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INTEGRAL REPRESENTATION AND ISOMORPHISM
PROPERTIES OF SOME CLASSES OF FUNCTIONS

S. M. NIKOLSKY, (Moscow), J. L. LIONS, (Paris), L. I. LIZORKIN, (Moscow)

Introduction.

It appeared from conversations the three authors had in Moscow, May
1963, that each of them had a way of defining « Sobolev spaces of order 0 »
(see precise definitions in the text); but it was not completely obvious
that the definitions were equivalent. In this paper we present the three
main ways of defining these spaces, together with their main properties
and we prove also that the various definitions of the Banach spaces intro-

duced coincide (up to an equivalence of the norm).
Chapter I (S. M. Nikolsky) uses the theory of approximation and con-

structive theory of fanctions, Chapter 11 (J. L. Lions) uses the theory of
interpolation of Banach spaces and Chapter It I (L. I. Lizorkin) uses trace
spac;es with fractionnal derivatives.

For various values of the parameters, some of the spaces introduced

Ilere were already considered by a number of mathematicians ; we refer to
the bibliography. We note also that this paper has direct connections with
previous works of the authors and of Besov (see for instance the references

[1], [21, [3], [4]).

Preliminaries

Let be points of the it-dimensional Euclidean
space A generalized function f (x) over the space
S (of infinitely diflerentiable functions, that decrease with their derivatives
faster then any power of for will be called $’-distribution

Pcrvenuto alla Uedazione il 25 ginguo 1964.
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and we shall write I Let us consider for the function

where K~ (t) is the Mcdonald’s function of order v.

The following convolution

where f E S’, makes sense ([9], II, p. 104).
The kernel Gr decreases exponentially at infinity and therefore the

convolution (2) may be written in the form

for functions The convolution Gr * f will be caledl
the Bessel integral of order r of f and we shall write

It is known, that the operation 9r transforms the space S’ onto itself in a
one-to-one way and bicontinuously. Hence every ~S’ distribution f can be
represented in the form:

It is natural to call (p a Bessel derivative of order r of f and write

If we put the operation 9r becomes well defined for all

real r and f E ~’. It posseses the group property

We recall also, that for negative r the operation Jr can be written as a
convolution of f with a distribution (see [9)), in particular, =

- - integer, we llave
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~ N

where f is the Laplace operator. Denoting by f the Fourier transform off :

we have

CHAPTER I

THE METIIUV OF APPROXIMATION THEORY

We want to show here that the methods used in [4b] give the
possibility of defining the spaces Bp, q or Hr also for r = 0, as Banach space,
the elements of which are S’ distributions. The Bessel differentiation of
order r transforms (Hp ) in a part which can be identified with

(H°)p . This transformation

is one-to-one. We put by definition for every and

we set

This definition will be correct, if it turns out that the spaces defined

in this way do not depend on r, i. e that the norms and

are equivalent. In virtue of the group property (see (6) of the
ri n

Introduction) of the operator .9r it is sufficient for this, to show the iso-

morphism of’ spaces 7~ and under the operation 
This is done in this chapter by means of approximation theory.
I. Classes Hp .
Let -R" dimensional real space of points x = ... ~ xn). We shall

write Then it is possible to write
for a function f (x) defined on Rn. We put:

We denote by
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the first difference of the function f in point x in the direction xj with the
step h and by

the difference of order )c.

Let and is an integer and

, Let also be an integer. By definition [4a].

2) there are derivatives in Soholev’s sense in 8tl"

tisfying the inequalities

Here 1J1 does not depend on h.

We also write

where Mí denotes the least constant in inequalities (3) for a given func-
tion f. The definition of classes n; depends on I; h 2 ullessential1y. It is

known that tbere are constants O2 depending only on integers "1’
lc2 &#x3E; 2, for which 

-

Here the symbol ]) . shows that the norm (4) is defined for a given k.

We shall use the definition of the classes Hr only for lt = 2 or Ic = 4.

A function g, (z) = g, (z1 , ... , of the complex variables - = (Z1 , ... , z,,)
is said to be of exponential type of degree v &#x3E; 0 (in z1 , ... , zn) if it satisfies

the following conditions:
1) gv (z) is an entire function of z1 , ... , 7 Z)t ;
2) For every E &#x3E; 0 there exists a constant ~4, t such that

We shaH use the following approximation theorem (see [48]) where
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THEOREM I. then

where the series co)lrerqes in Lp and te-here the Q. are entire functions of
exponential type of degrees 26 (s = 0, 1, 2, ...) satisfying the inequalities

1rhere the constant C does not depend f. Conrersely, if the function f is
iit series (.,v) where the are of exponential type of de-

grees 21 7 1chich satisfy the inequalities

f E J~ and

constant c not depending on 
As usual we call the quantity

the hest approximation of the function , f by functions of exponential type
of given degree y.

start trom tlre class Every function of this class defines
the unique function

which is generally speaking a distribution ; we denote by Hp the set of
functions p corresponding by S) to all fE can be considered as a

Banach space when provided with the norm

We prove

THEOREM 2. The mapping
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is one to one from Hp onto IT.". There are constants ci and c2 , not depen-
ding on f (or cp) such that

The proof of this theorem is essentially based on the following lemma.

LEMMA I. Let a ~ 0 and r + 0. Then the (1 O) is one to

one from He onto and

where el and c2 depend only on r, a, e.
In the following we sball write « instead c c, where c is a constant

that may depend on r, a, e, but must not depend on the considered func-
tions f, cp, ...

Theorem I follows from lemma I directly. Indeed, if f E H; , then we
have by (12)

which implies (II), if we take into account the following relations

From theorem 1 we obtain the :

COROLLARY 1.

The mapping :

is an front onto H ~ ~
To prove Lemma I it is sufficient to prove the following two particular

cases of it.

LEMMA 2. 7/’ r, 0153 &#x3E; 0 E 

zrhere c does not depend on 99.
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LEMMA 3. If and then

and

c does not depend on f.
Note that the integral

where (it) is the Weyl kernel (see [11], [9], [81, corresponds to our opera-
tion in the periodic case. Many cases of Lemmas 1 and 2 where

proved by Hardy and Littlewood [7], A. Zygmund [10] and Y. Ogievetsky [5].
It is possible to prove that the kernel Gr (u) satisfies the inequality

where the constant c depends only on r, s. Let us begin with the following
auxiliary lemma

LEMMA 4. For

c depending only on r, s.

I’ROOF. We make the proof for j = 1, for the other values of j it is

analogous. It is possible to take la &#x3E; 0, without loss of generality. Consider
the sets

of points where

if

1 t~



134

Let

Putting we shall have

Each of the integrals, entering in the last sum is after a suitable change
of variables the integral over a set of the kind

Let By introducing the polar coordinates for the variables

and separately we obtain
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And if then

Therefore

Now we proceed to estimate We have
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Each of the integrals of the last sum by means of renumbering of
... is reduced to the integral

where

We obtain, introducing polar coordinates for and

And if tit then

Therefore

If r - ~ c 1, then for c 1 from (17) and (1 n) it follows : .1
On the other hand if I h &#x3E; 1, then we have, obviously

Thus lemma 4 is proved.
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PROOF Of LEMMA 2.

Let

and

Then

Set

a, o are integers and
Take now the partial derivatives of both sides of (21):

:kpj&#x3E;lying the generalized Minkovky inequality and taking into account
that

i.e

we obtain by lemma 4 (where one must take



138

It may be proved analogously, that

From (15) and (20) it follows easily

The last two inequalities imply and inequality (13) holds

true. Lemma 2 is proved. Lemma 3 will be proved in § 3.

LEIMA 5. If rp E then and

c does not depend OR ga.

PROOF. If r = 1, 2 ... i8 an integer, then, as it is known

and and

The lemma is proved.
If r &#x3E; 0 is not an integer, then as in the preceding considerations we

have

(1) If E, are Banach spaces, E C E, and where c does not de-

pend on z, then we write
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Therefore by lemma 4

and the lemma is proved.

COROLLARY. Conditions of 5 tlie existence o,f’ a constant c
. 

’which does not depend on 99 and v ~ 1 such that

Indeed, according to theorem I for the class 7?pB there exists a constant
e1 such that

Inequality (23) follows from (22), (24).
’ 

LEMMA 6. r E Lp, then there is cc constant c does not depend on
y and v such that

PROOF. Let, 9, be a function of exponential type of degree v such that

It is known that such a function exists. L, and

is also a function of exponential type of degree v, which belongs to Lp .
On another hand we have
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Therefore, using (23), ,vhere one should substitute , for

respectively, we get

and (25) is proved.
Lemmas 5, 6 in the one dimensional periodic case are known in many

cases (see [4a] [5]).

2. Analogue of Bernstein inequality.

LEMMA 7 (1). Let a function 1Jl)1 (t) be of period 2v in eaclz of the vari(t-

bles tj and defined by the equality

Z’lceo its Foto4ier series

converges absolutely the inequality

is true, where y (loes not depencl on v &#x3E; 0.

PROOF. It is possible to reduce the proof’ of this theorem to the known
absolute convergence theorems of trigonornetric series (see [111, (6J, [31 ; [8]).
However, it can be done only with some restrictions on a. Therefore, we
prove this lemma by means of direct estimates of Fourier coefficients. For
the sake of simplicity of wliting we consider the ease n = 2. We have

(i) This lemwa was proved by P. I. Lisurkin.



141

where for for

for Integrating by- parts we obtain the equalities

Hence by simple calculations we get

where the constant X does not depend on v and inay be calculated explici-
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tely. The convergence of the series and also the ineqnality

follow from these estimates.

The considerations are analogous for arbitrary n and thus the lenlma is

TaEOREM 2. (Analogous of the inequality).
There is a constant .9l depending on a such every entire function

of exponential type 911 (x) E Le oj’ degree v, one hccs

and is of type OJ. degree

PROOF. Consider first the case 1 c p 2. Then from it follows

(see [4a], 1.10) and by the Paley Wiener theorelu there is a function
/~ (x) E L2 y where

such that , i. e.

On another hand, according to (9) of the introduction

where is the periodic function with period 2v ill which
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coincides with on 4v . Let (1) be its Fourier series. Then

and consequently

The last inequality is written on the ground of Lemma 7. Note that

= 0 for t 1 Jy. Hence from the Plley.ivienei’ theorem and (4) it follows
that is an entire function of decree v. This proof is analogous to the

corresponding one given by P. Civin [61, who proved an inequality of type
(2) under some other conditions.

For p &#x3E; 2 the function /~ (t) in inequality (4) is in general a distribu-
tion and the proof niust be changed.

So let 2  p  oo. Instead of the classical Paley-Wieher theorem we

1nay use its generalization [9]. It says that the Fourier transform of the

entire function of’ degree C v with poly-nomial growth on is di-

stribution with support in 11.". Instead of (5), we write

, and the support of

However we cannot substitute the multiplier (1 + [ I [21’°’2 by the periodical
continuation of’ (1 -~- ( ~, ~2)r/2 from 4v since the corresponding multiplying
operator in ~S" is not defined. To overcome this difficulty we proceed as fol-
lwvs. First we extend our function (1 + [ 1 from 4w to &#x3E; 0 and
then from A,+, to Bvith period 2 (v + e) so as we obtain a function

III (1) E COO 
Then

It is possihle to differentiate this series as many times as we please and
all the ohtained series con verge uniformly. Using the continuity of the

2 d tmculi Slip 1’isu
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multiplying operator [9], we write

Since the Fourier transform maps S’ into 8’ continuously, it follows from

(6) that

where the equality is understood in the sense of ~’. However using the

boundedness of gy and the absolute convergence of the series M , we can." 
k

conclude that the series in (7) converges uniformly and equality (7) is the

usual one. It is possible to construct the ,u~ (~,) in such a way that

It follows from equality (7) that

and since e is arbitrary y using lemma 5, we obtain the theorem.

3. Proof of Lennna 3.

Note that

imply

Let Then (see the approximation tlieoreni 1 § 1)
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where Q8 are entire function of exponential type of degree 28 for which

From (1) it follows that

where (see (3) § 2)

and are functions of exponential type of degree 28. From (2) and (3)
in accordance with the same approximation theorem it follows that f ~a~ E Hp
and inequality (14) § 1 of lemma 3 is proved.

4. C lasses BpQ .

Let By (definition a functions f, defined
on belongs to the class the following norm

is finite (see (). V. Besov) [1 D.
We define the class analogously to H p as the set of distribution

g for which 
’

We put

All what we said about classes Hp is true also for classes In

particular the analogous of theorem 1 and Lemma 1 are true where one
must change H in 1J. To get it, it is suflicient to prove Lemmas 2 and 3

(where we change 7Z in B).

PROOF LEMMA 2. Let r , a &#x3E; 0 and Q E B;, q. Then, using (15)
for s = 0 we obtain
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and

(lemma 6)

PROOF OF LEMMA 3. a &#x3E; 0 and f E B;:qa. Let Uak (x) he the entire
function of degree ak, which gives the best approximation of/ of 

Then

and

in the sense of Lp convergence.
The convergence of the last series in the L~, norm ,rill be seen below.

We have

(inequality (13) of § 3)
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Therefore

yVe take a number and put Then

The last inequality folloii-s from the relations

and

(see lemma 1)



148

§ 5. Let g c Rn be an open set, P its boundary avd ga (b &#x3E; 0) the set
of points x with distance to 7~ greater than 3. Let also r &#x3E; 0 and as before
r = r + r’, where r is integer and 0  r’ ~ 1. By definition f E H p (g) if

and for every partial derivative of order r the following
inequality is fulfilled

where the constant M does not depend on
We put

where Mf is the least constant 111 in (1).
It was given in § 1 another definition of H~ (~~), ~ _ Both defini-

tions are equivalent for g=R,, (see § 6).
Analogously f E B;,q (g), if there is a finite norm

O. V. Besov showed that if the boundary 1-’ of G satisfies a Lipschitz condition,
then for every f E (g), it can be constructed its continuatiou f’ E 
such that

where the constant c does not depend on p, r. The corresponding continuation
theorem for the classical classes (1" = 1, 2, ...) was proved by Calderon

[3]. The continuation theorem for the classes (g) for g with sufficiently
smooth boundary was proved in [4c]. Note that after the mentioned Besov’s
result, it is possible to say that for 1" = 0, 1, 2, ... and 0  a  1 the classes

W~ .H ~r~ (g) and are equivalent. (I)
Let now f E ~p, ~l (g) and f E Bp, ~ (Rn) be its continuation on We can

write it as follows

where is defined uniquely. Thus we have 

(1) Added in proof. See forthcominig paper by Arunsla,ja and K. ’1’.

Smith.
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§. 6. Equivalence of the two definitions of H; (Rn).

Let as before r = r + r’ where r is an integer and 0  r’ 1. Let
also =Hp according. to the definition given in § 1 . Then by
approximation theorem I (see § I)

where are entire function of exponential type of degree 28 and

where Qr j is a partial derivative of j. of order r.

According to the generalized Bernstein inequality 

Putting

we have

where the integer 1~’ satisfies inequalities

Evidently

(2)

Further
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where
f 

,

: is a second derivative of q, taken in the direction of the vector

Therefore

and

From (1), (2), (3), it follows

Moreover

CHAPTER II

SPACES Br, q (Rn) AS INTERPOLA1’I()N SPACES

1. Solne known results on interpolation spaces.

1.1. Let Ao .A 1 be two Banach syaces, contained in a vector topo-
logical space -9f, the injection A; - d being continuous. We denote [231
by the vector space
spanned in by

when u varies,. subject to conditions
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Provided with the norm

it is a Banach space, called [23] space of 
WTe shall set

It is easy to check that

Cf. important complement in (2~~..

1.2. Reitei-atioit property.
’ 

Rouglily speaking, the reiteration property says that a space of means
of two spaces of means is again a space of means (with (liffereiit paraineters
of course). Actually there is even more. Let us recall some definitions first.

t1 Banach space A is called an space » Ao and Ai if

Aii intermediate space is oj" class (Ao , ‘’if’

If Y,, i = 0, 1, is an inter1nediate space of class A1), then

with equivalent norms.
It follows from the definition that S ((I, n ; A,) is of class
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1.3. Interpolation prolJerfy [2:-)].

Let I Bi be a second couple of Banach spaces, witli properties si-

milar to Ao , be a continiions linear mapping from Ai to Bi,
i = U, 1 (i. e. for instance ~ri is a continuous linear mapping from Ai -+ Bi
such that no on A, fl A 1 and n = then, for eyery 7 Ei I n is a

colitinitous linear 

This is the interpolation property for continuous linear mappings.

1.4. Duality property [23 J.

In general, if ~’ is a Banach ,gpace, we denote by 41:"’ the dual space
of X, provided with the dual norm. Then, # oo, one 

Since it follows from (1.7) that

1.5. Trace 

We extract the following partienlar case from [20].
We consider functions t -&#x3E; (t), t &#x3E; 0, such that

(here v" denotes the second derivative iii t ot’ v considered as a vector

valued distribution on we assume that

then v (0) is meaningful and spans, when r varies subject to conditions

(1.9) (1.10), a trace space, denoted by
This space is a Ilanach space when provided with the norm
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It is proved in [23] (see also [15]) that

with equivalent norms.

1.6. spaces.

W’e shall also use, in several places, the complex 
I and also [18]). The complex spaces

have the interpolation property. The space is of class

(cf. [23]).

2. Spaces 

Let be the Sobolev space [30] J on of functions 1t such that

E Lp (R&#x3E;i) for every ] a m ; provided with the norm

it is a Dauach space (and a Hilbert one if p = 2).
We shall always assnme that 1  oo·

V’e define IV’p "’ by duality :

We can now set the -

DEFINITION 2.1. Let r be any real number,&#x3E; 0 or 0. Let m be an
integer such that ~~~ &#x3E; . We define algebraically (i. e. for the moment we

do not put a norm on this space) by

have first to check :

2.1. h~, ,, does not depend 
all the ~~’ (~, ~I ; 

1Jl (1 - == r~.
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PROOF.

This proposition is a consequence of the reiteration property. Indeed,
it is known [13], [1«)] that

if (1 -20) 111 is an integer.

Consequently, let 111 be given satisfying Then applying (2.2) with

we see that is of class

and (l.G~ gives

with equivalent norms, and since

the result follows.

WTe now choose a norm on by taking where

integer part of 
‘ 

and definiig lcitlt the the 

of 
In particular

REMARK 2.1. We still have to prove that the spaces just defined
coincide with the ones introduced in [I] and in Chapter 1.

3. Interpolation properties of spaces r¡ .

3.1. We shall prove first

THEOREM 3.1. Let ro be real Then

with equivalent norms..
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PROOF.

We choose in (integer) such that C ~n ; then

with equivalent norms.
l’herefore, using (1.6), we have

hence the result follows.

3.2. Let y be the Fourier transform, CJ-1 its inverse, and

We define

provided with the norm
We have 113], [141, []B]:

with equivalent norms. (One has if r is an integer).
Consequently, CY§ is of’ class and the reiteration theorem

...

gives:

THEOREM 3.2. Let ),, and be arbitrary One has

equirleiit 

3.1

One has also (saine proof), for instance
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4. Identity of spaces with spaces previously introduced.

4.1. The &#x3E; 0.

Let m be an integer &#x3E; r. We apply (3.3) with

It comes

But then the constructive characterisation of S (q, ’YJ; Lp) which is gi-
ven in (23] Chap. VII, § 2, shows the identity ot’ with spaces intro-

duced in [1]. More precisely, define the translations group Gi (t) by

Let us set

We consider two cases:

first cuse : 0  ~  1.

Then « u E is equivalent to the following conditions:

and every one has

The norm in is equivalent to

Second case: ~ = 1.

Then « u E is equivalent to the following conditions :

(4.2) unchanged,

for every and every one has
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The norm in is equivalent to

REMARK 4.1

For the identity between B;,q and the spaces defined by approximations
properties (using entire functions of exponential type) cf. Chapter 1 and

also, for a different method, [26].

REMARK 4.2

According to the equivalence between trace spaces and spaces of means
the are also trace Using’ [~31J tliey can also appear as trace

spaces of harmonic (or meta-harmollie) functions. ’1’his gives the equivalence
of the B~,,~ , r ~ o, with the spaces defined in Chapter 3. (Cf. also [17] J
[17 bis]). This property is extended to every r and also to fi-actio)t)tal deri-

by Lizoi-kin, in Chapter 3. (For other results on trace of functions
defined by properties of fractionnal derivatives cf. also [1 GJ).

Anotller, more particular, trace property is given in Section 7 below.

4.2. Tlce 0.
’ 

It is obvious from the definition that J" is an isomorphism from C)(Ir
onto for using this remark with r = )-i, i = 01 17 using the

interpolation property and (3.3), we get

THEOREM 4.1. For i, (}, J, is an iso1nOrphis1it Bp, q onto

Since :

a) spaces Bp, q defined by interpolation coincide, ] 0 

equivalent norms) with similar spaces defined in Chapters 1 and 3,
b) spaces defined in Chapters 1 and 3 also have the analogous pro-

perty than the one of Theorem 4.1 ;
it follows that all the spaces B;, q in coincide (with equi-
valent norms) ,for r.

5. Duality.
THEOREM 5.1. 1tTe Then

with eqi(italeiit 
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PROOF.

by definition ; using
1.4, (5.1) follows immediately.

So we have in particular proved :

6. Complex spaces between B;. ~~ .
Let us prove first :

THEOREM G.1. One has

equiva lent 

PROOF.

We choose such that J

and then we apply [21] (where it is essentially proved that complex spaces
between spaces of means are spaces of means).

are now going to consider spaces where p = ~~ ; we simplify
the notation setting

We prove now

THEOREM 6.2 One has

with equivalent norms,

where

PROOF.

I) It is enough to prove (G.2) for r &#x3E; 1 ; indeed, since (Theorem 4.1)
Jg is an isomorphism from onto it is an isomorphism also from

[B’ (), onto [3p±8 we choose s snch that ; + .S &#x3E; 1 ; then, 
is proved for r b 1, it will be proved for If + .~ and then arbitrary.

2) Let us defiue Q = 0, x E we denote by 7 the « 
operator &#x3E;&#x3E; on the hyerplane t = 0, i.e. the operator :  2013&#x3E; (..., 0); it is

well known (cf. for instance [22]) that the operator
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is an isomorphism from onto

We now interpolate, using the complex
spaces. W’e set

One can check that

if

and

and by theorem 6.1.

Consequently

is c onto

el’ery s ~ 1 ~ and for every p, 1 Cp  00.

WTe use this result for and (s1,P1 where

. fi xed

Using again complex interpolation, we obtain

is art isomorphisiii front

onto

But using a result of (14], we have (3)

where h is given as in Theorem (6.2, and analogous result with si - 2 in.

stead of si. Threfbre (6.4) gives

is an onto

By comparison of’ this resnlt with ((;.3) (where we take
we obtain the desired result.

, A (telia 



160

REMARK 6.1

THEOREM 6.2 gives an extension of the classical to

spaces B;, r fixed. It would be interesting to obtain also an extension of

the classical convexity inequalities.

REMARK 6.2

Similar reasoning to the one used in proving Theorem 6.2 has been
used in [22].

REMARK 6.3 
,

A more general result has been recently proved (by m entirely (lifle-

rent method) by P. Grisvard, namely:

Cf. Crisvard [17].

7. A trace theorem.

We consider again the open set define

(again, this definition does not depend and gives norms

when fit varies, subject to (1 - 2q) w = r).
In particular we shall use

If It, E I~~, (S~) and satisfies

one can define ([22J) the trace yh on the hyperplane t = 0 and

if there exists It, nni(flHB . satisfying’ (..2) and
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THEOREM 7.1. A necessary and sufficient condition fo~~ u to be in Bpo is
that there existv Ic such that (7.2) holds, together with

Function 14 is unique and the norms and are equivalent.

PROOF.

1) Let h be given satisfying (7.2) and (7.4). Then by definition

and this space is contained in

and by (2~3J this last space coincides (with equivalent norms) with

There tore

Since is a continuous linear mapping from

into. then

Therefore 

and by theorem 3.1, this space is identical with Consequently 
= u F and the mapping’ li --~ zc is continuous from the subspace of

J&#x3E;;; , ’ ot’ functions satisfy-ing (7.2) into Bpo.
2) Let us set:

norm of

norm of

recalled that u - h (h solution of (7.2), ( 7. ~)) is an isomorphism
from

. , ,, , r r ,

onto Ao (resp. Then it is also an isomorphism
outo But if’

then and hence the

result follow by choosing
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CHAPTER III

THE CHARACTERIZATION OF THE SPACES B;.q (Rp)
BY MEANS OF TRACES OF METHAHARMONIC FUNCTIONS.

As it is mentioned in the Introduction, the most exhausting exposition
of the theory of tpe spaces Bp, q fOI’ r &#x3E; 0 was given in [1]. Tllis exposition
was based on the theory of approximation. However for p = q these spaces
were considered a bit earlier by E. Gagliardo, L. N. Slobodetzky, A. A.

Vasharin and at the same time by J. L. Lions, P. I. Lizorkin, S. V. Us

pensky [32] as the spaces of boundary values of functions from the corres-
ponding « weight » classes (see [11 for references). For p = q such conside-

rations with weight classes were accomplished by 0. V. Besov [33]. Finally
the weight classes of methaharmonic functions were considered in (a4). Thus,
we may say that the following theorem was in essence proved in tlce men-

tioned works.

THEOREM A. and sufficient condition for the function f (x),
defined on to belong to is that the

quantity

is finite, where F (x! , ... , t) is the 1netliahar1nonic conti1Hlation of f (x) in
the semis p ace Th e and

are equivalent, i. e. there are constants Ci C2 u’hich do not de-

pend on f such that

In this c1ulpter we substitute the quantity 111;, /1 by a simpler but equi-
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valent one, namely:

and with its help we develop the theory of the spaces Bp, q for arbitrary real r.

Naturally we are in need of a notion of hiethaharmonic continuation of

S distribtition.

1. Met haharmonic continuation of S’-distribution Into the seiiiispace R:+1 .

We form the convolution of the distribution f (x) E S’ with the Poisson
kernel for the methaharmonic operator

One may consider Pt (x) as an abstract function of the parameter 
ivith values in S’ (in particular Po (x) = 6 (x)). It is known (see for 

[34)] that this convolution can be written in the form

and is a methaharmonic continuation of the function in i. o e. o

1 I ere we shall consider the convolution in the framework of the

theory of distributions [5]. We have

for every

Using the rule of differentiation of’ the convolution and that of diflerentia-
tion ef’ the abstract function with respect to the parameter, we find that the
convolution is a generalized solution of’ the methaharmonic equation
(1) for t &#x3E; 0 and tlerefore is a fnnction. We shall denote
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Since Pt (x) - 6 (x) when t - 0, it follows from the continuity of the con-

volution, that

for

The function F(x, t) will be called the methaharmonic continuation of f in

R:+1 in what follows.

2. Bessel and Liouville integrals (derivatives) of the methaharmonic

continuation of S’-distibutioii and connection between them.

For f E S’ we take the Bessel integral f(,) of order r &#x3E; 0 and then

consider the methaharmonic continuation of the latter.

THEOREM 1. For r &#x3E; 0

(where

PROOF. Using the property of convolution we write

The operator of convolution with I’t possesses a semi-group property, i. e.

for t, r &#x3E; 0 we have

Multiplying this relation by and integrating it with respect to r, we

obtain

From (3) and (5) we get (2).
The i-elation (5) itself is important for us and we formulate it separately.

( i ) We use the formula 6.596,3 [36J.



165

1. The Liouville integration of the methaltarmonic continuation

of S’-distribiitioin with respect to t and the Bessel integration of it along the
hype’rplane t = const give the same reszclt, i. e.

Lemma 1 can be generalized to negative values of r. Indeed, the right
hand side of equality (5) is defined for negative r. But the left hand side

of (5) can be independently defined for r  0 as the Liouville derivative
or order (- r) of the function F (.r,~ t) with respect to t. We denote this

derivative by and we put (by definition)

It’ we denote the Liouville integration of F (x, t) with respect to t by
and if we write for

and for

then the operation becomes well defined for all real r (on the metha-
harmonic continuations of S’-distributions). It is easely checked that T(r)
possesses the group property

In what follows we shall use the symbol also for i. e. we put

W’e note also tlmt formula (6) can be written in the form
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For integer a &#x3E; 0 we obtain from (6)

The mentioned generalization of Lemma 1 can now be formulated as

follows.

THEOREM 2. 

’

REMARK. We recall, that the operator T(r) acts on F (x, t) as a function
of t and (x, t) = 9r F (x, t), where the operator 9r acts on F (x, t) as a
function of x.

PROOF. For r &#x3E; 0, Theorem 2 follows from Theorem ] and Lemma 1.

For r = 0 it is valid since T(o) and 90 are reduced to the identity
operator. Let r be negative. We set - r = a and take an even number

2 k ~ ~a] + 1. From (8) we have

The above expression is equal to Ft2~ ~ «~ , i. e. to Fa. This proves the

first equality in (10). The equality

can be proved in the same way as (:3) [for o ‘ (), (~,. means tlie analytic
continuation of the kernel Gr,r&#x3E;0 (see [35], I, p. 4S). ’this equality states
il particular that the function h’(,.) [(,x., t) ix metha harmonie in and has

boundary values on En which coincide with (.r). Theorem 2 is 
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In conclusion we reproduce an estimate of Lionville integral which will
be used in section 3 below. Generalizing an estimate given by Hardy and

Littlewood, Kober has proved the following (see [37], p. 199, th 2):

Ilence, substituting we obtain

Relation (11) will be culled in what follows the H. L. 1~. - inequality
_

3. RenoriHalization of the spaces 

THEOREM 3. the methaharmonic continulation S’-di-

integral Q, ( f ) then

the constant c. not on f.
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PROOF. The right hand side inequality in (12) is evident. To prove the
left hand side we use the Fourier transform with respecto to x (for fixed t).
We write

Then we have

We denote

By definition of Ilessel derivative and by theorem 2 we get

Since the function

is a multiplicator of it tollows from Michlins

theorem that

For an analogous reason the inequality

is also valid.
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By (13) and (14) we obtain

Raising this inequality to the power multiplying it by and into

grating with respect to t from 0 to 0o we obtain the desired inequality for

. 

1 ~ q  oo. For q = oo we multiply (15) by and then take supremum.
The theorem is proved.

Theorems A and 3 enable us to proceed as follows.

definition. The S’ - distribution f belongs to the space,
if the following integral

is finite, I’ (x, t) is the methaharmonic continuation of f in R,,+, . · Ex-
pression (16) may be taken as the norm and then becomes a lia-

nach space.

Expression (16) will be used for extending the theory of spaces Bp, q (Rn)
for r c 0. W’e use it in order to give a direct definition of It should

be emphasized that this definition is equivalent to the previous one by
theorem A.

For the mentioned extension a lemma is of importance, which will

be proved in next section.

4. Main 

t) be the niethaharmonic continuation of a certain S’ - distri-

vrF
bution F and let be the Liouville derivative (for y &#x3E; 0) or Liouville’vtr

integral (for y  0) of F. Then, an arbitrary real number r is fixed.

MAIN y &#x3E; r the quantity
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is finite, then for every y’ &#x3E; i- ice haz·e

’where the conistants A and B do not depend on t).

PROOF, Witliout loss of generality it is possible to take y’  y. I)eno-

ting we bave

quality

Hence

where

The converse estimate is more Since the LiouviHe dinerentia-

tion (integration) and positive trmrslatiun with respect to may be commuted
we can write
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Using the senii-group property of the operator of methaharmonic continua-
tion (see (3)) we write (denoting Pt (x) = P (x, t))

Hence, using (1~~), we obtain

It is tllis equality that will give us the possibility to the converse

estimate.

Let’s evaluate first the kernel. If we put

the corresponding estimate ntay be written in the for111

To prove (21) it is sutüeiellt to use a representation of .r (x t) by formula
(*) and the properties of omit the details.

Now we shall give an auxiliary construction that will play an essential

role in the following calculations. Consider the function

where the parameters I, ,u, co, a will be specified later. For

elementary calculation gives
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By (23a) we obtain for

-,N 

We are now able to prove the converse estimate. Using (20), (24) and
Minkowsl;i’s inequality we get

The integral in curly brackets satisfies

where the constant c &#x3E; 0 (depending on it, a) is finite.

Therefore, setting we bave
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Substituting this estimate in (25), we obtain

where the constant 2013 depends on r, y, y’ only and thus the assertion ofA

the lemma is proved for 1  q C oo.
For we argue analogously, and (23b) instead of (llct)

and (23a) respectively Q. E. D.

5. Definition of spaces h~,, ~ for arbitrary and theorem of ¡so.

morphism. 

DEFINITION..It 

if a eeriain y &#x3E; r tlre integral

F (x, t) iv the methahaharmonic continuation oj’f in I is. finite.
Provided with the norm

7~ becomes a Banach space.

REMARKS. 1) According to the main may be taken as

a norm in for every y &#x3E; 1.. Of course, such a norm is equivalent
to (16). HoBvever the quantity Qrpq, ±1 ( f’ ) changes smoothly with rand be.

sides has also another advantage (see below).
2) The definition makes sense also Moreover for

these values of p the theorem of isomorphism that will be proved later is

valid.

13 &#x3E; In the particular case p = q, the space = may be charac-

terized by the finiteness of the quantity
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But this condition means (as it may be proved), that the function

belongs to

and

Thus the space consists exactly of the traces oi’ the metharmonic

function Comparing this assertion Nvitli theorem 7.1 uf clm-

pter one may conclude that the norms of’ the spaces and

on the methlharmonic functions. W’e turn now to the proof of the
theorem of isomorphism.

THEOREM 4. The operator an 

bet’ween the and if than and
and

PROOF. Let and F ,x t II (x, t be the methaharmonic
continuation of f and It, respectively. In order to that it is

sufficient (according to the previous denfinition) to evaluate the quantity
Using the fact (see theorem 2) that

we have

It follows from this equality, that I One

must verify besides that the correspondence between and is

one-to-oue. It is enougli here to prove that every I mm 1 m 
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sented in the form

and

Consider the function It is a methaharmonic one

and we have

Consequently by definition, its boundary values lim v (v, t) determines a fun-
t-o

ction f E I3~ q . W’e recall now that the operation T(r~ has the group pro-
perty and can be substituted by 9(r).

Therefore

I I ence when 2013~Oy we obtain

In addition the equality (27)~ means that

This proves the theorem.

We note in conclusion that the isometric property of the operator
fellows from our choice ot’ the norm (see remark 2).

4 Sup. - 
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FOOTNOTES

(1) p. 25. 40 + At is a Banach space for the norm

(2) p. 25. (resp. Lp (0, 00; A)) denotes the space of strongly measurable func-
tions t -~ u (t) from R (resp. - (0, oo)) to A, such that lilt (t) IIA belongs to Ip (resp.

Lp (0, oo)), 1 cxJ. It is a Banach space when provided with the (t) -

p

(3) p. 34. On the whole space the inclusion [c6 , is announced in [19J;
the inverse inclusion follows by dnality, using the Calderon’s duality 

=[Ao,A1]0- e (when, for instance, the spaces are rotiexive); the similar results for spaces

considered on 9 instead of R’I1. follow easily.



177

BIBLIOGRAPHY

1. O. V. BESOV, a) Properties of some functionnal spaces. Trondi Mat. Inst. V.A. Stekloff.
60 (1961), p. 42-81 (in Russian).

b) On some properties of functionnal spaces. Imbedding and extension theorems,
Doklady. t. 126 (6), (1959), p. 1163-1165 (in Russian),

2. J. L. LIONS, Un théorème de traces; applicatiotions. C. R. Acad. So. Paris, t. 249 (1959),
p. 2259-2261.

3. L. I. LIZORKIN, Generalized Liouville derivatives and functional Spaces Lnp (Em). Imbed-

ding theorems. Mat Shornik. 1963, 60 (102), p. 325-352 (in Russian).
4. S. M. NIKOLSKII, a) Approximation des fonctions périodiques par des polynomes trigonométri-

ques. Troudi Mat. Istitute V. V. Stekloff, t. XV. 1945. (in Russian).
b) Inequlities for entire functions of finite type and applications to diffe-

rentiable functions of several variables. Troudi Mat. Stekloff, t. XXXVIII (1951),
(in Russian).

c) On the extension of functions of several variables and their differentia-
bility properties. Mat. Sb. 40 (82), 2 (1956), 244-268 (in Russian).

5. I. 1. OGNEVISKII, Generalization, of some results of Hardy, Littlewodd and Zygmund on

fractionnal derivation and integration of periodic functions. Ukranian Journal of Math.
IX (1957), p. 205-210 (in Russian).

6. P. CIVIN, Inequalities for trigonometric integrals. Duke Math. Journal. 1941, 8, 656-665.
7. J HARDY and S. LITTLEWOOD, Some properlies of fractional integrals I. Math. Zeits.

1928, 27, 565-606.
8. P. E. REVES and O. SZASZ, Some theorems on double trigonometric series. Duke Mathe-

matical Journal 1942, 9, 693-705.
9. L. SCHWARTZ, Théorie des distributions, I, 11, 1950-1951.

10. A. ZYGMUND, Smooth functions. Duke Mathematical Journal 1945, 12, 43-76.
11. A. ZYGMUND, Trigonometrical series, 1938.
12. A. P. CALDERON, Partial diffential equations. Eded by Ch. Morrey. Providence 1961.
1:3. A. P. CALDERON, Intermediate spaces and interpolation. Varsovie 1960 (Studia Math. Spe-

cial Issue 1, 1963).
11. A. P. CALDERON, Intermediate spaces and interpolation. The complex method - Studia

Math. 1964.

15. P. GRISVARD, Math. Scandinavica. (1964).
16. P. GRISVARD, Théorèmes de trace. C. R. Acad. Sc. Paris. t. 256 (1963), p. 2990-2992.

17. P. GRISVARD, Commutativite des procédés d’interpolation «réel» et « complexe ». C. R. Acad.
So. 1964.

18. S. G. KREIN, On an interpolation theorem..., Doklady Akad. Nank, 130 (1960), p. 491-994.
19. J. L. LIONS, Une construction d’expaces d’interpolation. C. R. Acad. Sc. Paris, t. 251 (1960),

p. 1853-1855.

20. J. L, LIONS, Sur les espaces d’interpolation ; dualité. Math. Scand. 9 (1961), p. 147-177.
21. J. L. LIONS, Une propriété de stabilité pour les espaces d’interpolation; applications. C. R.

Acad. Sc. Paris, t. 256 (1963),p. 855-857.
22. J, L. LIONS, E. M AGENCES, Problémes aux limites non homogénes, (III). Annales Scuola

Norm. Sup. Pisa, 15 (1961), p. 39-101.



178

23. J. L. LIONS, J. PEETRE, Propriétés d’espaces d’interpolation. C. R. Acad. So. Paris, t. 253
(1960), p. 1747-1749; Sur une classe d’espaces d’interpolation. Publ. Math. Inst. des
Hautes Etudes Sci. 19 (1963).

24. E. MAGENES, Spazi di interpolazione ed equazioni a derivate parziali. VII Congresso U.
M. I. Genoa, 1963.

25. J. PEETRE, Sur le nombre de paramétres dans la définition de certains espaces d’interpolation.
Ricerche di Mat. 12 (1963), p. 248-261.

26. J. PEETRE, Espaces intermédiaires et la théorie constructive des fonctions. C. R. Acad So.

Paris 256 (1963), p. 54-55.
27. J. PEETRE, On an equivalence theorem of Taibleson. To appear.
28. J. PEETRE, Espaces d’interpolation , généralisations, applications. To appear.
29. L. SCHWARTZ, Théorie des distributions à valeurs vectorielles. Annales Institut Fourier 7

(1957), p. 1-141, 8 (1958), p 1-209.

30. S. L. SOBOLEV, Applications de l’Analyse fonctionnelle à la Physique Mathématique. Lenin-
grad 1950.

31. M. H. TAIBLESON, Lipschitz classes of function and distributions in En Bull. Amer. Math.
Soc. 69 (1963), p. 487-493.

32. S. V. USPENSKII, On imbedding theorems for « weight » classes. Troudi Mat. Inst. Akad.

Nauk. CCCP, 1961 (60), p. 283-303 (in Russian).
33. O. V. BESOV, On extension of functions ... Mat. Sbornik. t. 58, (100), 2 (1962), p. 673-

684 (in Russian).
34. L. I. LIZORKIN, Functions of Hirschmann type... Mat. Sbornik, t. 63-4 (1961) (in Russian).
35. L. SCHWARTZ, Théorie des distributions. t. I et II. Paris 1950-51.

36. N. S. GRADZTEIN I. M. RIJIK, Tables. Moscow 1962 (in Russian)
37. H. KOBER, On fractionnal Integrals and Derivatives. The Quart..J. of Math. vol. 2 (43)

(193-211)-1940.


