Denote by By (XY) the closure of
C7 (RY) in ®™(KY). By (AY) is a normal space of distributions, its dual
we denote by B~ (RY). It can be, easily, seen that the elements of

m , .
B (RY) can be represented as I  Def, where f,€ L™ (R%); lere
laj=j=0
q’ (m — j) denotes the conjugate exponent of ¢ (m — j).
In B} (RY) consider the norm

(2.2) I; % ”m:)"(n’_;_) = ( Ialz-‘—-o ” Deu ”3,2(133_))”2'

According to Sobolev’s inequality (1.5) which holds also in Ri}_ it follows
that in B, (A’) the two norms (2.1) and (2.2) are equivalent.

Let
(2.3) @ (u, v) = (—1)" > fa,,q (@) Dru Do dx
Ipl=lql=m
7

be defined in B™ (K7)>< D™ (R}), suppose that the coefficients a,, () are

smooth functions defined in A’y and assume that

m

(2.4) |a(e,v)|=c-]|v ”gﬂ’(”)ﬁ‘—) , for all ve By (R}).

With the same argument used in section 1, we can prove the following.
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THEOREM 2.1. The operator A = b D1 (ay, (x) D?) establishes an
Ipl=lg|=m
isomorphism from By (K7Y) onto D™ (K7)).
As we shall prove latter (section 5) the elements of By’ (£”y) have zero
Dirichlet data at the boundary A" of A%, i.e. pu=0, 0 <j<m—1,
for all u€ By (R%}), where yu denotes the restriction (in a sense to be pre-

j
cised) to X"”' of the normal derivative %—; , € D™ (RY). The theorem 2.1
n
states that there exists a unique solution of the homogeneous Dirichlet

problem

§Au =/
(2.5)
(7]‘1"'———"0 , 0<j<m—1,

for any fe®™" (R%).
In order to study the inhomogeneous Dirichlet problem

‘ Av=f
(2.6) ,
yu =g, o<j<m—1,

we need to define the restriction (or trace) of elements of D™ (R}) to the
boundary A"—1. Before doing this, we shall establish two properties of the
space D™ (X%) and we shall introduce the spaces D" (A""), « real.

3. Two properties of D™ (R").

THEOREM 3.1. In B™(RY) the subspace CZ(R) of infinitely differen-
tiable functions with compact support in R} = {xE/\’": xn =0} is dense.

PROOF. Let y and yg be as in theorem 1.1 and consider their restric-
tions to A which we shall denote with the same notation. If w€B®D™ (X}),
let ug = ygu. As in theorem 1.1 we can prove that up —u weakly in
D™ (K}) when R — - oo.

Let, then, w be a compact supported element of D™ (RY), define v, (x) =
= u (z’, ¥, -+ ¢), ¢ > 0 and denote by wu, (x) the restriction of v, (z) to A%.
It can be seen that v, (x)€ D™ (R}) and v, (x) — u (@) in B™(KY). We can
then assume that w is the restriction to [\’1 of a compact supported element

v, D™ (RZ,) where RZ, = {x€ R": 2, > — ¢]. Take, now, 0 (r,) a (' tunction
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defined in R, equal to 1 when «, >0 and =0 when z, << — —;— and define
w (& &) = 0 (). v (2, @,). We have: i) we D" (AL,); ii) w =0 in a neigh-
borhood of z, = — ¢ and iii) the restriction of w to 1\"_;_ is «. Extend w to
R defining it equal 0 for x, << — ¢ and denote by w this extension. Then,
w € D™ (K") and can be approached (thm. 1.1) by elements y € C;° (X") which
can be assumed having support contained in A”,. It follows that u can
be approached in ®" (A%) by the restriction ¢ of y to A%, q. e.d.

THEOREM 3.2. There exists a continuous linear map P: ®D™ (R}) —
— D" (R") such that Pu=u in K.

PrRooOF. Using theorem 3.1, it suffices to show that there exists a linear
map P defined on 0, (&%) with values in D™ (X%) such that

(3.1) [ o ‘HDT"(R?F) =C-ll¢ ”m"m’_;_),

for all g€ 0;"(7\)’_-;), and Pp=¢ in A .
Define P in the following way :

@ @,x,) if ©,>0

3.2 Py = m 3
(3.2) ¢ = zj«p<m', —ﬁ) it 2,<0
=1
the constants 2; being given by
m 1\*
(3.3) > (— ‘—)—) lj—_— 1 0<lk<<m—1.
=1

One can check that I has the required properties, q. e. d.

4. Spaces D* (R".

In this section, &=({,,...,&) and 2= (x,,..,,) denote points of
R Let S (A" be the space of infinitely differentiable functions which are
rapidly decreasing at oo and let &’ (A*) be the space-of temperate distri-
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butions (dual of §(AR"). Let F be the isomorphism between ¢’ and &’ given
by Fourier transform ([9]) and let ¥—! be its inverse. If @€ (X" (resp.
Ted (R") we shall denote its Fourier transform by ¢ (£) = (F¢)(£) (resp.
T= 1)

Suppose that 8 is a real number such that — -g— <8< ’—2' . Then | &

is locally integrale with respect to the Lebesgue measure in 2" and we
can consider the measure u, of density |&|* with respect to the Lebesgue
measure in A" Let LZ?(u,) be the space of square integrable functions with
respect to u,. The dual of L?(u,) can be identified to L?(u_,) with its
natural pairing.

Furthermore, L?(u,) € &’ (A™). In fact, for each ;\EII?(IM.,), define

(&.1) 1 @=[erzer(errena
Rn

for all ;;E'CS. We want to verify that the linear functional Lg is continuous
in the topology of . Firstly, we have:

1

~ ~ 2
wnso(furﬂwmﬁﬂ.

Rll

(4.2) | L

Secondly, we observe that, since — —Z— <8< % , then
(4.3) | &= a8 < N, < + oo.

lél=1

On the other hand, let ¥ be an integer, large enough such that:

(4.4) [ | &2 as < M, < + oo.
1E>1

From (4.2), (4.3) and (4.4) we get:

(45 Ly (@) =<0-N,-(sup (|g@F+C M. Sup (|§% o 2.
EecR" Ee R"
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If, now, ; converges to zero in J, the two sup in the right-hand side of
(4.5) can be made as small as we want, what proves that L; is continuous

in J. Finally, we observe that if L; is zero in & (R") then /g\.——- 0 a.e. in

R*. Consequently, the map ?)\E L ,)—)L; €’ (R™) gives an imbedding of
of L2 (u,) into &’ (A™).

DEFINITION 4.1. Let —% <s <—g— We define B (R") as the comple-

tion of S (R™ with respect to the norm :
1
~ z
(.0 lote=( [1em17 @)

b

When s is an integer we get the 'space introduced in the definition
1.1. Clearly, the space B: (&™) is the inverse image by F of L*(u,). Further
properties of L2 (u,) are discussed in [2] and [4].

5. Trace of elements of ®™ (R%).

To simplify our notations, we shall denote the variable x, by ¢ and

the partial derivative D, either by D, or 58{; %, will represent the partial

Fourier transform with respect to the variables =’ = (%1 ,...,2,—)); :p?(f’, t)
will be used to represent the partial Fourier transform %, ¢ (2’,1) of a

smooth function ¢, If ¢ (2’,t)€ 0. (R}), we define

o'y

(5.1) 7@ (@) = ¥ (€1 y eee y Xu—y y 0)

for all 0 <<j<<m—1.
THEOREM 5.1: There exists a continuous linear map

m—1 .1
7=y ey yut): BT (RY— I DT (R
)=

with the following properties :

5. Annali della Scvwola Norm. Sup. - Pisa.
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i) for all g€ O (RY), (5.1) holds ;
ii) y 18 onto;
i) y7' (0) = By (&S).

PrRoOOF. 1. We shall prove, first, that

Y: @79 =209 -y Ym—1P)

from C” (KY}) equipped with the topology induced by ®™(R}) into
T 0.7 (R™™") with the topology induced by N7l E’”—’——(R" ) is a conti-

j=0 j=0
nuous linear map. Next we extend, by continuity, y to D" (K} (thm. 3.1).

Let, then, ¢ be an element of C,° (R%). Write:

8’¢p 8"1’
2_— — «—

0<<j<<m—1, where 0(&,t)=e—|¥lt, From here we derive:

5.3 f(le'l P e =

Rr1

,2(m—i=1) | 8 (379 919 ,
Sf/lél 2 "Et"('a’t“f"ati 9) daz’ dt.

o rR*—1

The integral on the right can be estimated by :

(5.4) [/I El (m ’—_‘
o g1
+/f| el

e

at’

aeldt+

(91+1 >
stit?

l | 0| ag’ at.
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Denote by I, (resp. I,) the first (resp. the second) integral in (5.4). We get:

(5.5) I‘ =f—/| 14 |2 (m—i— -;-)

0 pn—1

diplle] ..,
o [1e)aas

~ aj$2 U

o R*—1

where the last estimate is obtained by inverse partial Fourier transform
and taking in account the norm of ®™(K%). Next, we have :

L= [fietes
0
<G f fl & |2m—a
0

and, as one can see, the two last integrals can be estimated by a constant
times ||qz||§,m(31). We get:

ip i+
%ﬂ .|4:'|(m—j—1>|a P\ gaz at<

gtitl

aip |t i NP
a_tf‘ agrat + C’ffl e nl gt
0

2
& dt,

(5.6) L<Gle ”?n"'(nff;_) .

Combining now (5.3), (5.5) and (5.6) we get:

(5'7) ” Vi® “Dm_j_ _;_(Rn—l) = c. " ¢ ”DM(R::_) )y 4.6 d'
. . 4 =1 m-j—} n—13
2. To prove that y is onto we shall prove that given f€ IT ® 2(R"T)
=0

we can find an element € D™ (R") such that its restriction to K%, which
is an element of ®™(RY) (thm. 3.2), hag trace f (i. e., yu =f) on K"\
1

For this it suffices to show that given f;€ ® " ~ 2 (R"1) we can find u€
€ D™ (k™) such that:

(5.8) nu=..=yau=0 pu=fi rpt=.=ynqu=0.
Let :

(5.9 W0 = (@t bt ) T (|8 ] 1) F5(E)
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where q (8)€ C;° (R),?(O) =1, where a;, ..., a,—; are to be choosen in order
that (5.8) holds. One can check, easily, that choosing

(= k¢
(5.10) @it = W

y 0<k=sm—j—1
then the relations (5.8) are verified.
Next, let us prove that all the m-th order derivatives of u belong to

1 )

L% (R") or, equivalently, that (£')* 193—:: € L?(R") where |a| -4 1= m. Using
(6.9) and (5.10), we can write:

m—j—1 (__ 1)): l f, |k

(5'11) u (5,7 t) = kf() ] ! k !

we (&, 1) - 7 (&)

where
u (&, t) = titkel &'lt g (| & |2).

otu
ott

To verify that (£’) € L2 (R, || 4 1 =m, it suffices to verify that:

(— D | & [o+1al glay
jlk! att

(5.12) FEVEL (R, O0<k=m—j— 1.

But we have:
du _ CmaptHk.3qe|é'|¢8'q(|5']t)=

5.13 L
(0 ) 3tl p+g4r=l at? ot ot"

= I E' |q+rp+£-r=l sz)qr titk—p ol &1 ¢ q(r) (l 51 I t).

It suffices then, according to (5.12) an (5.13) to prove that:
| & I lal+ktgtr gitk—p ol &It gr) (1¢] t)};(é’) € L2 (R

where |a|+1=m, 0 <<k <m —j— 1. Let us compute:

(5.]4) T =/| 5’ |2(|‘1 | +k+9+7) t2(j+k—p) e2|5' K3 l q(r) ( , 51 I t) ’2 . '}\] (E’) Iz df' dt =
Rn

“+ oo
=[| & Pl Hhtatn IJA}'(E') |2g ftzu+k—p) 21E 1] g0 (| & [ 1) e d&.

K1



value problems in a half space 345

But:
+o0
(5.15) ft2(j+k—p) e2l&' |t | q" ( | & | t) |2 dt =
Zoo - .
1 .
= [ porpHt f gHitk=) g | g (s) [ ds = [&7 pore—ai®

Replacing (5.15) in (5.14) we get:

1= 0 [|& st G P ag <+ oo

R—1

what proves that the m-th order derivatives of u belong to LZ?(&™).
To complete the proof of 2, we use the following result ([9]), II pg. 40,
remarques ; also [3]).

LEMMA. Suppose T is a distribution on R™ whose first order derivatives
D;T, 1 <<i<n, belong to L?(R"), 1 < p<<- oo, then

T=8+40C

1 1 1
where S € L1 (A", — = — — —.
q p n

Applying this lemma to our situation we conclude that each derivative
of order m —1 of » is the sum of a function belonging to L) (R"),
1 1

1 .
P plus a constant. But we can show that in our case, the

a2

constant must be zero. In fact, let v be 4 derivate of order m — 1 of u;
~ l

we can write, using partial Fourier transform in z’, v = (¢’)*. 86:: where

||+ ¢ = m — 1. According to the lemma and to the fact that the m-th
order derivatives of w (hence, all the first order derivatives of v) are in
L2 (R™), we have:

v = w - C, where w € L1V (R),

Take, now, ¢ € C.° (R"™") such that f @ (@) da’ 3= 0 and consider :

Rn—1

(5.16) (v,¢>=<w,¢p>-|—0f @ (&) dz’

R™1
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(where {, ) represents, here, the pairing between C;°(R"™") and @’ (R"™).
‘We can write :

~
tu

b L

(5.17) (v, ) =(7, $>=/ (&)
R’n—l

An easy estimate shows that the integral in the right side of (5.17) equals

n—2
C(p) - (1/tT), hence goes to zero when t— -} co, because n > 2m. Also,
w belonging to LM (XR"), then :

(5.18) Cw, @) ==fw (@, t) ¢ (x) da’
Rﬂ

a8 a function of ¢, goes to zero when ¢t — - co. Thus, from (5.16) and our
hypothesis on ¢ it follows that C = 0, consequently all the derivatives of
order m — 1 of u belong to L2 (A™)., By induction, using the lemma and
the same argument as above, we shall conclude that u € ®™ (R").

3. Let us prove that y"l (0) = By" (R}). First of all we remark that if
w €Wy (RY) then yu = 0. Conversely, suppose that « € D™ (R}) and yu =0.
Consider the function

1

f = —

0 i 0 tgk
1 1
. 2

(k is an integer > 0) and set w (x,t) = s (t) + w (', t). It suffices to verify
that w (2/,t) €D™ (R}) and that w (#',t)— u(@’t) in” D™ (K}) since, by
regularizing the functions w,, we get a sequence of functions of C.° (R7)
which converges to % in ™ (A7), hence « will belong to Dy (A%). To prove
that w,—u in D™ (R}) it is enough to prove that D*u,—>D*w in L™~V (x%)
for all 0<<|a|<<m. It is clear for |« |= 0. We shall sketch the proof for
the derivatives of order 1; the proof for derivatives of higher order is
essentially the same.
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One can verify that the only thing to be proven in that o (f) -

converges to 0 in L¥™ ) (R%), as k— - co. Write

o 2

By Hélder’s inequality we get :

2/k
q(m—1)

o

q(m—1) q(m—1)—1
| w| <t =

ITence, it follows :

oo 2/k
f| ai (t) w (2, t) [20m—)) dt = K2 "'-1)f | w (w, t) [2m—D) dt.
0 0

2/k

2/k
* q(m—1)
< Jam—1) J fam—1)—1 { f du dt} at =
0 0
q(m—l)
=cC. f \ ou t.
Finally
q(m—1)
f | ok (8) u (w, t) |70n—D) da’ dthf/
R T

347

u (2, 1)

and the right hand side — 0 as k—» -+ co, q.e.d. The proof of theorem 6

is complete.

6. The inhomogeneous Dirichlet problem.

Let a(n, v) be the sesquilinear form (2.4) and suppose that (2.5) holds. Let

y be the continuous linear map defined in theorem 5.1. Then :
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THEOREM 6.1 (4, y) is an isomorphism from B™ (R%) onto ™" (R}) ><

m—l g 1
VIgs: 2 (R71),
j=0

ProoF. First we remark that by theorem 2.1 and theorem 5.1 (4,y)
is continuous and one to-one. Next, to see that it is onto, let (f, gy ... y mn—1)

m—1 i1
be an element of ™" (R})>< II 2 (R™). There is (theorem 5.1) an
j_o

element v € ®™ (R7}) such that yjv=g;, 0 <j<m — 1. Since dve D" (RY]),
by theorem 2.1, there is a unique u,€ By’ (X7) such that:

Auy = f — Ao,

Then u = u, 4 v is the unique solution of (2.7). The fact that (4,y) is an
isomorphism follows from Banach’s isomorphism theorem, q.e. d.

7. Regularization of solutions of the Dirichlet problem.

Suppose that the sesquilinear form (2.4) has smooth coefficients defined
in A% and sappose that conditions i), ii) and iii) of section 1 hold.

THEOREM T7.1. Let f be an element of ® ™" (#%) N D—" (R%) and let

uw€ My (RY) be the unique solution of the homogeneous Dirichlet problem. Then,
all the partial derivatives Dju, 1 <<j << m, belong to D™ (R%).

PrROOF 1. As in [8] (see also [1]), we start by regularizing the tangen-
tial derivatives. We have:

(1.1) u (u, v) = {f, v), for all ve Dy (K}).

Let h=(0,...,0,h;,0,...,0),1 <<j<<n — 1, and denote by &, v the difference
quotient

V(X yeeey B A Pjyen y B) — 0 (@ o0y )
h,

n

Since 8, v € By (RY) we have also:
+

(7.2) a (1, 8_p, v) =<f,d_pv), for all ve By (K}).
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‘Write :

a (uy 6_p v) = (— 1) z /a,,,, (®) DP w (D1 (8_p v) dw =
lpl=lgql=m
R.';

=(—1)" 3 fam (® 4 k) D? (8, ) D1 v dx +
[pl=lgf{=m
A

(— 1ym > f&h (apq () D?uw . Divdx .

I2l=lql=m
Ey

Replacing in (7.2) get the inequality :

(7.3) 1 b faP,,(x-{—h)Dp(a,,u)ﬁvdxgﬁf,a_,.v>|
[pl=lgl=m
By

> f[&h(apq(x))[-]Dl’ulle’v{d.v.
lvl=lql=m
Rll

+
Since f€ DD N D~ we have:

(7.4) I <fa O_nv) | = 02 ”f ”m—(m—l) * ” Do ”pg‘—l = 02 ” f”g—(m—l) I v “mz}"

provided that || is small enough. On the other hand,

(1.5) j]bh(apq(m))l-]Dl’u||D7v|dxg

7

1/2 1/2
03(f |D"u|2da;) ([ [D’Ivlzdw> ,
R By
hence
(7.6) z / | On{ttpg @) |+ | D?u| | Dtv|de <
lpl=lgl=m
]

0, 2 1Drull)-( 2 D1l < 0 [ uligg - 1 g

lp|=m
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where y is the constant which appears in condition iii) of section 1. Con-
sider, now, the left hand side of (7.3). We have:

(1.7)

fa,,q (® + h) D? (6, ) DT v dz | =

lpl=lql=m n
By

Re 2 Qpp (© =4 ) DP (Opu) - DP v dx —
Ipl=m
R

-2 [larq(x+h)l'|D”(5hu)|| Diy|de =
peq

n
By

Re 2 a (x4 h)D?(d,u)- DPvdx — fy*| 8, u [lgon - 110 | g
Ipl=m w 0 0
Ry

From (7.3), (7.4), (7.6) and (7.7) it follows.

Re X [a, (@4h)Dy(d,w)- Drvde—fy||6,ully. | 2llgn<< €, [ vllgm-
Ipl=m 0 0 0

R’ll
+
Now, replacing v by J,% and noticing that Re ap, > « > 0 (assumption ii
of section 1) we get from (7.9) the inequality :

(7.9) (@ — By |6, u “fpg» < C/|d,u ”mzb
and finally
(7.10) [| 0nwl|gm < C, .

0

By a standard argument we conclude that D;ue D™ (RY), | —i<<mn—1.

2. Next we have to prove D, u¢ D" (X%). Write

(7.11) Au= 3  Di(ap (@) D?u) =

lpl=lql=m

= 1)1{"( > ay(@)Dr u) + Dyt ( =z z—n (g, () ])"u)) + ..

[pl=m |pl=m =1

Py 3 Dilay,, vy Drou),
T i
Ip e Lq] =m
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where D? denotes a tangential derivative of order |q|. Let

(7.12) g= 2 ap, () D?u (here g, = (0, ..., 0, m)).

[p|=m

Since u € ®™ (RY), it follows that g€ L* (R’}). On the other hand, D;u€ ®™ (R%),
1<i<n—1, hence, D;g€ L’ (R%), 1 <<i<n — 1. Finally, since Au = f,
we get using (7.11):

n—1
(7.13) Dlg= f—D,':‘"( 3 3 Di(ay, (.r)DMt)) + .

|pl=m i=1

S 3 Di(ay,(x) D’u)

Ipl=m |q|=m

and it is easy to verify that all the terms in the right hand side of (7.13)
belong to H_("'_”(/\’f;_). Under these conditions, i. e.:

(7.14) g, Digy .., Dy_yg€ L*(R}) and Djpge H™ "V (RY)

We can conclude, using a result due to Lions ([6], lemma 11.2), that
geH' (RY).

Now, let us prove that, for all |p|=m, D*ue H'(R}). In fact, we
have, D we I*(R}), for all |p|=m, because u€®D" (R}). Also D;(D*u)=
= D' (Dju)e L’ (R}),when 1=<<j<<n—1. Thus we have to verify that
D, (D? wye L*(R7). 1t is trivial if D” contains at least a tangential deriva-
tive. We,then, have to prove that D, (D' u) belongs to L* (R%). Rewrite g as
follows :

n—}

(7.15) 9= Qun @) DV u+ 5 apon (@) DV Dju A ..
j=1

(here to simplify our notations we replaced ¢, =(0,...,0,m) by m). By as-
sumption Re a,,, (x) > 0, thus, we get: '

1 n _
(7.16) Diu= g — .271 pm (Z) DY Djw— g
j=

amm

1t is a matter of verification that all the terms of the expression between
brackets belong to L°(A%). Taking the derivative D, of both sides, we
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also get that the right hand side belongs to 2 (RY) (just use the fact that
g€ H'! and that tangential derivatives of order one of w belong to ™).
Thus D' we LP (R%).

Next, let us prove that, for all |p|=m —1, D?ue W" (&%), In
fact, let |p|=m — 1 and let v, = DPu. We have v, € L") because u € D™
On the other hand, any first order derivative IDv, is equal to a derivative
of order m of u that, we proved above, belongs to H ! (R%), hence to L‘I(”(R"_,_)
according to Sobolev’s imbedding theorem. By a recurrence argument, we
can prove that for all [p|=m —j (0<<j=<<m), DPue W" 9 (R}) what
proves, finally, that D;u€ ®™(X}) for j=1,..,n, q.e.d.

For any open set 2 C A" let Wk (£2) be the Sobolev space of functions
u € 17(82) with derivatives D? u, in the sense of distributions, belorging to
L1(2) for |p|< k. When ¢ =2, we denote Wm2(Q) by H™ ().

The result of theorem 7.1 suggests the following.

DEFINITION 7.1. Denote by ®*™(RY) (k integer = 0) the space of fumc-
tions we W I (R) such that ®rue W (RY) for 0<|p|=j<m,
equipped with the norm :

m
{(7.17) ” U Elgk‘m(m_;_) =]£0 ” Dry ”W/I'q(m—])(Rl) .

n )

Clearly D“™ (/") is a Banach space. It is easy to verify that u et (R
if and only if D* we®™ (R}), 0<<|p|<_k. Then we can re-phrase the
conclusion of theorem 7.1, by saying that w€ D' "‘(/\”j_)nmf,"(l\”,;).

h )
We also point out that if we take f in .flo D" (RY) then the solu-
]=

tion % of (2.6) belongs to }D"""(/\"j_)ﬂm{)’”(/\’ﬁr). The proof uses an in-
duction argument and the same tecnique as those used in theorem 7.1.

We shall state, now, a trace theorem for elements of ®“™(A’}) that we
shall use in next section.

THEOREM 7.2. There is a continuous linear map

k m+4-k—(j -—L

I=0

m—1
(T18)  y = (g, - s Ympr—1) : DKL) —> 1{
J=

m4-k—1 b—i ! _
/7 B SNV

j=m
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such that :

&l p

oxl
n

i) for each @€ CZ (K, yjp = @, 0 0<jm-+k—1;

ii) y s onto;
iii) 7 (0) = D™ (R).
Here, D¢™ (R%) denotes the closure in By™(A%) of € (A%). On

k L L
lf_\o ;o AR ("1 we consider the sup topology and 72" Y s
the Sobolev space that in our situation can be easily defined by means of
Fourier transform. Clearly theorem 7.2 generalizes theorem 5.1. Its proof

goes in the same way as in theorem 5.1. First, we have to prove that

0> (R%) is dense in ®*™(A’}) (see thm. 3.1) and that there is a continuous
linear map P:®“™ (&%) — ®D"™ (A") such that the restriction of Pu in A%}

is w, for all ®*™(K"). Next, for any g€~ (K}) we represent y;p (restric-

Jj
tion of the normal derivative 88% to I\’"-1> by means of (5.2). Going through

n

a similar estimation as in thm. 5.1 we prove that (7.18) is continuous on

elements of (°(A"}) and then, it can be extended continuously to D"™(A%}).
The proofs that y is onto and that its kernel is By (£7}) are similar to
the ones given in theorem 5.1 and, for this reason, are left to the reader.

8. Transposition.

We assume that the sesquilinear form (2.4) verifies the same assump-
tions as in the previous section. Let a®(u,v)=a(v,u) and let A* be the
formal adjoint of A. The following relation

m—1 —_
(8.1) (u, A* v) — (Au,v) = Eo Som—jr %y pj v dr’ 4
= rn—1
m—1

+ 3 f i - Tomj1 0 da’,
j=0

R"*’l

where v and v are elements of Cf"(R:,), Sym—j—1 and Top_;_; are differen-
tial operators of order 2m — j — 1 in A", is easily obtained by integration
by parts ([6], II, pg. 144).

If we suppose that a® (u,v) verifies condition (2.5) then all the results
in the previous sections hold for A* In particular, if follows from our



354 Barros Neto : Inhomogeneous boundary

remarks after definition 7.1 that
n .
(8.2) A* is an isomorphism from B®™m (K%)N Dy (RY) mto,-go D7 (RY).

By transposing this result and applying it to a particular case, we shall
be able to get another isomorphism theorem concerning the Dirichlet pro-

j 1
blem. Namely, each element (f,(g;)€ D™ (K% )>< H H 72 (K™ define a

continuous antilinear functional L on ®™™ (&%) ﬂ Eo (R}) by setting
. m -
(8.3) Lw)y=(f,v)+ .20 (9jy Tom—j—1 )
J=

where the first pairing is between Eo (&%) and E"’" (R+), while the pairing
in the summatlon is betweeu H 2 (P""l) and H ' 2 (R"_l) As one can see,
D"(RY) - IT ) 3 (R™") can be identified to a subspace X of the dual
of E"”"nEo . By (8.2), there is a unique u belonging to Z, dual of
Qo B~ (R?}), such that

_ — m—1 —
(8.4) (u,A'v)=(f,v)+ Z(g;,Tm_,--lv>,
j=0

for all v ®™™ N B, . (The pairing in the left hand side of (8.4) is between
‘ﬂo P~ and its dual Z). In particular, if v = @€ C.°(R}), it follows from
J=

(8.4) that Au = f in the sense of distributions.

DEFINITION 8.1. Denote by H the space of functions w€Z such that
Aue D (RY) equipped with the norm :

1

(8.5) lwll,=felf 4| 4w | ®

M R"’
+

It is a Banach space. Let, now, Y be the closure in I of subspace
formed by those elements w € Z that verify (8.4) when (f, (g;)) is arbitrarily
given in X. We are going to see that w€ Y if and only if Au€ D" (RY)

.1
and y;u€ 7 g (R™™), 0 <j<<m — 1. The first assertion follows from the
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definition of Y, As for the second, we need to determine the trace of ele-
ments of Y.

TEOREM 8.1. O (RT+) is dense in H.

ProoOF. Each continuous anti-linear functional M on H can be represented
in the following way :

(8.6) M (w) = a,w) +<B, Aw)

m .
where « € .ﬂ D7 (£Y) and S €Dy (RY). On the other hand, an element £ € Z

dual of n ™4, can be represented (not necessarily in a unique way) as a
=0

sum &= Z &, where £ € ®{(R%) (here D) (R}) = L’ (&%). Hence, the pai-

ring between and is given by :
(8.7) (o, &Y= 3 (o, &)
j=0

and (8.7) does not depend on the particular representation of & as a sum

»r

of elements £ € B (2), 0 <j < m. It follows that, if £ = @€ C(K%) then
(8.7) reduces to

(8.8) (a,?a>=fa-$dx.

3
Ry

Suppose, now, that M (p) = 0 for all p € €, (K"}). Then we have :

(3.9) M(g)= f ap dz +(f, Ap) =0, for all p € € (R%).

n
By

Let o (resp. 3') be equal to « (resp. f) in R} and equal to 0 in RZ. We
have, a € L% (k%) and € D" (R"). It follows from (8.9) that

(8.10) (% D)1z +<B, A®Y=0, for all Be (K™ -
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We get

(8.11) A*f = — ;, in the sense of distributions.

Since §€ ™ (A" then A*FeD—m k), thus'x € L2 (R") N D—m (R"). We can
prove (lemma 8.1, below) that under our assumptions on A* and a'?, the
solution 'f\f of (8.11) belongs to B®™ "(A="). Consequently, f must belong to

m, mn

o " (R%). Thus we have:
(8.12) (B, Aw) = (A*B,w), for all we II.
Replacing this relation in (8.6) we get:

(8.13) M () = Cay w) + (B, Aw) = (a + A*B,w), w € H.

Using (8.11), it follows that M (1) = 0 for all w€ H; consequently C,° (A7)
is dense in H.
To complete the proot of theorem 8.1 we need to prove the

LeEMMA 8.1. Let a(u,v) be the sesquilinear form (1.7). Assume that the
coefficients are smooth and that conditions i) ii) and iii) hold. Let f be an
element of L*(R") N D—™ (R"). Then the unique element u € ™ (R"), solution
of Au=f, belongs to ™ ™ (R".

PrOOF. Consider iterated difference-quotients of order m, 87 v, where
P =(pPyy..,Pa) i8 a n-tuple of positive integers such that p =m and h =
=gy hp gy by, 41y ey hp) is a m-tuple of positive real numbers.
The difference quotient 67 v is easily defined by induction starting with
difference-quotient of order 1 (see section 7). If v€ ™ (A"), it follows from
our assumptions that:

(8.14) [<fy 0800 | = [CORF, 00| < €| 0l gmmy s

where C depends on f but not on v. With the same technique used in part
1 of the proof of theorem 7.1 we can conclude that D? u € ®™(R") for all
|p|=m. Denote by v, the derivative DPu. Since u € ®™(K"), v, belongs
to L2 (K™). Also, since v, € ®™(A™"), all derivatives of order m of v,, belong
to I2(R"). We conclude, by Fourier transform, that v,€ H™ (K" for all
|p|=m.

From this we shall derive that w € ®™ ™ (A™). If fact, according to our
remark just after definition 7.1, we have to prove that v, = D*u € D™ (R")
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for all 0 < |a|<Cm. It is trivial for | a|= 0. Also, it is trivial for |a|=m
because H™ (R") < D™ (A"). Let us prove that v, € D™ (&™) for all 0 < |a| << m.
By definition of ¥®™(XA") it is enough to prove that D?Pv,= D?D°uc¢
€ Latm—IrD(R" for all 0 < p << m.

First, suppose that m > |p|>m — |«|. Then,

DPy, = D? Deu € H™— 2| (Rn)

because |p |+ |«|=m + r with »>0 and »< p. But we know by Sobo-
lev’s imbedding theorem that H™—I?|(R") ¢ Lam—I[2)(R"),

Next, suppose that |p|<<m —|a|. We claim that it is enough to
verify that:

(8.15) Dry, e Wmam—Ipl=la)(R% for all |p|<m—|al.

In fact, we have Wm'Q(m—lpl—lﬂli(Rn)c Wlal.gm—Ipl=lal) (") and
the last space is contained in Ls(—I#zl)(R"), again, by Sobolev’s theorem,
n

becaus¢ ——m8 ———————
gm —p —|al)

> || and

1 ] 1 m—|p]| 1

gm—|p|—]al) n 2 n gm—|p|)

(see (1.4)). To prove (8.15) we proceed by induction on p. First let us verify
that if |p|=m — |a | — 1, then

DPv,€ Wmal) (Rm),

We have
Dry, = D? (D*u)€ L) (R™), because u€B™(R") and

|pl+|a|]=m—1. Let y be a ntuple of positive integers such that
0<|y|<m. It is easy to verify that

Dr(D?v,) € H! (R") < L0 (R"), then (8.15) holds for
|p|=m —]|a|—1. Suppose, now, that (8.14) is true for all p such that
|p|=m—|a|—k and let us prove that it is true for [p|=m —|a|—

— (k +1). We have for such p

D?o, = D? (D=w) € L0 (R, because u€ D™ (R and

6 Annal della Scuola Norm. Sup. - Pisa.
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|p|4+|a]=m —(k+1). Let 0 <|y|<m and write
Dr(D?v,) = D¥ (DD?v,), where 0<|y" |<m—1.

Now, DD?v, is a derivative of order m —|«|—k of v,, hence, by our
induction hypothesis, belongs to W™ ¥ (R"), It follows, then, that
Dy (D?v,) = DY (DD?v,) must belong to W1k (R"), space which is con-
tained in Le*+D (R"), by Sobolev’s theorem. Thus D?v, € W ™ ¢+ (R for
all |[p|=m—|a|—(*+41), q.e.d.

THEOREM 8.2. There is8 a continuous linear map " = (ygy ey Ym—1):
Y —)mﬁlH —j—%(R"—l) such that, for all

j=0

o, o RN
(P€ Cc (R—I—)? Yip =

]
oxt,

(@,0), 0<j<m—1.

m—1 o1
PROOF. Let b= (kg , ..., hy_y) € IT H** 3 (R"7). There is we H*™ (R})
j=0
such that

YoW=eo. =P W=0, Tpwo="Np_1,uy Tom_gw=h

(6], II, pg. 145, lemma 1.1). Clearly w e ®™ ™ (A%) N By (X7}) by Sobolev’s
imbedding theorem. Let # be an element of Y and consider the form :

(8.16) Ly (u) = Cuy A*w Y —  Au, w)

where the first pairing is between Z and n (since w € H?*™ it is easy
j=0
to see that A*we n E"f) and the second pairing is between By and D™,
j=0
One can verify that L, (u) does not depend on the choice of w but
only on h = (ho,... y hw—;). Furthermore we have:

(8.17) | L (@) | < [[w |z - [| A% [|yp—5 + || A2 || p—m - | 20 [l <
j 0

=C. { ” u ”1 : “ w ”m"h ""n‘a)'(‘;” + “ Au “m—m : ” w ”m’"ﬂ"nmﬁ’}

L1
< C - (lwlly 4 I Aw llgmm) - 10 lgom < €y - [ ]l 7%
j
Thus, we can write :
—_ m—1 —_—
(8.18) Cuy A*10) — (A, w0) = 2 Caoj(w), hy)

=0
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-1
with o;(u) € H 2 (R"1). Also we can verify that ¢; (0<j<m —1) is
continuous on Y.
Finally, if we take hje C.°(R"™"), 0 <j< m —1, it is known ([6], II)
that w can be taken in C,” (A7). Also, if w is in C°(XRY}), then taking in
account (8.1) the right hand side of (8.18) can be written as

m—1 —
2 /7, (’M) . hj dx’.

R"—1

It follows that for all € 0;’°(;\’—"T ) we have o; (u) = y; () because CZ (R
+ Jj J

.1
is dense in each H = ® (R"=1). Thus oj(u)=y;j(u) for all w€Y because

o7 (I?f—',_) is dense in Y. The proof is completed.
Summing up all the previous results, we can state the

m—1 .1 .
THEOREM 8.3, (4,7): Y — D™ (R})>< IT H 7" 2(R"™") is an isomor-
j=0

phism onto.

9. Interpolation.

In this section we apply Lions results on interpolation theory [5] to
the two isomorphism theorems 6.1 and 8.3 and get, this way, another iso-
morphism theorems concerning the inhomogeneous Dirichlet problem. Next,
we interpret the interpolated of the boundary value spaces; the theorem
we prove contains also a result of Stein and Weiss about interpolation
with change of measure.

We recall some definitions and properties of [5]. Let A and B be two
Banach spaces contained in a topological vector space E. Let p and ¢ be
such that 1 <p, ¢ < + co and suppose that o and f are real numbers
such that 60 = 110 + « and 6, = % + g lie in the interval (0,1). Define
W(p,a, 4; q,B, B) as the space of vector valued functions wu (t) verifying
the properties :

(9.1) tu (t) € L? (0, 005 A)
(9.2) thu’ (t)€ L1 (0, oo ; B)

where w«’(t) denotes the derivative of wu(t) in the sense of distributions.
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Equipped with the norm

oo 1 oo 1
¢y = max g( / o)’ ( [ | 0 dt)“§,
0 0

W is a Banach space. Lions has shown ([5]) that one can define the trace
u(0) of ue W. The space of traces T (p,a, A; g, 8, B) equipped with the
norm

(9.4) |]f||T=iqf(||u|]w:u€Wand u(0)=f}
is a Banach space. It verifies the interpolation property, namely, if A,
and B, are two other Banach space contained in a topological vector space

E, and if @ is a continuous linear map from A into A, and a continuous
linear map from B into B, such that

| Pa|a,<C-||a]la for all a€A
@bl < Cy-||bllg for all be B,

then @ is a continuous linear map from T (p,a, A; q,f, B) into
- 1
T(p,a, A, ; ¢ 8, B,) and its norm is < ¢,;'™" . (7, where y= ——————,
9%y Ay H Y P = V1 2 m—{-—B—O‘
‘We apply these results to theorems 6.1 and 8.3, taking p =q =2 and
o = . After an obvious change of notation we can state

THEOREM 9.1. (4, %) is an isomorpkism from T(2,a; D™ (K7Y), Y) onto
m—1 .1 .1
B_p (RY)>< [T T(2,0; D" 772 ("), H7™3(R").
j=0
The following theorem give us a characterization of the boundary value

spaces which appear in theorem 9.1.

1 1
THEOREM 9.2. The space T(2,a; ® = 2 (R™™, H 2 (&) can be

identified to the completion of C2 (R™Yy with respect to the norm.
1 1
) 2 (m—j— ) (1—9) —2(Jit+ =)o, ~
(9.4) /I ¢ | ( ‘) a+1&D ( 1) | (&%) [ ag&’

1
where & = (&, .05 &0—) and 0 = — 4+ a.

2
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Proor. Using Fourier transform in R"—!, we can see that the space
1 1
W2 e: " =3 (R1, H 3 (R"1)) coincides with the space of functions

AN

% (¢, £’) such that

F L1y
(9.5) * f f e g [ (ni=2) |w(t, &) [2 dt d&’ < + oo
o p"1
and
- 1 ™ |2
(9'6) f/t21(1+lfil)-2(j+7) a_u’_(gte_) dtd6/<+00,

0 g1
i. e.,, to the space W (2,a; L? (#m—j_ % y L2y (it _;_ ))) where », denotes the

measure (1 4 | &’ |)2 d&’. Theorem 9.2 will follows from the more general
result '

THEOREM 9.3. Let X be a locally compact topological space, u a Radon
measure on X, g,(x) and g, (x) two functions >0, locally integrable with re-
spect to p and such that the set where g, g, is zero, has measure zero. Suppose

that 1 < p, ¢ < + oo, let9=—11)—+a=—q1—+ﬁ and let r be defined by
1 1—0, 0

—=——+4 —. Then:
r p + q
(9.7) T(pyoy L? (9o p0); 4, By L2 (g, p)) = L" (),
where
a—er or

r=2g," -9{ p
Furthermore,
(9.8) “f”Lr('y) =C-[fl;

where the constant ¢ depends only on p, a, q and f.
The proof of theorem 9.3 uses the following

LEMMA 9.1 ([5]). Let v be a function defined a.e. in (0, 00) and such that

(9.9)  to(t)e LP (0, 00), tv’ ()€ L1 (0, c0), —;7 + o= -2— +B=0¢(0, 1.
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Then

(9.10) [2©0)| < 0|07 - ][ ¥ |I7.

where ¢ depends only on p,a, q and B.

PROOF OF THEOREM 9.3. If fe€T, there exists u€ W (p, o, L?(gypu);
¢, B, L2 (g, p)) such that u (x, 0) = f. For x fixed in X, the function {— u(x,?)
verifies (9.9). Then we have:

) 1—6 oo 0
1-6 e N\
(9.11) |u(w,0)|§C-(/t?alu(x,t)Pdt)p ( a8 a—u(@’—t) dt)l,
0 0
a. e. in 2. From (9.11) we derive
1
(1—6)r or r
(9.12) ([iu(w, 0)["(go @) * (g, ()7 dp (~'v)) <
X
> 1=6r o or 1
< C-; [(ftPﬂu (2, 1) |2 g, (@) dt) ! .(ftqﬂ ‘9—“—(2”; 9 lq!h (@) dt)qulu(J:)$ .
X 0 0

Using Holder’s inequality we can estimate the right hand side of (9.12) by

oo (1—-06)r 1

< [/(]tl’“ | w (2, t)|? g, (%) dt) " dp(.z’)}y—r-
- X

0

or

#) | 77 7
. [/([t’lﬂ ﬁ'_‘_(_"’t’_)_ g, (@) dt) du (x)lr
b I
1 1 —
where —7~—l— 7= 1. Now, choose y such that 1—0r _ 1.
P 1 9'9(. 11— 9)
We have = — % _ and - = — [using — = 2. we

YT A—er MY T g =17

then get :
1

(1—6)r or r
(9.13) (/I w (@, 0)[" (g, (x) 7 (g, (x)7 dp (1')> <.

X
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oo 1-6 o
C~(]]tl“‘]u(w,t)]?yo(w)d,udt>p -</]t‘lﬂ
X 0 X 0

(1—6y  or
1t follows that f€ L"(v), where »=g¢,? -g¢ u and

du (x, t)[? 7
_(8—;—) 9, (@) du dt)

]
du (., t)|* dt)q
Li(gi)

for each u€ W such that u (x, 9) =f. According to lemma 2.1 of Lions [5]
we have :

) 1-6
014) |[flly,<0- ( / t2 || w () 1) |20 dt) (_/tqﬁ
° 0

™ 1-6
. ?
(9.15) I7ll, = int (ft” % Gy O |22, dt)
u(z, 0)=f
o 8
.(ftw’ duly DI dt)q
) 0 |lzagp
Hence (9.14) and (9.16) yield
(9.16) “f”[,r(,) =c: ”f”T .

Conversely, suppose f€.L"(v), assume from now on that the constant
n (9.10) is the best possible. Given &> 0, let (v,t) be a function verifying
the conditions of lemma 9.1 and such that

(9.17) [v(0) |[=@—atv|) ]2,

Furthermore, we can assume that » (0) = 1. Define (a. e. in X):

r

90 (“’))" )
9.18 x f(x)y.v ‘(—— t
(9.18) (@ t)=f()- (If D @
where 1 is a real number to be fixed latter. Clearly, u (x,0)=f(x) a. e.

We want to prove that we W (p, &, L? (g9, 1) ; 4, B, L2 (g, 1)) what amounts
to prove that

(9.19) t*u (., t)€ LP(0,00; LP (g, u),
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and
(9.20) # é’f—fﬁi €L1(0, 00 5 IA(g, ).

Consider the integral
(9.21) I, =fft1’“]u(w, ) |2 g, () du dt .
0 x

Taking in account (9.18) we can see that

0 0
(92.2) I = |t () H},’p-flf(w)l"‘lp"(go (@) ¢ gy (@) dp.
X

Now, if we choose such that p — 1pf =r, then the integral on the right

—0
hand side of (9.22) is finite because f € L* () (observe that 1 — ré = 1 7 )
The real number 1 being fixed, consider the integral
q

(9.23) 12=fft,,ﬂ %f;’ t)\ 9y @) du dt .

0 x
A simple computation shows that

s dti—o) (1—8)r =6

(9.24) L =|t" v, -/If(w) [T ge @) P (g @) P dp

X

1—

Since 1 — (—% = r—;—, to prove that I, is finite we ouly have to check
that ¢ (4 4-1)— 20 =r. This follows, easily, from our relations %:1—;9 -{——Z

and p — ip@ = r. Thus, f€ T (p, a, L? (g, 1) ; g, B, L7 (9, p).
Finally, let us prove (9.8). From (9.15) it follows using (9.22) and
(9.24) :
1-e L4 p
I lle<Ti? - L2 =07, 1 |70 - 1 ]I, -

From (9.17) and v(0)=1 we get:

(9.25) fllp<(c—e)! “f”LT(y] ’
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hence, making ¢ — 0:
(9.26) [Flle << € Ml -

Relation (9.8) follows from (9.16) and (9.26), q.e.d.

REMARKS. 1). Theorem. 9.3 contains proposition 4.2 of [5].
2). In [11] Stein and Weiss proved, using complex iuterpo-
lation that L”(») is an interpolation space between L?(g,u) and L7(g, u).
This result is contained in theorem 9.3 where, in addition, we proved that
L" (v) is a trace space in the sense of Lions ([5]).

University of Montreal.
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