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INTEGRAL REPRESENTATION AND ISOMORPHISM
PROPERTIES OF SOME CLASSES OF FUNCTIONS

S. M. NIKOLSKY, (Moscow), J. L. LioNns, (Paris), L. I. LIZORKIN, (Moscow)

Introduction.

It appeared from conversations the three authors had in Moscow, May
1963, that each of them had a way of defining « Sobolev spaces of order 0 »
(see precise definitions in the text); but it was not completely obvious
that the definitions were equivalent. In this paper we present the three
main ways of defining these spaces, together with their main properties
and we prove also that the various definitions of the Banach spaces intro-
duced coincide (up to an equivalence of the norm).

Chapter T (S. M. Nikolsky) uses the theory of approximation and con-
structive theory of functions, Chapter II (J. L. Lions) uses the theory of
interpolation of Banach spaces and Chapter III (L. I. Lizorkin) uses trace
spaces with fractionnal derivatives.

For various values of the parameters, dome of the spaces introduced
here were already considered by a number of mathematicians; we refer to
the bibliography. We note also that this paper has direct connections with
previous works of the authors and of Besov (see for instance the references

(1, (2], [3), (4]

Preliminaries

Let x=(2, yoeey @) y Yy = (Y, yoeey Yn) be points of the n-dimensional Euclidean
space B |a| = ;/x‘f + ...+ 2. A generalized function f(x) over the space
8 (of infinitely differentiable functions, that decrease with their derivatives
faster then any power of |x| for |x|—> co) will be called 8’-distribution
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and we shall write f€8’. Let us consider for r > 0 the function

(1) q, (z) = K, ([ x l )

n+r—2 =« i
2 2 [ (%) 2

where K, (t) is the Mecdonald’s function of order ».
The following convolution

(@) G+ f,

where f€ 8/, makes sense ([9], II, p. 104).
The kernel G, decreases exponentially at infinity and therefore the
convolution (2) may be written in the form

3) (@ e f) (@) = j G (@ —9) /W) dy
Rn

for functions f€ L, (R"), 1 <<p < oco. The convolution G, «f will be caledl
the Bessel integral of order r of f and we shall write

(4) Grr f=frn=91

It is known, that the operation J, transforms the space 8’ onto itself in a
one-to-one way and bicontinuously. Hence every 8’ distribution f can be
represented in the form :

f=9¢, @e¥§.
It is natural to call ¢ a Bessel derivative of order r of f and write
() SO =G f=9.f=¢.

If we put J,f=fo=s 9, the operation J, becomes well defined for all
real » and f€8’. It posseses the group property

(6) gn (972) = gf, (grl) = 9r1+12 .
We recall also, that for negative » the operation J, can be written as a

convolution of f with a distribution of 8’ (see [9]), in particular, for » =
= — 2k, K integer, we have

TS =(— A+ 1p
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where ]7 is the Laplace operator. Denoting by ? the Fourier transform of f:

pp— f 7 (@) e d

(27!)1:/2
R"

we have
I~
2

GF =@+ |47

CHAPTER I
THE METIIOD OF APPROXIMATION THEORY

We want to show here that the methods used in [la], [4b] give the
possibility of defining the spaces B, , or H, also for r = 0, as Banach space,
the elements of which are 8’ distributions. The Bessel differentiation of
order r transforms Bp,(H,) in a part of S, which can be identified with
By, o (H"), . This transformation

f=%¢

is one-to-one. We put by definition ¢ € By ,(H,) for every f€ By ,(H,) and
we set
lellp =15l (lelgo=17lgn-
pq »q r V4

This definition will be correct, if it turns out that the spaces defined
in this way do not depend on 7, i. e that the norms || I, @[, and
?.q
| Jr @ ||z, are equivalent. In virtue of the group property (see (6) of the
»,1
Introduction) of the operator 7, it is sufficient for this, to show the iso-
morphism of spaces B; , and Bj, under the operation I, ,,.

This is done in this chapter by means of approximation theory.

I. Classes H, .

Let B* be n dimensional real space of points & = (x, , ..., #,). We shall
write @ = (¥j, &j)y ®j = (L1, ey &1,y Tjg1y . 5 Zx). Then it is possible to write
J(x)=f(xj,x;) for a function f(x) defined on R". We put:

L
4
(S g == | [ 1@ 12, (1=p< o)

yr

We denote by

dia) S @) =1 (@ + by 2) — f (25, )
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the first difference of the function f in point x in the direction x; with the
step b and by

Ao f (@) = A2 f (@) (k=2,3,..)

the difference of order k.
Let >0 and r=r -+ r’, where » is an integer and 0 <’ <1;
1<p<oco. Let also k=2 be an integer. By definition [4a].

fe€H, (R)=H,, if

1) feLy(R) =Ly,
2) there are derivatives in Sobolev’s sense f,‘j"’ in L,(j=1,..,n) sa
tisfying the inequalities

(3) 4o Lol oM 0], (j=1,.,n)

Here M does not depend on h.
We also write

) I!fIIHpr = [lfll, + M7

where Mf' denotes the least constant M in inequalities (3) for a given funec-
tion f. The definition of classes H; depends on k= 2 unessentially. It is
known that there are constants C,, C, depending only on integers &,
ky, = 2, for which

HT
p V4

6l < byl < Gl
Here the symbol ||-||®) shows that the norm (4) is defined for a given k.
We shall use the definition of the classes H, only for k = 2 or k = 4.
A function g, (z) =g, (2, 5 ... , 2,) of the complex variables z = (2, , ..., 2,)
is said to be of exponential type of degree » >0 (in z,,..,z,) if it satisfies
the following conditions :
1) g, (2) is an entire function of z,,..,2,;
2) For every & > 0 there exists a constant 4, such that

n
L9 (&) | < At 2z |
1

We shall use the following approximation theorem (sce [18]) where
H = 1" (R,);
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TaeoreM 1. If fe H,, then
) S@ =3 Q@) ek,

where the series converges in L, and where the (s are entire functions of
exponential fype of degrees 2* (s =0, 1, 2,...) satisfying the inequalities

ClSlgr

—2(5=0,1,2,..)

Q< —;

where the constant C docs mot depend on f. Conversely, if the function f is
expanded in serics (5) where the Q, are functions of exponential type of de-
grees 2%, awhich satisfy the inequalities

M

then f€ H, and
NS llgr =B,
?

the constant ¢ not depending on M .
As usual we call the quantity

(7) E,(flp=inf||f— g |,

gr
the best approximation of the function f by functions of exponential type
of given degree ».

We start from the class H, . Every function f of this class defines
the unique function

(%) e=9a(f)

which is generally speaking a distribution; we denote by H, the set of
functions ¢ corresponding by (3) to all f¢ H,';}I,? can be considered as a
Banach space when provided with the norm
®) o lgo=19,@ |,
» P

We prove

THEOREM 2. The mapping
{10) p—>f=%¢
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is one to one from H, onto H, . There are constants ¢, and ¢y, not depen-
ding on f (or @) such that

) 1l < 112 s < 0 17 -

The proof of this theorem is essentially based on the following lemma.

LEMMA I. Let o> 0 and r 4 a > 0. Then the operation (10) is one to
one from HZ onto HIY? and

(12) e llf I[H§r+a) <lellygr<e,| S lurta>
e e

p=f=9_.(f),

where ¢, and c, depend only on r,a, .
In the following we shall write << instead << ¢, where ¢ is a constant
that may depend on r,«, o, but must not depend on the considered func-

tions f, ¢, ...

Theorem I follows from lemma I directly. Indeed, if f€ Hy , then we
have by (12)
1y << 1772 gy <<l iy »

which implies (II), if we take into account the following relations

e

g =1 go=1olgo-
P » P
From theorem 1 we obtain the:

COROLLARY 1.
The mapping :
—=>Irp=f (ry,r,=0)

is an isomorphism from H} onto H' -
To prove Lemma T it is sufficient to prove the following two particular
cases of it.

LEMMA 2. If ry o > 0 and @€ H,", then
S =o€ H;"'" and

(13)
IIf”[["'!'a =c ” @ ”}10 ’
p P

where ¢ does not depend on ¢.
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LEMMA 3. If v, « > 0 and f€ Hyt® then

p=r"¢H" and
(14)
@ llgr e/ llur+tas
» »

where ¢ does not depend on f.
Note that the integral

2n

27
f(x)=/K,(x—u)<p(u)du (ftp(u)du=0),
0 0

where K, (u) is the Weyl kernel (see [11], [9], [8], corresponds to our opera-

tion I, ¢ in the periodic case. Many cases of Lemmas 1 and 2 where

proved by Hardy and Littlewood [7], A. Zygmund [10] and Y. Ogievetsky [5].
It is possible to prove that the kernel G, (u) satisfies the inequality

e—luvl

88
SCW,

ﬁ? G, (u)

(15) (8=0,1,2,..)

where the constant ¢ depends only on r, s. Let us begin with the following
auxiliary lemma

LEMMA 4. For 0 <r—s<1

s 9 G, .
(16) gEﬂdfm‘ ’—;9/“7(—1‘—) dv<<c|h|—s G=1,u,n;8=0,1,..)
J

¢ depending only on r,s.

PROOF. We make the proof for j=1, for the other values of j it is
analogous. It is possible to take h > 0, without loss of generality. Consider
the sets

E{'l . CR, (k=0,1;k=1,..,n)
ey i

of points u = (u,, ..., u,), where
Ogu,,<h if ik=0

h<<w < oo it =1,
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Let
) I= 9‘ + gz
ot G,
9= AL; au,(u) du,
lu <3k
92 — Alzoz. o* G, (v) d
jua|>30 !

Putting u = (%, '), ¥’ = (4, , ..., u,) € R’, we shall have

g, <<fdu,f| cFl:'_'cftu +2fdu,/...du'+
+[du,f... dw’ <<fdu,fdu2 flz]"l:'l” -

> g
o i5=0.1 _/ [t It.
0.0 ee iy

Each of the integrals, entering in the last sum is after a suitable change
of variables the integral over a set of the kind

5k
Eo.....o. 1.1 (m=>1).

Let n — m > 0. By introducing the polar coordinates for the variables
%,y eeetlye ADd Upnyg ... Uy S€parately we obtain (putting o= ii'l u} 0= 2 u)’.)

m+41
5Vm & o0
el ) e—let+e12
u__f m—l de/ —m—-1 ______ 0000000 +".r d@'_<—
nts—r
Iul @+e?
s5fmk o , 1
—e
éfde f—:}:: de’ << kfe""“zde’-l-
0 51.0 5k

+ hfe'r—:—z e do’ << h (k" *1 4 1) << h*™—* 4 h.
1
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And if n — m = 0, then

sYhh
e—lul —Vo'te®
_— = fo*"! ——————— dp <<
I u In+r—r ('/0 + 912)..+.—
&
sVhk
<< [ o ldo << h™—*.
0
Therefore
(18) I, <<h™—* 4 h.

Now we proceed to estimate I,. We have

8 G, ()

%= ous

lwm >3k

A:,, du =

dtdz | du <<

h h
_ f f 8+ G, (u, 4 t 4 1, w)

3'+2 "l

fm|>3k 00

2 e— Vit v
<<h?® | du, [TTE duw’ -}
(g + 2024w’ [) 2

</ [ u + |“'
parye du <<
(Vuz + I o lz) 2

i | du, [a e 1l
<< Uy | dus ... | du, [u[te— =

—lu]
=""‘3f ———du.

135
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Each of the integrals of the last sum by means of renumbering of
%y, . U, i8 reduced to the integral

e—lul
I u rreti=r du

where

(m > 1).

=

” h
€y = E 1, ...,1, 0....,
\/

" n—m

We obtain, introducing polar coordinates for a, , ..,y and gy ..., Uy

m n

j=m+1

oo h]/m S
. , . e—Ve'te? ,
A = h Qm—l dQ 9’71-—111— —-—m dQ <<

h v @+ % ®
<< h3/ i Fe-edo << k¥ (h—0—3 f 1) << hP—2 |- 3,
h

And if m = n, then

o oo
e—e
A= h”f [ P do = h? j o et do << h% (AP =2 -} 1) << W1,
A h
Therefore
(19) Ty W= 4 k3,

If r —s<C1, then for [h|<C1 from (17) (18) and (19) it follows I << b=+,
On the other hand if |h| =1, then we have, obviously

9g4’f§—,a,(u>

Thus lemma 4 is proved.

1
du<</c"“|| W e —du<Zc h|
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PRrROOF of LEMMA 2.

(20) 1 (x) =fG, (x — u) @ (u) du

and @) eHP.
Then

@) Mo f0) = i f Ly Gy (5 — ) (1) A =
= A, / Az Gr () p (0 — ) At =
= f Az, G (8) Ay (@ — 1) A
Set r=r+r,a=ata,r+a=9p=0+ 0,

where 7, «, o are integers and 0 < 17, a’, o’ < 1.
Take now the partial derivatives of both sides of (21):

At S 8 /A,,,, G, (1) B, a"— ¢ (o —t)dt =
‘l/ha

2P0 0-—-a
oX8 6’.1 . :

=— /Ai;l G, (r — u)Ai,cl 0 ({)(u) du=
ox?

1

0—a
J T o
9 077° 2 0%
= [ Ay, —=—= G, (4) ey —= @ (x — u) du.
c”;vg"“ aa;ﬁ

Applying the generalized Minkovsky inequality and taking into account
that

r—le—a)=0+a—e<rta—eg=e¢g—e=¢ =<1
r——a<1
we obtain by lemma 4 (where one must take s =g—a_).

"| § (’,)n——u '
i;/ , Ai,, —— G (u) i =
»

» , 8‘10_“

a"‘qo(.l — )

Pl ——— Py
»L
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- <

<elle |yw b e =c|lp ||y b .
y 4 ) 4

It may be proved analogously, that

3 f

4 <e ) R .
Alnzj oxe Il ¢ "u;,)

\
b
»
From (15) and (20) it follows easily

I:f"pscll ‘P"P'

The last two inequalities imply fe Hy = H ;""’ and inequality (13) holds
true. Lemma 2 is proved. Lemma 3 will be proved in § 3.

LEMMA 5. If p€L,, ther f =g, € H, and
(22) LSl =<cliel,
where ¢ does not depcrd on .
PROOF. If r =1, 2,... is an integer, then, as it is known
SEW, and feW,— H, (') and
17y <, 1 By < 1)

The lemma is proved.
If r > 0 is not an integer, then as in the preceding considerations we

have

Ai,_f,f’ (x) = féﬁz, G (w) g (x — w) du.

() If E, E, are Banach spaces, EC E, and |z ||, <c|jzlly, where ¢ does not de-
pend on z, then we write ¥+ E, .
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Therefore by lemma 4

|| 4, 157 (@) Hpgfléﬁm G| le <t oll, =1"el,,

and the lemma is proved.

COROLLARY. Conditions of lemma 5 imply the eristence of a constant ¢
which does not depend on @ and v=1 such that

(23) B, (f) s"—”—f}”—” =1

Indeed, according to theorem I for the class H,, there exists a constant
¢, such that

171y

’,r

(24) E,(f),<c¢ y v =1.

Inequality (23) follows from (22), (24).

LEMMA 6. If @€ L,, then there is a constant c¢ which does not depend on
@ and v such that

(25) B(fh<

PROOF. Let ¢, be a function of exponential type of degree » such that

le—gll, =B (@)p=inf| f—g|5,.
g

v

It is known that such a function exists. Evidently g, € L, and

9» () =T, (9,) = f G (u) gy (& — u) du

is also a function of exponential type of degree », which belongs to L, .
On another hand we have

J (@) — g, (x) =[ U, (@ — u) (e (0) — ¢, (u)] du.
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Therefore, using (23), where one should substitute f— g,, ¢ — ¢, for f, ¢
respectively, we get

. ¢ 1
Ev(f)p=Ev(f—.(/v)p-g‘j?”‘l’-.(/v“p:017Ev('77)p

and (25) is proved.
Lemmas 5, 6 in the one dimensional periodic case are known in many
cases (see [4a] [3]).

2. Analogue of Bernstein inequality.

LEMMA 7 (1). Let a function vy, (t) be of period 2» in each of the varia-
bles t; and defined by the equality

vt =) =1L+ [t} @>0;0<t;<») (j=1,..,n)

Then its Fourier series

.

—kt
1) qu(t)=5:c,,e'v (o= (kyy o, kn); kj=0, =1, =2, ..)

converges absolutely and the following inequality

a
2

(2 zk‘lcUSz(l-!—nv?)

is true, where y does not depend on v > 0.

PROOF. It is possible to reduce the proof of this theorem to the known
absolute convergence theorems of trigonometric series (see [11], [6], [3]; [8)).
However, it can be done only with some restrictions on «. Therefore, we
prove this lemma by means of direct estimates of FFourier coefticients. For
the sake of simplicity of writing we consider the case n = 2. We have

mrw

1 v v = ’%1 v,u
ckm=(27)2ff'/"(}‘9 ue didp =

—_— -y

l' v v ]
=,2 ff‘l’(l» 1) cos —:—11 cos 1_1;7;”(“ du
00

() This lemma was proved by P. 1. Lisorkin.
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where b=4 for k0, m =0; b=2 for k=0, m =0 or k5=0, m 5= 0,
b=1 for k= m = 0. Integrating by parts we obtain the equalities

ke
4%

Ckm = 75 5 3
k2m?® ot

kn
€08 Mz €08 ka yy, .. (v, ¥) — COS mn / Vi, . (4, ) cOS - Adi

— €08 knfy;w (v, p) cOS nr mdu 4 fftp;,z,,- cos —ﬂ cos ”ﬁ'ﬁ d d,u]
Y
0 (U]

k=0, m30;

1 v '.V v kn
Cho = j33 [cos lcnfw (vy p) dpe —-]fw“(l, M) cos 5 i di d,u] , k0,
00

0

1
Com = [(OS m n[l“, Ly ¥) (H—ff Py (Ay 12) cos -

ITence by simple calculations we get

“an (I,u] ,m == 0.

| Cikm | < 2 ,mz (] V/u Yy v | +ﬁ wl’,u 'V) I di _L' ﬁ Yaur "', ,u I d,u +
+ / f | @iz (A ) | AR d/t) mg (1 4 2972,
00
Z 4

ew | <y (1 200 ko O fean | <o (14 2022,

1 v v
[ e | = o ff YA dd de << (1 4 2 %2
(VA1)

where the constant ¥ does not depend on » and may be calculated explici-
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tely. The convergence of the series 3 5 |cw, | and also the inequality
k m

a
2

22|CI¢MISZ(1+2')’2)
k m

follow from these estimates.
The considerations are analogous for arbitrary n and thus the lemma is

proved.

THEOREM 2. (Analogous of the Bernstein’s inequality).
There is a constant o depending on a such that for every entire function
of exponential type g, (r)€ L, of degree v, one has

(3) |9l ], < AQ+ 0| g, ||,
and ¢ is of exponential type of degree v (o > 0, v > 0).

PROOF. Consider first the case 1 < p < 2. Then from g, € L, it follows
g, € Ly (see [4,4], 1. 10) and by the Paley-Wiener theorem there is a function
p(®) € Ly (4,) where
4, ={—v<<a;< v
such that g;:. =pu, i.e.
gy () = 1 p(t)e=tdt.
v (2m)™2

AV
On another hand, according to (9) of the introduction

\ 5
(6) D@ =9 _,9,=14|tP)rrg =

=f,“ ) (1 4 | ¢ )2 =t at =/.Iu (), (t) et dt
4, 1,

where v, (t) is the periodic function with period 2» in { (j=1,...,) which
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coincides with (1 4 |¢|%%2 on 4,. Let (1) be its Fourier series. Then

9 (x) = f p(t) 3 cx € Grva)ey,
k
4

v

=2‘c,,/,u(t)ei(7k+z “at
k

A'll
and consequently

44

o2, = = el | 0, (Z e +a)

14

=
P
=Sl exlllgllo =20+ n2 | g, -

The last inequality is written on the ground of Lemma 7. Note that
u(t)=0 for t¢ 4,. HMence from the Paley-Wiener theorem and (4) it follows
that ¢(@ is an entire function of desree ». This proof is dnalogous to the
corresponding one given by P. Civin [6], who proved an inequality of type
(2) under some other conditions.

For p > 2 the function u(f) in inequality (4) is in general a distribu-
tion and the proof must be changed.

So let 2 < p << co. Instead of the classical Paley-Wienher theorem we
may use its generalization [9]. It says that the Fourier transform of the
entire function of degree << » with polynomial growth on K, , is a § di-
stribution with support in 4,. Instead of (5), we write

g'E*) =1+ |}.|2)“f‘2g~.,, and the support of g']\:, cd,.

[Towever we cannot substitute the multiplier (1 4 |4 [>y/2 by the periodical
continuation of (1 4 |42 from 4, since the corresponding multiplying
operator in N’ is not defined. To overcome this difficulty we proceed as fol-
lows. First we extend our function (1 4 |4 %2 from 4, to 4,,,,&> 0 and
then from 4,;, to R, with period 2 (» 4 ¢) so as we obtain a function
e (A) € ¢ (R,).

Then

kA
pe ()= che "+ .

It is possible to differentiate this series as many times as we please and
all the obtained series converge uniformly. Using the continuity of the

2 Awnalt della Sewole Norm Sup  Pisa
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multiplying operator [9], we write

inkA \
~ L nk
(6) g9 = (e et)g =iy, (x + - 8) .

Since the Fourier transform maps 8’ into 8’ continuously, it follows from
(6) that

K
@ 99 @ = 20, (s 4+ 7

where the equality is understood in the sense of S’. However using the

boundedness of g and the absolute convergence of the series X |ci|, we can
k

conclude that the series in (7) converges uniformly and equality (7) is the
usual one. It is possible to construct the u.(4) in such a way that

lim 3 || =2 |c |.

e+0 k | k | k I k |
It follows from equality (7) that

Fgll, < Ilg, ll, 21 el

and since ¢ is arbitrary, using lemma 5, we obtain the theorem.

3. Proof of Lemma 3.

Note that
fi€ L, fiPeL, (>0, k=1,2..)
=Tl =0 [/ — o, —0 (k — 00)
imply
f(“) = @.

Let f€ H+= Then (see the approximation theorem 1 § 1)

(1) =20,
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where @, are entire function of exponential type of degree 2° for which

o1 fll gzt
| Qs lle < —37a—

From (1) it follows that

(2) So=2 Q(,a) ’
where (see (3) § 2)

. . 1
3) @1, = 2@, l, < 0, 1/ llrte gar

and Q@ are functions of exponential type of degree 2¢. From (2) and (3)

in accordance with the same approximation theorem it follows that f (“)EH;
and inequality (14) § 1 of lemma 3 is proved.

4. Classes B, , .

Let 1<q<{oo,r>0,1<p<co. By definition a function f, defined
on B, , belongs to the class By o if the following norm

170y = 171+ {7 B, = @>1)

is finite (see O. V. DBesov) [1)).
We define the class B, , analogously to Hj as the set of distribution
@ for which
o1 =9,9=1/€By,.
We put

“ ¢ “B:,q = ” (pi ”B;Lq *

All what we said about classes H, is true also for classes By , . In
particular the analogous of theorem 1 and Lemma 1 are true where one
must change H in B. To get it, it is suflicient to prove Lemmas 2 and 3
(where we change II in B).

PROOF OF LEMMA 2. Let r, « >0 and ¢€ B, ,. Then, using (15)
for s = 0 we obtain
o lle <<l



S. M. NikoLsky, J. L. Lions, L. I. LizorkiN : Integral representation

146
and
Il B = ol + | 2 6 Bt | <<
(lemma 6)

” 1/6
<[l el }21 a"t s Bk () §

oo or 1/6
= ” ¥ “P + % > ak Egk (q))P} = ” ¥ ”B('” .
k=1 2,0

PROOF OF LEMMA 3. Let 7, > 0 and f€ B,'. Let g i («) be the entire
function of degree a¥, which gives the best approximation of f of order a*:

y=If—9xl,—0,  k—oo.

Then
1) S=0,+ ? (96 — 9x—1)

and
=/ = 9( + 2 94— Y-

in the sense of I, convergence.
The convergence of the last series in the I, norm will he seen below

We have
i

-(r) ( (r
2 (j ak au—l) ' )
n=1 »

Ek(?’)g’f <<

<< Z || (@ — Ju=1)" |]p << (inequality (3) of § 3)
u=~k

<< 2 arr ” I — J o ”P << Ek a (] [ —jwly + S = g0 ”1') <<
H=

1=k

2 a"E i (f );, .

<< 2" ar’ (E“;z (./ )l’ + Elt;t—l (f)p) = 2
n=

pn=k
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Therefore
1/6

<<

5 kba 1,0
o My, =l oll, + 12 ™ Balp),

6)1/6

<<liol,+{5 e 2o Bi),)

u=k

We take a number 6 (0 << 6 < «) and put —q— -+ % = 1 Then

(=]
S aqv'd- o quir+a=4) -Ea,u—-l (f )p
w=k

©o
> akOa [
1

19 lle, <<, +

<l o], . .
= =
1 post kba kd—ay9 2 wr+a—3a)0
<lioll, + Za™a Za By (), "<
p=
L ks a—08,0 1,0 e
<<|l e || + g 2. at% grrt B, _, (f)p <<
pes oo a* —0 6 e
<<llol+ | F @ a0 gl <
u=
110
; <<

<<liol,+{ 2 Bl ),
n=

a) 116
,lt(1'+ E o (f)p} <<

<<llel, z
n=

03 a* ‘r4a) 19
Bo. (f),| = “f”B;r:-Ie—a) .

—-l

<<‘|j[\

The last inequality follows from the relations

E(f =/l and Byt — It

(see [la]):
loll, <ll®ll« << (see lemma 1) <<

<< “f”ll rta << I f“l: r+a-
P p.q

1/6
<<

) g \0/0" oo a— 1/6
kGa( Z a,u(ﬁ a,O) 5 au(r-}- 8)6 -E;L—-l (f)p§ <<

147
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§ 5. Let ¢ ¢ R, be an open set, I" its boundary and g¢;(d > 0) the set
of points & with distance to I greater than 8. Let also » >> 0 and as before
r =14 1’, where r is integer and 0 <+’ < 1. By definition f€ H(g) if
J€ W, (9) and for every partial derivative Q" f of order r the following
inequality is fulfilled

M) D@+ —2D @) + D f@— Wl =M 1]
Ihp =3
i=1

where the constant M does not depend on h = (hy, .., h,).
We put
”f”H;(g) = ”f”Lp(y) + ]”f

where M; is the least constant M in (1).

It was given in § 1 another definition of H,(g), 9 = K, . DBoth defini-
tions are equivalent for ¢ = R, (see § 6).

Analogously f€ By, (g), if there is a finite norm

@ ¢ S D e — ) Tie. i
”f”B;'I(g)=”f"LP(”’—l_ZUU fle+y) f@ 4D f(x s)dx} dy§.

| x— |n+pa

g9 9

O. V. Besov showed that if the boundary I" of G satisties a Lipschitz condition,

then for every f€ B} ,(g), it can be constructed its continuation f€ B, , (R,)
such that

”f”B;‘q(Kn) = ”f“B;'ll(g)

where the constant ¢ does not depend on p, r. The corresponding continuation
theorem for the classical classes W7 (g) (r =1, 2, ...) was proved by Calderon
[3]. The continuation theorem for the classes W; H@ (g) for g with sufficiently
smooth boundary was proved in [4c¢]. Note that atter the mentioned Besov’s
result, it is possible to say that for r = 0,1, 2, ... and 0 < a < 1 the classes
W, H (g) and HI* (g) are equivalent. (!)

Let now f € B, ,(g) and fe By , (R,) be its continuation on E,. We can
write it as follows

f: G xo
where (pEB;,,I(Rn) is defined uniquely. Thus we have on g
J@) = G,* @ .

() Added in proof. See also a forthcoming paper by Adams, Aronszajn and K. T.
Smith.
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§. 6. Equivalence of the two definitions of I, (R,).
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Let as before r = 4 ' where r is an integer and 0 <{# << 1. Let
also f€ H,,'(R,,).-——-Hpr according to the definition given in § 1. Then by
approximation theorem I (see § I)

where (), are entire function of exponential type of degree 2°¢ and

fo)= 3 Q@

8==()

¢
” Q: ”PS_:aT

p=Df=3D Q=234

8=0 8=0

where @' f is a partial derivative of f of order r.

According to the generalized Bernstein inequality [4e]

Putting

we have

()

c 4

lgally < 29 o<

o = 9&r’

A @) =@+ h)— 20 @) + ¢ @—h),

N—1

Mg (x) = z A5 qs

+%’Aiqe=94+9z,

where the integer N satisfies inequalities

Evidently
2

IFurther

1
N

1
1

oo

1 ,

[ Tollp <4 2 lla:llp << g <<[R]?".
N+1

11
2
/'?L |y = | h |2ff
C
[ )

N2
0" 4s

oh?

2Vp

[ 4 (w4 v—1)h)dedv

b= (hy yoeyhy),
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2
where %7% is a second derivative of ¢, taken in the direction of the vector
v

h=(hy,.,hn)
Therefore

1 1
162 ¢!
| ot < [ |5
00

dudv<<|h|22% 20" = | b |? 20—
p

and

N—1
(3) 9, << 3 || i gl p << | R[22V << | B[
o -

From (1), (2), (3), it follows

14O < (11"
Moreover

4k 7 e < (R ”

CHAPTER 1I

SPACES By, ,(R") AS INTERPOLATION SPACES

1. Some known results on interpolation spaces.

1.1. Let A, pnd A, be two Banach spaces, contained in a vector topo-
logical space of, the injection A;— of being continuous. We denote [23]
by S(poy&gyAe;Pys&iy Ay £,>0, § <0, 1 <p,< oo, thg vector space
spanned in A, 4 4, (!) by

o0
(1.1) a=/u(t)dt,

when u varies, subject to conditions

(1.2) exp (&it)u€ Ly, (A,) (%), . 1=0,1.
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Provided with the norm

+o0
|| a]|s = inf. [m_ztvl (|exp(&:t)u Lp,-(-‘i))] fu () dt = a,

it is a Banach space, called [23] space of means.
We shall set

(1.3) S(gym Ags ¢yn—1,4)=8(q,n; 4y, 4y), 0<yn <1, 1=<g=oo.

It is easy to check that

J U 5
b(Qyéo,Ao;‘1-51)1']1):-‘5(’17 z _O_E j A07A1>-
0 1

Cf. important complement in [25].

1.2. Reiteration property.

Roughly speaking, the reiteration property says that a space of means
of two spaces of means is again a space of means (with different parameters
of course). Actually there is even more. Let us recall some definitions first.
A Banach space A is called an intermediate space « between» A, and A, if

(1.4) AgnA cAcA,+ 4A,.

An intermediate space is of class ‘Ko (4,,4,) if

(1.5) N(1,0; 4,,A)c Ac8(c0,0; 4,,4), 001,
If Y., i=0,1, is an intermediate space of class Ko (A,,A}), then
(1.6) Nigyn; Yo, Y)=8(q, (1 —n)0,+70,; 4,, 4,)

with equivalent norms.
It follows from the definition that 8§ (q,5; A,, 4,) is of class UK, (4,,4,).
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1.3. Interpolation property [23].

Let By, B, be a second couple of Banach spaces, with properties si-
milar to A4,, A, . Let = be a continuous linear mapping from A; to B;,
i =0,1 (i. e. for instance x; is a continuous linear mapping from A;— B;
such that 7y ==, on A, N A, and n = n;; then, for every p;, &, # is a
continuwous linear mapping from S(pg, &y, Ag; Piy&iyA)—>8(Pys&0s By
Pyy &y By

This is the interpolation property for continuous linear mappings.

1.4. Duality property [23].

In general, if X is a Banach space, we denote by X’ the dual space
of X, provided with the dual norm. Then, if q %= oo, one has:

(1.7) (S ('17 0 ) A07 Al\')/ =58 ((1/7 0 H Ao ’ Ai)? ]/‘l _l" 1/’1, =1

Since S(q,0; Ay, A,)=8(q,1 —6;.1,,.d,), it follows from (1.7) that

(1.8) (S(q,0; Ay, A)Y =N’y 1 —0; Ay, A)).

1.5. Trace spaces.

We extract the following particular case from [20].
We consider functions t — v (¢), t > 0, such that

(1.9) tev € L, (0, co; Ay),
(1.10) t*v"’ € L, (0,00; A))

(here v’/ denotes the second derivative in ¢ of » considered as a vector
valued distribution on |0, oo [, [18]]; we assume that 0 <<1/¢ 4 a < 2;
then »(0) is meaningful and spans, when ¢ varies subject to conditions
(1.9) (1.10), a trace space, denoted by T (qyos Ay, A

This space is a DBanach space when provided with the norm

| « ||z = inf. [max (|| t«» “”q Ay

i {a o’ ”11,1 1 )].
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It is proved in [23] (see also [15]) that

1/1
(1.11) TUZ(%“;A(HA;):S((I» -2'(7""‘“);5107111)’
with equivalent norms.

1.6. Complex spaces.

We shall also use, in several places, the complexr spaces [A;, A,] =
= [4,;4,,06(0)] (cfr. [13], [14], [19), and also [18]). The complex spaces
have the interpolation property. The space [4,, d,l, is of class Kg(4,y, 4,)
(ef. [23)).

2. Spaces B, ,.

Let W, Le the Sobolev space [30] on R" of functions = such that
D+ e L, (R" for every | a|<Zm; provided with the norm

(= pruipy?,

|a|=m
it is a Danach space (and a Hilbert one if p = 2).

We shall always assume that 1 < p < oo.
We define W, ™ by duality :

Wy "= (Wpy, 1/p + 1/p" = 1.

We can vow set the

DEFINITION 2.1. Let r be any real number, =0 or < 0. Let m be an
integer such that m > |r|. We define algebraically (i. e. for the moment we
do not put a norm on this space) B, , by
(2.1) Byy=8(a,n; Wp'y W), 1 —2p)m=r.

We have first to check :

ProvosiTION 2.1, The space B, , does not depend on m ( provided m>|r|);

morcover all the norms of the spaces S(q,n; W,y W, ™) are equivalent, when
m rvaries satisfying (1 — 2p) m =r.
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PROOF.

This proposition is a consequence of the reiteration property. Indeed,
it is known ([13), [19] that

(2.2) (W, w2 = Wi if (1 —20) M is an integer.
Consequently, let M be given satisfying A > m. Then applying (2.2) with
(1—20)M=m, (1 —20,)M =—m,

we see that W (resp. W ;™) is of class Ky, (W', W, ) (resp. KA, (W5, W)
and (1.6) gives

S(ayn; We's W™ = 8 (0,(1—1) 6, +50,; W5, W),
with equivalent norms, and since
(1—2(1 —n)0,— 290,) M = (1 — 29) m,
the result follows.
We now choose a norm on B,, by taking m ={|r|] 4 1, where [ » || =
integer part of |»  and defining B,, by (2.1), with the norm of the space

of means.
In particular

(2.3) By, =~ (q, 32—; W, w,,“) (with the norm of ).

REMARK 2.1. We still have to prove that the spaces Iy , just defined
coincide with the ones introduced in [1] and in Chapter 1.

3. Interpolation properties of spaces I3, , .
3.1. We shall prove first
THEOREM 3.1. Let ry and r, be arbitrary rcal numbers. Then
800,75 By oy Byh) = Bpg" "

with equivalent norms.
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PROOF.

We choose m (integer) such that |7;| <m; then

Bi =8(q,0,, LA Wp—m)’ 1 —20)m=r,

P

with equivalent norms.
Therefore, using (1.6), we have

8¢5 By ) =8(q,(1—n)600 76,5 W', W;™)
hence the result follows.
3.2. Let & be the Fourier transform, &—! its inverse, and
Jo=F (L4 [§]He2 ).
We define
(3.1) Uy = {u]| I, w€ Ly (R")),

provided with the norm |'J_, u ”L,,-
We have [13], [14], [19]:

(8.2) Uy =[W," Wy ",y (1 —2p)m=r,

with equivalent norms. (One has 9, = IV, if » is an integer).

=

[l

Consequently, 9, is of class Ky (W,", W, ™) and the reiteration theorem

gives:

THEOREM 3.2. Let r, and v, be arbitrary real numbers. One has

(3.3) 8 (a5 W5 U = B
with equivalent norms.

REVARK 3.1

One has also (sume proof), for instance

S gy By, Ay = B
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4. Identity of spaces B,, with spaces previously introduced.

4.1, The case r > 0.
Let m be an integer >r. We apply (3.3) with ry=m, +, =0,
(1 —#n)m =r. It comes

(4.1) Bzruz =8(qn ;me y Lp).

But then the constructive characterisation of S(q,%; W, , L,) which is gi-
ven in [23] Chap. VII, § 2, shows the identity of B,, with spaces intro-
duced in [1]. More precisely, define the translations group G; (t) by

G,(t)f(l}) ‘=j(.l" goe gy Li1 4 + t, Ligyyoeee ,Lt,;).
Let us set
re=r4é& 0<f<1

We consider two cases:

first case: 0 <E < 1.
Then «u€ By, » is equivalent to the following conditions:

(4.2) we W, ,

( for every a,|a|=r and every i=1,...,%, one has
(4.3) ) Yy o l ! y yeeey Ny
| t=s=19 (@, (t) D*w — D= w)€ L, (0, o0 ; Iy).

The norm in By, is equivalent to

—=1jq

P t=n ; a « p p
(el +2 2 1T G0 B =D )

i=1 |k|j=m

Second case: & = 1.
Then «u€ B, ,» is equivalent to the following conditions :

(4.2) unchanged,

for every «,| «|=r, and every i =1,..,n, one hag
(4.3)

t=1=1a (G; (2t) — 26, (t) + 1) D*w€ 1, (0, 00 ; L,).
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The norm in B,, is equivalent to
P T=n , . » 1/p
fulw,+ 2 3 |¢t-1=va(Gi(2t) — 26 () + I) D* u”Lq(O,co; Ly -
¥

=1 |a|=m

REMARK 4.1

For the identity between B, and the spaces defined by approximations
properties (using entire functions of exponential type) cf. Chapter 1 and
also, for a different method, [26].

REMARK 4.2

According to the equivalence between trace spaces and spaces of means,
the B‘,',,q are also trace spuces. Using [31] they can also appear as trace
spaces of harmonic (or meta-harmonic) functions. This gives the equivalence
of the 3{,,,,,1'>0, with the spaces defined in Chapter 3. (Cf. also [17]
[17 Dis]). This property is extended to every r andalso to fractionnal deri-
vatives by Lizorkin, in Chapter 3. (For other results on trace of functions
defined by properties of fractionnal derivatives cf. also [16]).

Another, more particular, trace property is given in Section 7 below.

4.2, The case » << 0.

It is obvious from the definition that J, is an isomorphism from 9¢;
onto Q(;"'" for every +; using this remark with » =»;, ¢ = 0,1, using the
interpolation property and (3.3), we get

TreorEM 4.1. For every »r and g, J, is an isomorphism from B, , onto
Bt 1<p< oo, 1<g=< oo.
Since :
a) spaces B, o defined by interpolation coincide, when » > 0 (with .
equivalent norms) with similar spaces defined in Chapters 1 and 3,
b) spaces defined in Chapters 1 and 3 also have the analogous pro-
perty than the one of Theorem 4.1;
it follows that all the spaces B, , introduced in this paper coincide (with equi-
valent norms) for every 7.

5. Duality.
THEOREM 5.1. We assume that 1 < q < co. Then

(5.1) (By ) =By, 1p+1/p =1/g+1/¢ =1

with equivalent norms.
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PRrROOF.

By, =8(q, n; W,", W, ") if (1 —2y) m=r, by definition; using
1.4, (5.1) follows immediately.

So we have in particular proved :

(By..) = By.y

6. Complex spaces between B, .
Let us prove first:

THEOREM 6.1. One has

(6.1) By 4y By o= By 2" 1<p<oo,1<g< oo,

with equivalent norms.

PROOF.

We choose m > |, | such that B;fq:S (4,05 Wy W), (1—20)) m=r,
and then we apply [21] (where it is essentially proved that complex spaces
between spaces of means are spaces of means).

We are now going to consider spaces L’;,_q where p = ¢; we simplify
the notation by setting

(6.2) B, ,=D.

‘We prove now

THEOREM 6.2 One has
(6.2) [By, y By o = By, with equivalent norms,

where
1 < pi < ooy 1fp=(1—6)jp,+ 0/p, .

PROOF.

1) 1t is enough to prove (6.2) for » = 1; indeed, since (Theorem 4.1)
J, is an isomorphism from B} onto B,*’, it is an isomorphism also from
[By,, By lo onto [By*, Bytls; we choose s such that » 4+ s = 1; then, if (6.2)
is proved for r =1, it will be proved for » 4+ s and then for », » arbitrary.

2) Let us define Q = {x,t|t > 0,x€ B*}; we denote Dby y the « trace
operator » on the hyperplane ¢=0, i.e. the operator: v — v (.., 0); it is
well known (cf. for instance [22]) that the operator

{—A+‘1,7} v’*){_Av"'v’?"})A_n_"*' +0,l,g+
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is an isomorphism from W," (£2) (resp. W,} (£2) (1 <p < o) onto W;"_Z (£2) <
>< By~'? (resp. W, (2)>< By'"). We now interpolate, using the complex

spaces. We set
(W' (2)y Ly ()], = Up (2), (1 —n)m =13

One can check that

(W (Q), W) (Q)o=; Q), if (1—0)m-+b=s3s,

and
(W7 (@), W, (e = U~ (),
and by theorem 6.1.

(B By = By
Consequently

(6.3) { — A4 1,y) is an isomorphism from U, (2) onto c?(,':"2(!.?)><B;,_1/1";

Jor every s =1, and for every p,1 <p < oo.
We use this result for (s,,p,) and (s,,p,), where

$i=1'pi+ r,r fixed >1.
Using again complex interpolation, we obtain

(6.4) [— 44 1,9} is an isomorphism from (W, (2), Wp: (D))o

onto

(92 (), Uy ™2 (o< [ B, Bylo

But using a result of [14], we have (3)

Iq(;:; (_Q), ;: (Q)]u — Q(,(Tl—o)sﬁ-es; (.Q) %‘:H/p (.Q),

where p is given as in Theorem 6.2, and analogous result with 8; — 2 in-
stead of s;. Threfore (6.4) gives

{— A4+ 1,7} is an isomorphism from 9(;“’" (£2) onto
(6.5)
Uyt Q)< By, By -

By comparison of this result with (6.3) (where we take s = -} 1/p),
we obtain the desired result.

3 Annale della Scvwole Norm. Sup - Pisa.
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REMARK 6.1

THEOREM 6.2 gives an extension of the classical Riesz-Thorin theorem to
spaces By, r fixed. It would be interesting to obtain also an extension of
the classical convexity inequalities.

REMARK 6.2
Similar reasoning to the one used in proving Theorem 6.2 has been
used in [22].

REMARK 6.3 ;
A more general result has been recently proved (by an entirely diffe-
rent method) by P. Grisvard, namely :
1 1—6 6 1 _1—90 0

(B}, ] = -
Do 10 ) ppq 0 = pe,qey = ’
070 t Do Do Py e ' q,

’

rg=(N1—0)r,40r,, 1 <pi< oo, 1<g<< 0, rg=(1—0)r,-4 0r,

Cf. Grisvard [17].

7. A trace theorem.

We consider again the open set = {x,t | t> 0, € R*). We define
(7.1) p,q (L) =8(g,7n; W' (Q), W™ (Q), A —2p)m=r
(again, this definition does not depend on m, and gives equivalent norms

when m varies, subject to (1 — 27) m = 7).
In particular we shall use

By, 5 (9) = B, (9).

If e L,(£2) and satisfies

(7.2) —dh+ =0 in £,
one can define ([22]) the trace yh on the hyperplane t==0 and
(7.3) , yh=weB;'?,

Reciprocally [22] if u € If};'/l', there exists h, unique, satisfyving (7.2) and
(7.3). We prove now
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THEOREM 7.1. A necessary and sufficient condition for u to be in B, is
that there exists h such that (7.2) holds, together with

(7.4) he BY? (Q)
(7.5) yh = u.

Function h s unique and the norms || u “BE and ||h||B;/pm) are equivalent.

PROOF.

1) Let h be given satisfying (7.2) and (7.4). Then by definition
he B (@) =8(p,n; Wy (@), L (2) (L—n=1/p)
and this space is contained in
S(py,n; Lyp(0,00; W'p])7 Ly (0, 00 ; Ly))
and by [23] this last space coincides (with equivalent norms) with
Ly (0,005 8(p,m5 Wy, L) = Ly (0, 00 5 ByP).

Therefore

(7.6) I € L, (0, 00 ; BY?).

Since 4, = 8% 6a? + ... 4 6*/oa? is a continuous linear mapping from
BY? into B,*?, then
o%h

S =l — 4,1 €1,(0,00; B*75).

(1.7) -

Therefore (cf. 1.5)
h(0)=yhe TE(p,0; BY, BY"™%) = 8(p,1/2p; B)?, By*™%)

and by theorem 3.1, this space is identical with B,,o. Consequently yh =
= ueb’,,“ and the mapping h—u is continuous from the subspace of
fl',"”(!)) of functions satisfying (7.2) into B,,".

2) Let us set:

Ag= (k| k€ W, (Q), — Ak 4 k=0, norm of W, (2)),
A, = {h|h€ly(), —Ah 4 h =0, norm of L, (2)}.

We recalled that w—h (h solution of (7.2), (7.5)) is an isomorphism
from B,',,_""' (resp. B, '") onto A, (resp. A,). Then it is also an isomorphism
from S(p,n; By, By') onto 8 (p,q; Ay, A,). But it heS (p,q; 4,,A4,)
then — Adh -+ h=0 and heN(p,y; W, (2), L, (Q) = B,”" (2), hence the
result follows by choosing 1 — 4= 1/p.
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CHAPTER III

THE CHARACTERIZATION OF THE SPACES B, , (R?)
BY MEANS OF TRACES OF METHAHARMONIC FUNCTIONS.

Asg it is mentioned in the Introduction, the most exhausting exposition
of the theory of the spaces B;,q for » > 0 was given in [1]. This exposition
was based on the theory of approximation. However for p = ¢ these spaces
were considered a bit earlier by E. Gagliardo, L. N. Slobodetzky, A. A.
Vasharin and at the same time by J. L. Lions, P. I. Lizorkin, S. V. Us-
pensky [32] as the spaces of boundary values of functions from the corres-
ponding « weight » classes (see [1] for references). For p = ¢ such conside-
rations with weight classes were accomplished by O. V. Besov [33]. Finally
the weight classes of methaharmonic functions were considered in [34|. Thus,
we may say that the following theorem was in essence proved in the men-
tioned works.

THEOREM A. The necessary and sufficient condition for the function f(x),
defined on K", to belong to By ,,1 <p < oo,1<<q<=oo,r >0, is that the
quantity

M () = (fm—')[/( =
=
0

bl

/

? 19'Y 1/g
+ | F|">(M'J fﬁ) !

' F (z,t)

1 1
da L .. D' Ot t

is finite, where F{x, ,..,x,,1t) is the methaharmonic continuation of f(x) in

the semispace RY, = {x€R,,t> 0),t = r + 1. The quantities M, ,(f) and
|/l - are equivalent, i. e. there are constants Cy and Cy which do not de-
r

X
pend on f such that

¢ "f“,,»; ,,é My, ()< ¢ “/”,; .

In this chapter we substitute the quantity M, 4 by asimpler but equi-
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valent one, namely :

0

o F

q(l—r) .

” v U l 5%
R”

Rn

» 1/g
dw] %}

and with its help we develop the theory of the spaces B, , for arbitrary real r.
Naturally we are in need of a notion of methaharmonic continuation of
§’-distribution.

1. Methaharmonic continuation of §’-distribution into the semispace R}, .

We form the convolution of the distribution f(x)€ 8’ with the Poisson
kernel for the methaharmonic operator

* Py (x) = 22 1 - a1 Kntr (leld“i‘ &) .
(* T i1 Ko

(2n) 2 (|aP4t?) ¢

One may consider I’ (x) as an abstract function of the parameter ¢ >0
with values in 8’ (in particular P,(z) = 68 (x)). It is known (see for instanc
(34)] that for f€ L, (E,) this convolution can be written in the form

Ppe f= /Pt(w—y)f(?/)dy= Pz, t)
R

n

and is a methaharmonic continuation of the function f(x) in R,','Z,_l, i. e

(1) — AFP@, )+ Flz,) =0, F(z,0)-2 /.

Iere we shall consider the convolution P’ * f in the framework of the
theory of distributions |5]. We have

DPyxfel for every t> 0.

Using the rule of differentiation ot the convolution and that of differentia-
tion of the abstract function wigh respect to the parameter, we find that the
convolution I’y * /" is a generalized solution of the methaharmonic equation
(1) for t > 0 and therefore is a function. We shall denote

Pyx f = F(x,t),t > 0.
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Since P,(x) — 6 () when t — 0, it follows from the continuity of the con-
volution, that

Fat)f for t—>0.

The function F(xz,t) will be called the methaharmonic continuation of f in
R,',"H in what follows.

2. Bessel and Liouville integrals (derivatives) of the methaharmonic

continuation of S’-distribution and connection between them.

For fe€8’ we take the Bessel integral fi,) of order » > 0 and then
consider the methaharmonic continuation P;*f,) of the latter.

THEOREM 1. For r > 0

@ Lie fo= g [ Flont 40w
0

where F (x,t) = Py« f.
ProoF. Using the property of convolution we write
(B)  Pisfuy=DLin(Graf)=Gra(Linf) = G,u F(x,t)=Fy (x, 7).

The operator of convolution with I’, possesses a semi-group property, i. e.
for ¢, t > 0 we have

4) P, F(x,t)=F (x,t + 7).
. .[r—l
Multiplying this relation by o and integrating it with respect to 7z, we

obtain

_ 1 r 1 ;-
(5) o) [F (xgt F 1) 1de = (1'(7') / P! d‘t) x Fx,t)= G, x F(x, ) ().
0

0

From {3) and (5) we get (2).
The relation (5) itself is important for us and we formulate it separately.

(1) We use the formula 6.596,3 [36].
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LeMMA 1. The Liouville integration of the methaharmonic continuation
of N’-distribution with respect to t and the Bessel integration of it along the
hyperplane t = const give the same result, i. e.

(=]

1 F(x,§)
m[@:v:df: G,-Q F(w, t)E F(r)(.l" t).

Lemma 1 can be generalized to negative values of ». Indeed, the right
hand side of equality (5) is defined for negative ». But the left hand side
of (5) can be independently defined for » << 0 as the Liouville derivative
or order (— r) of the function F(r,t) with respect to t. We denote this
P F (x,t)

derivative by TR

a=|r| and we put (by definition)

Ldan g [ F(x, 8 de
= (— )+ — -
D e h=(—1) LSt I +1—a ] E—tpT

(6) m

It we denote the Liouville integration of F(x,t) with respect to ¢ by
T F(x,t), r > 0 and if we write for r < 0

TtnF—g“F(-”’t): @=—"
and for »r =0

ToyF=F

then the operation T, becomes well defined for all real » (on the metha-
harmonic continuations of §’-distributions). It is easely checked that T,
possesses Lhe group property

(7) Ty Tiry = Tir) Tiryy = Tiryr) -

In what follows we shall use the symbol # also for r << 0, i. e. we put
D
06' F= T(") F.

We note also, that formula (6) can be written in the form

o o [ F(x
& e Fe =1 l_afe_t_(,_a)de 1> [a)
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For integer a > 0 we obtain from (6)

9 o°F

(9) 9t F(x,t) = (— 1) ot (@ ).

The mentioned generalization of Lemma 1 can now be formulated as
follows.

THEOREM 2.
(10) T, F(x,t) = F(#,t) = Pyx f, (), — oo <r<Coo.

REMARK. We recall, that the operator Ti,, acts on F (x,t) as a function
of t and F, (x,t)=J, F(»,t), where the operator I, acts on F(xt) as a
function of .

PRrROOF. For r > 0, Theorem 2 follows from Theorem 1 and Lemma 1.
For r=0 it is valid since T, and J, are reduced to the identity

operator. Let r be negative. We set — r = a and take an even number
2k = [a]+ 1. From (8) we have

9 F (x,t) 8% F(x, &) 2
ote T ot Ir( 2k —_ a (E—)—k=a) °5 =
asz (v, &) dt (_A+1 kP (2, £) e
=T (2Ic — ac) dE®  (E — f)l—Ck—a) 2]. — a £)1—(2k—a) =

1 [(rwega
STek—a ) E—tp-w—a
t

The above expression is equal to F((Zz,f’_a), i.e. to F*. This proves the
first equality in (10). The equality

F(,«) (1‘, t)=Pt*f(r)~

can be proved in the same way as (3) [for r<Z 0, (G, means the analytic
continuation of the kernel G, ,r > 0 (see [35], I, p. 48). This equality states
in particular that the function F,(r,t) is methaharmonic in If}u‘!;., and has
boundary values on #,which coincide with f, (r). Theorem 2 is proved.
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In conclusion we reproduce an estimate of Liouville integral which will
be used in section 3 below. Generalizing an estimate given by Hardy and
Littlewood, Kober has proved the following (see [37], p. 199, th 2):

1
Let f (t) € L, (0, 00), lgqgoo,n>—q—,a>0,

— u—]——a
hy o(2)= I.“)f(t e ()

Then
I(2) I’( + n)
e

” hq, a ”L 0, c0) == I‘ “j ”L 0, o0) 9 k=

1 .
Ilence, substituting =712 f () =g (t), n =0 — rE we obtain

W ae |z T 7 dzpe
(11(!) gfl /‘T:;)T':; ? ék%f&’,"’ {](2’)[—;% ,1Sq<00
U]
Ty at
(11 b) ess. sup. zﬂf~(—~)£:;‘_>l.ess sup. |z°te g (2)|, q = oo.
2 € (0. 00) (t —2) z¢€ (0, 00)

z

Relation (11) will be called in what follows the H. L. K. — inequality
(ITardy-Littlewood-Kober).

3. Renormalization of the spaces B, ,(R,).

THEOREM 3. If F(r, t) is the methaharmonic continuation of the S'-di-
stribution f(x) with finite integral M;‘q(f) then

D] r /‘ ql—r ! p df
(12) ¢ 111’ L) 2 127 0?‘ ] hiad

where 1 < p < oo, 1< g<<oco uand the constunt ¢, does not depend on f.

"<, )]
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PRrooF. The right hand side inequality in (12) is evident. To prove the
left hand side we use the Fourier transform with respecto to x (for fixed t).
We write

~ 1
g (.T, t) = (2.”)"/2

[g (g, t) e dl, dw = A x, + oo + Ay 2y .
Ry
Then we have

l\
0 F(a,t)
i

1 in ot 1
L. @ v gt it

‘\
lu+l 7’ f
= (i)Y (it Y

6t ln+1

1 L .
(iA) "1 ooe (ide) ' (A 2y o+ F(a, t)

a+14p ot

y bt e+ =1+l =1

We denote

By definition of Dessel derivative and by theorem 2 we get

g VP (o)
oy ~, b} Lo F (z, t
(AP T = 0 — o vy = (— 1 ELEY

Iy

ot

Since the function
(iA)"1 oos (8,)"
(E 4|42y

is a multiplicator of (L, , I,)-type, 1 <p < oo, it follows from Michlin’s

theorem that
. ' Fix,t) ? g
(13) [
oxl... oxr ot + )
R" Rﬂ

r

6L F (@ ) dx

ot

For an analogous reason the inequality

(14) f]F(x,t)]I’dxgc[
E

>
n Iy,

S F (x, 1) |7

ot

is also valid.
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By (13) and (14) we obtain

(15) %/(2 ! “‘F(w,
M= 1 ! .. Ot n+l

I

+|F]P)(u€ cg /yF 017 g

RII

Raising this inequality to the power g, multiplying it by t1¢—"—-1 and inte-
grating with respect to ¢ from 0 to oo we obtain the desired inequality for
1< q < oo. For ¢ = co we multiply (15) by ¢~ and then take supremum.
The theorem is proved.

Theorems A and 3 enable us to proceed as follows.
Preliminary definition. The 8 -distribution f belongs to the space
By, ,(Ra)y, 1 <p < 00,1 ¢< o0, r>0, if the following integral

& F(at 1w q |
(16) Ut(l-rw f a(t",‘ ) dx)“)Tt% Li=[p+1,

is finite, where F (x,t) is the methaharmonic continuation of f in R,,. Ex
pression (16) may be taken as the norm and then By ,(R) becomes a Ba-
nach space.

Expression (16) will be used for extending the theory of spaces B,',, 7 (B))
for r << 0. We use it in order to give a direct definition of B, ,. It should
be emphasized that this definition is equivalent to the previous one by
theorem A.

For the mentioned extension a lemma is of importance, which will
be proved in next section.

1. Main lemma.

Let F(x, t) be the methaharmonic continuation of a certain 8 - distri-

97
bution f and let be the Liouville derivative (for y >> 0) or Liouville

a
integral (for y < 0) of F. Then, an arbitrary real number r» is fixed.

MAIN LEMMA. If for « certain y > r the quantity

oo

v =ep={ fon( [| 5
1] R,

n

p

. | glp dt l/q
F (r, )| dr - l<p<oo,l1<<qg<o0

ot
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is finite, then for every y’ > r we have

amn 0< A< Z""<B<oo

. 1q

where the constants A and B do not depend on F(x,t).

PROOF. Without loss of generality it is possible to take y’ < y. Deno-

y
ting ﬂmf' =9, we have
» o r dx
v F(x,t)= T(y—r') (—1#:) Jr— /v t)l—(y——y
07 ‘1’ qp (It
ft(r —r)q ;[ § =
Ity
!
! o —rm% { _rln0de |7, e dt
([‘(7,_7 ;...tl (r—r) t

[ y——y)]qft(y——r)qif ,_t} ,_,)U-lt x i)l”fll] § X (by ine-

quality (11))

= F(ll_iz_z) f""”””lvl"d g'rﬂ_t.

rl+r=n| ¢ :
Hence
0 <B(Jp,,,1<pgoo,1/q<oo
F(i-i—r’—r)
where B = ql .
r(g+r=7)

The converse estimate is more difficult. Since the Liouville differentia-
tion (integration) and positive translation with respect to ¢ may be commuted-
we can write

Jr dr=r Lo
(19)

oty (y t4 = o7 o Fe, t+ t)]
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Using the semi-group property of the operator of methaharmonic continua-
tion (see (3)) we write (denoting I’ (x) = P(x,t))

& N
o (Pt 9= [ =30

R

"

9T (y,t)

S dy.

Hence, using (19), we obtain

,

)24
Pla—y,7) g0 F(y, 1) dy.

r—y’

9 9
(20) W}F(x,t-q-z):/

=1
R,

It is this equality that will give us the possibility to prove the converse
estimate.

,

Ir—r
Let’s evaluate first the Lkernel ye— P(x—y,1). If we put y —y’ = a,
9

| —y|=a, the corresponding estimate may be written in the form

1/ @+

%( ) “‘)

2

nta
l/z&?r?‘ ®
2

To prove (21) it is sufficient to use a representation of I’(x,t) by formula
(*) and the properties of function 9, (f). We omit the details.

Now we shall give an auxiliary construction that will play an essential
role in the following calculations. Consider the function

da
1) salw—ym|=d

it F e, 0t

(22) g T)=§
20 (t F7)?te, 1>t

where the parameters 1, u, w, ¢ will be specified later. For u > —1,
6> —1, 14 p=w + o6 = f, elementary calculation gives

(23a) ff_(/ oo+ r)dtde =j tA+1 v (¢) dt
(VY] 0
(230) ess. sup. ¢ (t,7) v (t 4 ») = ess. sup. tf v (t)

t>0 t>0
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By (23a) we obtain for f = (y —r)q — 2

(24) ff (T %fl v (2, t 4 1) . tlr§q/pdtdr=ft’7-”‘lg. %%%(m, t)
0 R

n

»_ Jrdt
d.l‘} (7

We are now able to prove the converse estimate. Using (20), (24) and
Minkowski’s inequality we get

-]

» alp dt
f"”mm GRS
9r’ » qlp
—U.q(t )UU @ =90 5 F 0.y |tz
dr dt =

Sffy(t t)gf’———l’(z, (Iz[fl9" (x — ,I)rd.r”pq
—f dtfg (t, 1) ;/';—;I’(z, 1)!(12‘(;’11.
0 R,

The integral in curly brackets satisfies

JI

1"

where the constant ¢ > 0 (depending on =, &) is finite.
Therefore, setting 6 = u = (y — r) ¢, we have

foontf| e
: -

[4 —_——
2 . ¢
= 2" f(t + )2 ¢ T At + c2r f(t 4 )2y g dr <<

0 t

dt drv <<

(25)

!

ot F(t

— Pz | —e—2
e }

T
o] .
qZ

7 ¢
dzp dv << (:f gty 1) —— ~ar dr =
0

t -]

< cQ#_/(t + )2 YT dr 4 e 24t f(t R B O R el W

0 t
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Substituting this estimate in (23), we obtain

1 .
(Jp q AT ;v"}

1 . .
where the constant q depends on 7, y,y” only and thus the assertion of

the lemma is proved for 1 << q < co.
For ¢ = oo we argue analogously, using (11b) and (23b) instead of (11«)
and (23a) respectively Q. E. D.

. Definition of spaces B, , for arbitrary real » and theorem of iso-
morphism.

DEFINITION. A 8’-distribution f belongs to the space By, 4 (Ry), 1 < p < oo,
1<g<oo; —oo<r<Coo if for a certain y > r the integral

pA 9P qt) e
(26) /t’"’qg ft I (x, t)| 11.12 --tz

wheve F(x,t) is the methaharmonic continuation of f in R,y , is finite.
Provided with the norm

r r41
17 Wy = ™ ()
B, , (R, becomes a Banach space.

REMARKS. 1) According to the main lemma, @ ,(f) may be taken as -
a norm in B, ,(R,) for every y > Of course, such a norm is equivalent
o (16). However the quantity @, 7' (f) changes smoothly with » and be-
sides has also another advantage (see below).

2) The definition makes sense also for p =1, p = co. Moreover for
these values ot p the theorem of isomorphism that will be proved later is
valid.

3) In the particular case p = g, the space By , = Bp may be charac-
terized by the finiteness of the quantity

0y e 124 N v 1p 1
Q,,,,(./)—zf ['WF(J,t)' dadt§ ,7_p,
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3ut this condition means (as it may be proved), that the fanction F(x,?)
belongs to

1 .
Ly (B = A} (R, 7= R i e.
97 +
Fel, (Rn—f—l)y 50 Fe L, (R
and
& .
5 € L, (Ry), DT

H
Thus the space Bf,(R,,) consists exactly of the traces of the methaharmonic
1

function F € L;g'— (Ry41). Comparing this assertion with theorem 7.1 of cha-
pter 1I, one may conclude that the norms of the spaces f,",’(l{f,},) and
L,’;(R:’,;,) on the methaharmonic functions. We turn now to the proof of the
theorem of isomorphisimn,

THEOREM 4. The operator I, — co < p < oo, defines an isometric isomor-
phism between the spaces By 4 and Br+9 ie if JEB, . than T 1€ BITe (and
! P P, q L v q J Y.
conversely) and

| 9ef”B;+qe = “f]‘Bf

PROOF. Let fe€B,, T,/ =1L and F(x,t), Il (r,t) be the methaharmonic
continnation of f and &, respectively. In order to prove that he¢ ];’;,f,l" it is
sufficient (according to the previous definition) to evaluate the quantity

Qe et (), Using the fact (see theorem 2) that
H(x,t) = F, (2, t) = Ty, F (1)

= P P dt Vv
(] =
t
0 R

n

e[

It follows from this equality, that k€ 3,7, and | L I, e =/, . One
1

must verify besides that the correspondence bet\\cen l),, a aml 1‘,,+,,"' is

one-to-one, It is enough here to prove that every he€ l.,,. 4 can be repre-

we have
drtet! M (x,

gtrt+etl
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sented in the form
h=Yz fE€ B;- q

h =
[hlpgre =171y

and

Consider the function T, H (2,t) = v («, t). It is a methaharmonic one
and we have

oS

Jr+iyp

S+t t

» )qlp dt %Hq

)qlp dt e

=[(f

Consequently by definition, its boundary values lim v (v, t) determines a fun-
)

tr+e+1

ction f€ Bj, ,. We recall now that the operation T has the group pro-
perty and can be substituted by .
Therefore

H(x,t) = Ty v (x,t) =T, (x, 1).
Ilence when t—- 0, we obtain

hg)=U9,f.
In addition the equality (27), means that
1 De S Nl gree =Sy -
D, q 2. q
This proves the theorem.

We note in conclusion that the isometric property of the operator I,
fellows from our choice of the norm (see Remark 2).

1 Aunnale della Sevola Norm. Sup. - Piga.
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FOOTNOTES

(!) p. 25. 4y + 4, is a Banach space for the norm
a = inf. (||a + a ).
el gt a, L llaoll 4, + adlla,

() p.25. L, (4) (resp. Lp (0, co; 4)) denotes the space of strongly measurable func-
tions t —>u () from R (resp. (0,00)) to 4, such that |Ju(t)||, belongs to L, (R) (resp.
L,(0,00)), l=p=oo. It is a Banach space when provided with the norm || || u (1) |, ”Lp .

(®) p. 34. On the whole space R", the inclusion [¢5; , £y!]y ¢ &6, is announced in [1,9 13
the inverse inclusion follows by duality, using the Calderon’s duality theorem: [4,, d,]g=
=[4; » 41l (when, for instance, the spaces are reflexive); the similar results for spaces

considered on 2 instead of E" follow easily.
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