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RIESZ GROUPS

by L. Fuocss (%
Dedicated to my Father on his 80th birthday

Several authors have devoted their interest to investigating lattice-or-
dered groups, and recently the theory of lattice-ordered groups has made a
great progress. There is a class of partially ordered groups which lies very
closely to lattice-ordered groups and which however has not been dealt
with systematically, though it deserves great interest because plenty of
examples may be found for such groups in different fields of mathematies.
This class consists of the directed groups G with the following interpolation
property: if a,,a,,b,,b, € G satisfy

G=by 0 =by, =0, a0y,

then there exists some ¢ € G such that

G=c=b, a=c=b,.
In his investigations on linear operators, . RiEsSz has called attention to
such groups [13](!), and this is the reason why we shall call them Riesz groups.
Ife has introduced them by the refinement property : if a,, .y @m,0,,.0, by
are positive elements of G and

Ay oe Oy =10, .. D,
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2 L. FucHs : Riesz
then there exist positive elements ¢;(i=1,..,m;j=1,..,n) such that
@; = Cit vt Cizy, ADNA bj = €y ... Cpj

for every i and j. Later BIRKHOFF [2] has established some properties of
Riesz groups. For some recent applications we may refer to BAUER [1] and
NAMI0KA [10].

The aim of the present paper is to lay down a systematic treatment
of Riesz groups from the algebraic point of view. A large part of the di-
scussion runs parallel to the theory of lattice-ordered groups. In order to
ensure that certain theorems on Riesz groups contain important results on
lattice-ordered groups as special cases, one has to consider Riesz groups
not simply as partially ordered groups with some special type of order, but
rather as partially ordered groups in which for certain pairs of elements
«meet » or «union » operation is defined. Thus Riesz groups are to be re-
garded as algebraic systems with not everywhere defined operations « meet »
and «union ». This fact causes some difficulties at several places. Another
difficulty stems from the fact that while lattice-ordered groups form an equa-
tionally definable class of algebras, and so do those lattice ordered groups
which are representable as subdirect products of fully ordered groups, the
Riesz groups fail to have this property. Therefore, special care must be
taken when subdirect representations are discussed.

First we lay down the most important terminologies and notations to
be used throughout the paper (§1). Then we begin with different characte-
rizations of Riesz groups (§2). It turns out that this class of partially or-
dered groups admits several equivalent definitions, showing that it is not
only of importance from the point of view of applications, but it is at the
same time a very natural generalization of the concept of lattice-ordered
group. Some of the simplest examples of Riesz groups which are not lattice-
ordered may be found in § 3. The next section (§ 4) is devoted to the
notions of orthogonality and carrier; they are useful in Riesz groups as
well. In § 5, the important concept of o-ideal is discussed. In Riesz groups
the o-ideals play a similar role as the l-ideals do in lattice-ordered groups.
The property of being a Riesz group is preserved on passing modulo o-ideals.
The main result on o-ideals states that in Riesz groups they form a distri-
butive sublattice of the lattice of all normal subgroups.

The next § 6 deals with extensions of commutative Riesz groups ana-
logously to the Schreier extension theory of groups. Among the extensions
of a Riesz group by another one, the Riesz groups can be characterized
easily. The results of this section serve as tools for obtaining some theorems
in the subsequent sections. '
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Of great importance are the Riesz groups in which two elements may
have an intersection (or union) only if one is greater than or equal to the
other. These Riesz groups, called antilattices, play the same role in the
theory of Riesz groups as the fully ordered groups do in the lattice-ordered
case. They are introduced in § 7, and in § 9 we get full desecriptions of
antilattices in the commutative case. First, it is shown that a commutative
antilattice with isolated order is an extension of a trivially ordered group
by a fully ordered group. The other structure theorem states that they can
be obtained as subgroups of cartesian products of fully ordered groups
where an element of this product is to be considered greater than e only
if each of its components is greater than e. Exceptional elements, called
pseudo-identities and pseudo-positive elements, are discussed in § 8.

In § 10 it is shown that a commutative Riesz group is subdirectly
irreducible if and only if it is an antilattice. By making use of this result
it is proved that to every commutative. Riesz group there exists a meet
and union preserving o-isomorphism with a subdirect product of antilattices.
The next § 11 contains the discussion of the case when the smbdirect pro-
duct rvepresentations by means of antilattices are irredundant. Like in case
of lattice-ordered groups, they are then unique up to o-isomorphisms.

The final § 12 deals with the analogue of the Conrad radical of lattice-
ordered groups. Here the underlying group is supposed to be only directed
and to have isolated order, and even in this rather general case the existence
and some of the main properties of the Conrad radical can be established.
(In general, we do not lay stress on formulating and proving the results
in most general form.)

§ 1. Terminology and notation.

By a partially ordered group G we mean a group (whose operation will
bhe written as multiplication) which is at the same time a partially ordered
set uller a relation =<, and the monotony law holds: a <b implies ca < ¢b
and ac = be for all c€ G. If G is a lattice under =, then it is called a
lattice-ordered group. The set of all x€ G with x = ¢, ¢ the group identity,
is the positivity domain P = G+ of G. The symbol P* will be used for P
with ¢ omitted. G+ completely determines the partial order of @, since a < b
if and only if ba—'€ G¥ . @ is trivially ordered if G+ = e. G+ generates the
group @G if and only if G is directed in the sense that to a,b€ @ there is
always a c€ G satisfying a <¢, 0 =< c.

The partial order = is called isolated if a" = e for some positive n
implies « = e. It is called dense if given a < b there always exists some
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¢ € G such that a << ¢<{b. This amounts to requiring the same for a =,
and hence to P*? — P*, (Here and in the sequel multiplication of subsets
in G means complex multiplication.)

For a,,..,a,€ G, U(a,,..,a,) and L(a,,..,a,) will denote the set of
all upper and lower bounds of a,,..,a, in G. The symbols U*(a,,..,a,)
and L*(a,,..,a,) will be used to denote the sets of elements in G which
are greater than and less than, respectively, each of a, ,...,a, (equality ex-
cluded). A subset S of G is an upper (lower) class if a € § implies U (a)C §
(L(@)S 8). We say that & is wu-directed (l-directed) if a, b€ S implies the
existence of an x€ S such that v = a,x = b (x = a,x = )). S is called convex
ifa<ax=<0"band a,b€8, x€ G imply x€S.

Let @ and G’ be partially ordered groups and ¢ a mapping from G
into G’. If ¢ is a group homomorphism which preserves order relation,
then it is called an o-homomorphism. An o-homomorphism, which is surjective
and under which the preimage of a positive element always contains a
positive element is an o-epimorphism. 1f ¢ is a group isomorphism preserving
order relation, we say ¢ is an o-monomorphism. Iinally, it ¢ is a group
isomorphism and if ¢, @—! preserve order relation, then ¢ will be said to be
an o-isomorphism.

If A is a convex normal subgroup of G, then the partial order < of @
induces one in G/A : one puts b < ¢ for the cosets b, ¢ mod A if and only
if some bED and c€c satisfy b < ¢. Then the canonical map ) — b4 is an
o-epimorphism of G onto G/A. Conversely, if ¢ is an o-epimorphism of G
onto some G’ and if A is the kernel of ¢, then A is a convex normal sub-
group of G such that the o-isomorphism G’ 2, G/A holds.

Let @; be a family of partially ordered groups with i ranging over
some index set A. The cartesian product O = IT* G, of the G, is made into
a partially ordered group by putting g = I between two elements of C if
91 = h; for the components g,,h; of g, h in each G;. The direct product
IT1@, is a partially ordered subgroup of C, and so is every subdirect product of
the G,. If we define ¢ << I in the cartesian product C to mean that g, < h; for
each A, then we call the arising partially ordered group the mild cartesian
product of the G;. Mild subdirect products will mean subdirect products with
this definition of order. .

For the concepts not mentioned here we refer to [7].

§ 2. Characterizations of Riesz groups.

Now we turn to our main objective, i. e. to Riesz groups.
A partially ordered group @ is called a Riesz group if it has the follo-
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wing two properties :

(i) it is directed ;

(ii) it has the interpolation property: to all a ,a,,b, ,b,€ G with
a; = bj(i=1,2;j=1,2) there exists a ¢ € G such that

G=c="b; (t=1,2;j=1,2)

Property (ii) may be called the (2,2)-interpolation property, if in general
we mean by the (m, n)-interpolation property that given a,,..., a, and b,,..., b,
in ¢ such that

a; = b; for i=1,...,m; j=1..,n,
then there exists a ¢ € G satisfying
G=c=b for i=1,..,m;j=1,..,n.

Since property (i) may be viewed as the (2,0)-interpolation property, it
follows at once by induction :

LeEMMA 2.1. A partially ordered group G is a Riesz group if and only
if it enjoys the (m, n)-interpolation property for all integers m,n = 0.

Note that if, in addition to directedness, the (2, co)-interpolation pro-
perty is also assumed (co means an arbitrary cardinality), then this is
equivalent to the hypothesis of being lattice-ordered. It is clear that the
(oo, co)-interpolation property amounts to conditional completeness. Thus,
roughly speaking, Riesz groups are in the same ratio to lattice-ordered
groups as these to complete lattice-ordered groups.

‘While lattice-ordered groups are necessarily Riesz groups, there are a
lot of examples for Riesz groups which fail to be lattice-ordered. See § 3.

The main properties of Riesz groups are summarized in the following
theorem.

THEOREM 2.2. For a directed group G, the following conditions are
equivalent (%) :
(1) ¢ is a Riesz group ;
(2) for all a;y...,am€ G, the set U (a,, .., ay) is l-directed ;
(3) for all @, ,...,@n and b, ,..,b,€ G we have

U@ yeey@n) Uy yeiybn)= U@ by, bnyey@nby);

(%) Of course, even the duals of (2)-(5) are equivalent with (1). Portions of this theo-
rom have heen published in [13], [2], [1]; ef. also [15].
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(4) the intervals [e, a] are multiplicative :
le, a] - [, b] = [e, ab];
(5) if a€ @ satisfies

e=a=>b ..b, with bi=e,
then there exist elements a;€ G such that
G =0 ... 0y where e a; = b;.

(1) and (2) are equivalent. Assume (1) and let b, , b, € U (a, , ... , d).
Then a; = bj for ¢ = 1, ..., m, j = 1, 2 and by the (m, 2)-interpolation pro-
perty some c € G satisfies a; = ¢ =< b; for all ¢ and j. Thus c€ U(a,,...,an),
and U (a, .., ay) i8 l-directed. That (2) implies (1) follows on using the
reverse argument.

(1) and (3) are equivalent. First assume (1), and note that in any G

U@ yorytm) Uy, ,b) S Ula b ,..,anb)

Thus it suffices to show that every x€ U (a,b,, .., a,bd,) belongs to
U (@ ey @m) U (byy .y by). Clearly, a;b; = x, and so &~ a; < bj' for all
¢ and j. By the (m, n)interpolation property there is a y € G such that
e a; <y < b for all i and j. Now ay€ U(a,,...,a,) and y~' € U(D,, ..., by),
and thus € U (a,, ..., @) U (b, , ..., by), indeed. Conversely, suppose (3)
and let a;<b; for i=1,2; j =1, 2. Then e € U (a1 b, a1 b7, ax b7, a,057")
implies ¢ = c¢™' with some c¢€ U (a,,a,) and ¢~ € U (b7, b;"). This ¢ sa-
tisfies a; =< ¢ < b; for all i and j.

(1) implies (4). It is enough to verify for a Riesz group G that if
e = x < ab for some x € @ where ¢ < a, ¢ = b, then there exist elements
y€le a), z€[e, b] such that x = yz. Now any one of zb—1, e is less than
or equal to any one of x, a, hence some y € G can be inserted between
them. If we define z = y—'x, then ¢ =< 2z < b and (4) follows.

(4) implies (5). Property (4) gives by induction

le, by ... bu) = [e, D] ... [e, ba)

where b; = e. If a belongs to the left member, then it helongs to the right
member. This is nothing else than (5).
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Finally, (5) implies (1). Assume (3)and e =), ,e<b,,a =D, ,a=0D,.
Then ¢ = b, = b, (a~! d,), and (5) implies the existence of a ¢= ¢ such that
c1b,=eand ¢ = by, c71b, =< a1b, . This ¢ lies between ¢, ¢ and b, , b,.

This completes the proof.

In commutative groups we have a further equivalent property :

THEOREM 2.3. A commutative directed group G is a Riesz group if and
only if it satisfies
(6) if for positive a, y .., Gmy by y ey by in G
Oy ee By == by o0 by
then there exist positive clements ¢; in G (i=1,..,m; j=1,..,n) such that
W = Cj +ue Cin (t=1,..,ym)

and
bj = ¢1j oe Cmij (=1, ..,n).

<~

If @ is a Riesz group and the positive elements a;, b; satisfy
@y oo @y, = b, ... b,, then we have

(5) guarantees that there are elements c¢;; € G such that ¢ = ¢;j = ); for
. * N — . P .
every j and d;=Cjj...C1n. NOW c2j=ujc,j1 are certainly positive and satisfy

* * -1
Ca1 eee Cop = bl .. bn Ay == g vee gy »

A simple induction on the number of the a; establishes (6). Conversely, if
a directed group G satisfies (6), then (5) follows at once.

Let us mention here:

ProrosITION 2.4, The direct (or the cartesian) product of partially ordered
groups is a Riesz group if and only if each factor is a Riesz group. The mild
cartesian product of dense Riesz groups is again a Riesz group.

The proots of the statements are straightforward and may be left to
the reader.

It is known that every abelian group (*)) can be embedded in a minimal
divisible group and divisible groups are easy to handle. We now show that
torsion free abelian Riesz groups can be embedded in divisible Riesz groups:

(3) For the needed results on abelian groups we refer e. g to [6].
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PROPOSITION 2.5. Let G be a torsion free abelian Riesz group and D
its divisible hull. The order of G can be extended in a unique way to a minimal
isolated order in D. Then D will again be a Riesz group.

As usual, a€ D is defined to be positive if for some natural integer
n, a"€ G is positive. This makes D into a partially ordered group which is
obviously again directed. If given a,, a,, b, , by € D such that a; =< b;
(i=1,2; j=1,2), then choosing a positive integer » such that a;', ;€ G,
we find a ¢ € G satisfying a7 < ¢ < b; for all ¢, j. The unique nth root of
¢ lies between the as and b;’s.

In particular, we see that the order of a torsion free abelian Riesz
group can always be extended to a minimal isolated order under which it
is again a Riesz group.

REMARK. If the definition of Riesz groups is formulated in a much
more general way, a family of intermediate notions between Riesz groups
and lattice-ordered groups arises. Let m and n be infinite cardinal numbers.
By the (m, n)-interpolation property we understand the following property
of a partially ordered group @ : if given two subsets A and B of G such
that the cardinality of A is less than m, that of B is less than n and

a=1"> forall a€eA and b€ B,

then there exists a ¢ € G satisfying
a<=c¢c=10b forall aed and )€ B.

In this sense, Riesz groups are characterized by the (¥,, N,)-interpolation
property, and lattice-ordered groups of power < m by the (N,, m) interpo-
lation property. Plenty of our results can at ouce be extended mutatis
mutandis to the general case.

§ 3. Examples.

Since lattice-ordered groups are necessarily Riesz groups and we are
furnished with a lot of examples for lattice-ordered groups, in what follows
we are going to exhibit only examples for Riesz groups which fail to have
a lattice-order.

1. Let @G be the additive group of complex numbers and let the posi-
tivity domain I’ consist of all - ¢y (x, y real) for which either x =y = 0
or x>0, y> 0.
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2. The same group &, but P now consists of all & - iy for which
either x =y =0 or x >0, y = 0.

3. The same group @, now let positivity be defined such that P consists
of 0 and of all # 4 iy with x > 0 (y is arbitrary).

4. Let @G be an arbitrary dense fully ordered group and I" an arbitrary
group with no order at all. If B is a group which contains I" as a normal
subgroup such that B/’ > G (group-isomorphism), then (B may be ordered
8o that its positivity domain consists of the identity and of all the elements
which belong to strictly positive cosets (ordering as in G (%)).

Thus a Riesz group may contain elements of finite order, and need
not have isolated order.

5. Let @ be the additive group of all polynomials (or rational functions)
with real coefficients, and define f = 0 if and ouly if f(x) = 0 for each
real number « in the closed interval [0, 1].

6. The same group G, but let f > 0 mean that f(xr) > 0 for every
2 € [0, 1].

7. Let G consist of the additive group of all real-valued functions
which are defined and differentiable in the interval [0, 1]. For f€ G set
f=0if f(x) = 0 for each x € [0, 1].

8. The same group, but let f > 0 mean that f(x) > 0 everywhere
in [0, 1].

9. Harmonic functions in a region of the plane form an additive group
in which we put f = 0 it f(x) = 0 for every a.

10. Let G be a group with a valuation w, i. e. w is a function defined
on G with real values such that
(i) w (ab) = w (a) 4 w (D) for all a, b€ @,
(if) w (e) = 0.
In addition we assume

(iii) the set of values 1 (a) is an infinite dense subset of the real
numbers.

() Here G can be replaced by a dense antilattice.
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Then putting a € P if and only if either « = ¢ or w (a) > 0. @G is
made into a Riesz group (5).

If, for instance, G is the free group with the free generators a,,..., a,,...
and if we define w as the valuation induced by

1
w (a,.) = -2—;‘- (n = 1, 2, ...),
then we get a Riesz group on the countably generated free group. (The
same can be done in the abelian case.)

§ 4. Orthogonality, carriers.

As usual in lattice-ordered groups, we call the elements «, b of any
partially ordered group G orthogonal if

anNb = e

which means nothing else than L (a, b)) = L (¢). Orthogonality may be de-
noted as usual by the symbol « | b.

This definition of orthogonality is equivalent to the one introduced by
KurYEV [9]; he has defined orthogonality by the rclation La 10 Ph=' = P

Orthogonality in the general sense preserves several properties of ortho-
gonality in lattice-ordered groups. Let us list some of them here.

(@) If anb = e and if ¢ = ¢, then
L (a, be) = L (a, c).

We have clearly

L(ayc) = L (a, (@ Ab) ¢c) = L (a, ac Abc) = L (a, ac, be) = L (a, be).

(b) If aAb =—¢c and arnc =¢, then a Abc=c¢. This is a simple con-
sequence of (a).
(€) If a,y...,a, are pairwise orthogonal clements, then «a,v..va,

exists and
AV eVl = .. Q.

By (b), a; ... @,—; i8 orthogonal to a, . Hence from the identity w(ray) 'y=
=xvy we infer a; ...,V a, = @ ... t,_; @, . A simple induction concludes
the proof.

(5) Note that Exawple 10 is a special case of Example 4.
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(d) Orthogonal elements commute. This follows from (c) in the special
case n = 2.

(e) If @ Riesz group G is the direct product of its convex normal sub-
groups A and B,G = A >< B, then the positive elements of A are orthogonal
to the positive elements of B.

Let a€ A, b€ B be positive elements. Then e¢€ L (a, b). If g € G+ belongs
to L (a,b), then by convexity g€ A and g€ B whence g =c¢. If g€ L(a,d)
and if g were incomparable with e, then by the dual of (2) in Theorem 2.2,
" there would exist an h€ L (a, b) such that e < h and g < h which has been
shown to be impossible.

(f) The set X* of elements of Gt orthogonal to every element of a sub-
set X of Gt is a convexr subsemigroup, containing e, of G+.

Evidently, e€ X* and X* is convex. (b) implies that it is a semigroup,
in fact.

In trying to generalize the notion of orthogonality to non-positive ele-
ments, analoguously to the lattice-ordered case, a serious difficulty arises.
This stems from the fact that in our present case the absolute of an ele-
ment fails to exist in general. Though it can be replaced by a certain
subset of G (see FuoHS [7], p. 77), which is adequate for certain purposes,
it does not lead to a very natural concept of generalized orthogonality.
Therefore we do not discuss it here.

On using orthogonality, the notion of carrier (filet) can be introduced
in the same way as in lattice-ordered groups (cf. |8]).

The positive elements a,b of G are said to belong to the same carrier
it a Ax= e for some x€ G implies b Az = ¢ and viceversa. This subdivides
G+ into pairwise disjoint carriers; the one containing @ is denoted by a*.
1t follows at once:

(A) The carriers are conver subsemigroups of G+.

In tact, for positive a,b, abAxz=¢ if and only if aAx =¢ and’
bax =ce.

Let a* < b* mean that D Az = e implies a Ax = ¢, for each x € G. Then
this definition is independent of the representatives a,b of a* b* and makes
the set € of carriers of G into a partially ordered set. The map a — a* of
Gt onto € is obviously isotone.

(B) The union a*vb* of two carriers a*, b* always exists, and satisfies

a* v b* = {ab)* (@€a’ bed.

The inequalities a* = (ad), b" = (ad)* being obvious, let c¢* satisfy

at=cYy b =c" and let c€c¢. Then cAx =e¢ implies both aAx=¢ and

bAx=e By (b) these imply abAx = ¢ whence (ab)* < ¢*, as we wished to
show.
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(C) If a* = b" and if a€ a*, then there is a b€ b* such that a <.
Taking some b €b", we have, in view of (B), " = b} = b} v a* = (, a)’,
thus b = b, a is an element of the desired type.
(D) @ is distributive in the semse that if a* AD* exists, then so does
(@* v c*) A (b v c*) for each c"€C and

(@*ADYvet = (a"ve A (D veh)

Put d*=a"Al*; then obviously d*ve¢*=<a*vctand d*ve* < D' veh
Assume that o* exists with 2* < a*v ¢* and 2* < b*vc" which is not < d*v e,
Then by (B) there is also one such that d*ve¢* <a*. Let ded’ c€c¢*, and
let x€x*, a€a", bed" satisfy de<ax < ac, r<<be, which can be achieved
because of (C). Then d* < (xc—1!)*, for equality would imply (d¢)* = d* v ¢* =
= (zc~1)* v ¢* = x*, against hypothesis. But xc—1 € L (a, b) implies (xc—1)* < a,
(xc—1)* =< V%, a contradiction to the choice of d*.

THEOREM 4.1. If a partially ordered group G has a finite number of
carriers, then the partially ordered set @ of its carriers is a Boolean algebra.

By (B), € is a union semi-lattice, therefore the existence of a minimal
element ¢* in ¢ and the assumed finiteness of ¢ imply that C is a lattice.
By (D) it is distributive. If a},...,a} («,€ GT) are the atoms of C, and if
b €Q satisfies a},..,a, <V but @, .., a) S then ¢t = Bppy Vo V @,
will be the complement of b* in €. For, b* A ¢* = (0* A “2+1) va.v(hraa)=e¢\.
Furthermore u = bc (b€ b*, c€¢") satisfies a} = 0" v ¢* = (be)" = u* for every
i whence u Ax = ¢ implies ¢;Ax = ¢ for all i; thus »* contains no atoms,
x=¢ and u* is the maximal element of (.

§ 5. o-ideals.

The importance of the role played by l-ideals in lattice ordered groups,
is well.known. In arbitrary partially ordered groups, in particular in Riesz
groups, the o-ideals seem to have corresponding though not so important a
role. We are going to menvion the main properties of o-ideals.

Recall that a subset A of a partially ordered group G is called an
o ideal if

(i) A is a normal subgroup of G;
(ii) A is a convex subset of G;
(iii) 4 is a directed set.

It is evident that an o-ideal of a lattice-ordered group is nothing else

than an l-ideal. Note that
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(A) o-ideals contain unions and intersections of their elements whenever
they exist in Q.

(B) Neither the union nor the intersection of two o-ideals need be
an o-ideal.

(C) The union of an ascending chain of o-ideals is again an o-ideal.
Therefore, if A is an o-ideal of @ and x€ G does not belong to A, then
there exists an o-ideal B of G maximal with respect to the properties of
containing A and excluding .

(D) o-ideals generated by sets of positive elements do have a meaning.
The convex hull of the normal subsemigroup with ¢ generated by a given
set of positive elements is obviously a convex normal subsemigroup S of P
which must be contained in all o-ideals generated by the given set. The rest
follows from

PROPOSITION 5.1. There is a one-to-one correspondence between the o-ideals
A of a partially ordered group G and all convex normal subsemigroups S of
¥+ containing e. The correspondences are given by (%)

p: A—>GtNA and w: 8 — (V)

which are inverse to each other.

Tt is clear that if A is an o-ideal, then G+ N A is a convex normal
subsemigroup with e. Also, {G* N A} = 4, because A is directed ; thus (")
@y is the identity. Now if § is as formulated, then (§}= A is plainly a
normal subgroup which is directed. To see convexity, let x€ G satisfy
a1 =x =< cd ! (a,b,e,d€8). Then on right multiplication by bd we get
ad = abd < ¢d—1 bd where ad€ S and c¢(d-1bdd)€S. So — in view of the
convexity of 8§ — we have y =uxbd€ 8. Thus x =y (bd)~' € (8]. Finally,
GHn {8} =8, for if a,b€ S satisty ab~1€ G+, then e =< ab—! < a implies
ab—1€8. So wp is again the identity map.

Note that the oideal corresponding to G+ coincides with G if and only
if G is directed. Also, the o-ideal generated by a family of o-ideals does have
a4 meaning.

(E) The canonical map of a partially ordered group G onto its factor
group G/A with respect to an o-ideal A of G preserves unions and intersections.
If, for x, y€ G, r Ay ==z exists in @, then for the corresponding cosets
mod A one has evidently z < z and Zg@. If the coset u satisfies u <z

(6) {8} denotes the subgroup generated by the subset S.
(1) In a product of mappings the left factor is followed by the right one.
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and u <y, then for some u, ,u, Efl, u, = v and u, =< y. By the directedness
of cosets, there is a u€u such that u < Uy w = u,. Therefore » =< & and
u=<y, u<rAy==2 and thus u <z Consequently, z =z A y.

It should be noted that property (A) or (E) is not characteristic for
o-ideals. In fact, there exists a larger class of convex subgroups which shares
this property. Calling a subgroup C of G an w-ideal if it is the intersection
of a family of o-ideals A, of @, it is obvious that C still contains unions
and intersections of its elements if they exist. Furthermore, (E) also prevails,
since G/C is canonically isomorphic to a subdirect product of the G/A,,
and since the natural homomorphisms G — G/A, preserve unions and inter-
sections, so does the map G — G/C they induce. The w-ideals have the
advantage that the w-ideal generated by an arbitrary subset of G has a
well-defined meaning.

Next let G be an arbitrary partially ordered group, and consider the
set @ of all o-ideals of @, partially ordered by inclusion. Tt is rather sur-
prising that @ is a lattice (but it is only exceptionally a sublattice of all
normal subgroups of @&, c¢f. Theorem 5.6):

PROPOSITION 5.2. If the set of, all o-ideals of a partially ordered group
G is ordered by inclusion, then it is a complete lattice.

By what has been noted at the end of (D) it follows that the set ® of
o-ideals is a complete semilattice under union. By a standard result in lat-
tice theory, ® is then a complete lattice provided it has a minimum element
which is now the case.

Up to now we have considered o-ideals in arbitrary partially ordered
groups; in the rest of this section we shall be concerned with those in
Riesz groups.

PROPOSITION 5.3. The factor group G/A of a Riesz group G with res-
pect to an o-ideal A is again Riesz group.

Let the cosets a,, ay,b,, b, mod A satisfy «=b; (i=1,2,j=1,2)
Then gwen a; € a; arbitrarily, there exist elements bji € b; thlsfvmg a; = by
(t=1,2; j=1, 2). By the directedness of cosets, there are b; € b (j=1,2
such that bj;, bj, = b;. We apply the interpolation property to the pairs
a,, a, and b, , b, to conclude the existence of a ¢€ G such that a; < ¢ <y

for all 4,j. Then the coset ¢ containing ¢ satisfies a; < ¢ < b; for all i, j.

PROPOSITION 5.4. The intersection of a finite number of o-ideals is also one.
We prove that AN B is an o-ideal if so are A and B. We need ounly
show that A N B is directed. Let x, y€ AN B. Ior some « € A and b € B we
have #,y = a and x,y = b. Let ¢ lie between the pairs x, y and a, b. By
convexity, ¢ € A and ¢ € B, and so ¢ is an upper bound for x, y in AN B,
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For infinite intersections the last proposition fails in general. For ins-
tance, let H,(n =1, 2,...) be the fully ordered group of rationals and H,
the same group with the trivial order. Let G be the lexicographic product
of the groups H,,...,H,,..,H, (in this order). 1t is easy to check that
G is a Riesz group in which the lexicographic product A, of H,,..., Hy is
an o-ideal for n =1, 2, ... . But the intersection of all these A, is equal to
H,, which is not an o-ideal.

PRoPOSITION 5.5. The product of a finite number of o-ideals is again an
o-ideal. The subgroup generated by an arbitrary set of o ideals is likewise an
o-ideal. .

We show that AB is an o-ideal if so are A and B. Since the elements
of AB are of the form ab(a € A,b € B) and 4, B are directed, it is evident
that AB is directed. To see the convexity of AB, assume x € G satisfies
e < x =< ab for some a € A, b€ B; in view of directedness a and b may be
assumed to be positive. Theorem 2.2, (3) ensures the existence of a’, b’ € G
satisfying e < ¢’ < a, e < b’ < b and x = a’l’. Here certainly a’ € A, b’e B,
and consequently, x € AB. Since the subgroup generated by a family of
o ideals is the set union of the subgroups generated by finite subfamilies,
the second statement is an immediate consequence of the first one.

The next result is a generalization of the corresponding statement on
l-ideals in lattice-ordered groups.

TOEOREM 5.6. The o-ideals of « Riesz group G form a distributive sub-
lattice in the lattice of all normal subgroups of G.
By virtue of Propositions 5.4 5.5, we need only verify the distributivity

AN{B,Cl=1{ANnB,An C)

for o-ideals A, B, C of G. It suffices to establish the inclusion €. Let a =b¢"
(b € B, ¢ € C) belong to the left member; without loss of generality ¢ << a

may be assumed. By directedness, B and C contain positive elements b, , ¢,

such that b < b, , ¢ = ¢,. Applying (5) of Theorem 2.2 to ¢ = a < b,c, we

infer that a = byc, for some b, ,c, with ¢ =0, = b, ¢ = ¢, =< ¢;. Since

b,€ B, ¢,€ C and b, = a, ¢, = «, it follows that by € A N B, ¢, € A n C, and

thus « € (A n B) (A n C), as desired.

It is to be observed that even the infinite distributive law

AN {un, By} ={wn, AN By, .}

holds true when BB, runs over an arbitrary set of o-ideals of a Riesz group.
This is an immediate consequence of the finite distributive law and the fact
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that a subgroup generated by infinitely many subsets is the set union of
subgroups generated by a finite number of subsets.
In Riesz groups we also have:

_ PROPOSITION 5.7. If G is a Riesz group and A is an o-ideal of G, and
if ®, y, z are cosets of A such that

T=y=g

then to every x € x and to every z =< z satisfying © =< z there exists a y €y

such that
x

lIA
I

Y=z

Under the given hypotheses, there exist y,,y, € y such that ¢ < Yy
and y, < 2. The coset y being directed, some y; €y satisfies y, < y, and
Ys = y;. By the interpolation property, some y € G lies between x, y, and
Y3, 2 But y, =y < y, implies y €y, so y is a desired element.

The following result may be of some interest.

PROPOSITION 5.8. If G is a Riesz group and if A, .., A, ave o-ideals
of @ such that G as an abstract group is the direct product of the A, , then G
as a partially ordered group is also the direct product of the partial’:, ordered
groups A;.

We need to prove that a,..a, = ¢ (a;€ A;) implies «; = e tor each i.
There exists to each a, positive b, € A; such that b, = «;, and we replace
the a;(j==i) by these b, to get b, ..bi;dibipy... by =e. We also write
a; = b; ¢c; ! with positive b;, ¢; in A4;. Since ¢; commutes with ), (j 4= 1), we

have
bl . bi—l b,‘ b,’.{.l woe bn __Z Ci .

Here the b;(j = i) must be orthogonal to ¢;, in view of § 4 (¢). On account
of § 4 (a) we infer
Lc)=L(by..biy bibipy...bu,e)= L(bi,c,)

which means b; = ¢;, that is, a; = e.

§ 6. Extensions of commutative Riesz groups.

The Schreier extension problem for partially ordered groups has heen
considered by the author [5]. The lattice-ordered case has heen investigated
by R. TELLER [14]; here we need the extensions for commutative Riesz
groups, discussed recently by TELLER [15]. For completeness’ sake we
prove here his main result (Theorem 6.1).
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Let @ and I be partially ordered groups and (B an extension of I by
G. This means that (3 can be regarded as the set of pairs (a, «) with a € G,
o € I' such that

(ay @) = (b, B) is equivalent to a =b, a = f,

(a, &) - (b, B) = (ab, aff(a, V).

TMere f denotes a factor set,i.e. a function from the product set G >< @
into I' satisfying
(i) f(a,e)=¢ for all a€ G (¢ denotes the neutral element of I);
(ii) f(a, b) = f (b, a) for all a,b€ G;
(iii) f (@, D) f (ab, ¢) = f (a, be) f (b, ¢) for all a,b,c€ G.
The order relation in (3 can be given in terms of the sets:

and

P, = the set of all « € I" such that (a, a) = (e, &).

These P, satisfy:
(iv) P, is not void if and only if a =¢;
(v) P,=TI+;
(Vi) Py Py f(ay b)) S Py .

The equivalence of extensions may be formulated in the obvious way;
we shall not need this notion.

We are interested in Riesz groups. For them we have [15]:

THEOREM 6.1. Let G and I' be commutative Riesz groups, and B a com-
mutative extension of I' by G, corresponding to f(a,b), Py. Then B is again
a Riesz group if and only if

(a) P, is l-directed for each a€ Gt
(b) P, Py f(a,b) = Py for all a,be G+.

First assume that B is a Riesz group. Let a, € P, and choose some
y€I' with y = «, y = fi. Then each of (e,¢), (a,y) is = each of (a, a), (a, B);
consequently, some (d, ) can be inserted between them. Kvidently, d = a, and
80 6 € I, satisfies 6 =< a, 6 = 3. Hence (a) is a necessary condition. To
every y € Iy, we can certainly find elements «, f such that a€P,, S
and y < «} f(a, b), because the sets P are upper classes. Then

(e, &) = (ab, y) = (a, ) (D, B)

implies the existence of a’ € I, and p’ € P, such that y = a’ 8’ f (a, ). Thus
Puwc I, Pyf (a,b), and by (vi), we get (b).

Conversely, let @ and I" be Riesz groups, and let f and P satisfy (a)
and (b). In order to prove that G is again a Riesz group, let

(1) (¢, &) = (¢, 7) = (a0, &) (D, B)

2. Annale della Scwola Norm. Sup. - Pisa.
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with a € Py, B€ P,. We show that (¢, y) = (&, «’) - (b’, f’) for some
a’ € Py, ' € Py with (¢/, @’) = (a, @), V', B) = (b, ).

By the Riesz property of @, ¢ = a,b, for some a,,b,€ G with ¢ =< a, < q,
e <D0, =0b. We also have (¢, &) = (ay, %)) = (a, &) for some € P,,, since

o€ Pa = PM;1 P%f(aao—l ya) = Paa;)-lf(“.}'] , @) f (@ a-o-x)—l Pao’

and 80 o = (aa;?) &) with aaO—IEPW(.).lf(a(';l,ao) S (a, ai?)™! and “oEPao'

Similarly, (e, &) = (by, f,) = (b, B) for some f,. Since y€ P, = Py, =
= Py, Py, f(ag,b,) and Py, , Py, are l-directed, a,,f, may be assumed to be
chosen so as to satisfy a«,pB,f(ay,d,) =y. Then dividing by (a,,a,) and
(bo 5 B,); we have reduced (1) to the case ¢ =-e.

In the case ¢=e¢ we have af f(a,b)y~1€ Py = P, Py f (a, b) and so
af f(a,b)yt = o, B, f(a,b) for some a, €P,, B, €Py. If ay€ Py, €D,
are chosen so as to satisfy o, =< a, a0, < a,,8, = 8,8, = f,, then we have
ay By = o, f; = af. Thus the Riesz property of I" implies that a, f, = ay fi3
with o, S a, < a,p, =< f, =<, and so a, € P ,$, € P,. On putting o’ = aa;’
B = ﬂﬂ;l , we have (e, a’) (¢, ) = (¢, y) Where (¢, ¢) = (¢, a') = (@, @), (¢, &) =
= (e, p’) = (b, B). This completes the proof.

REMARKS. 1. If I" is a fully ordered group, then condition (a) may be
omitted.

2. If the group I' is assumed only to have the interpolation property
(and not to be directed), then (G will certainly be a Riesz group provided
it is directed.

3. The Riesz group (B has the property that if (a;,a;) =< (b;, ff;) for
t=1.,m;j=1,..,n and if c€ G satisfies a; =< ¢ =< b; for all i, j, then
to this ¢ we can find a y € I" satisfying

(a; i) = (¢, ) = (b), By) for all i, j.

It suffices to show that we can find a y €I such that (a;, &) = (¢, y,), for
then setting (by4+1, But1) = (¢, y,) and doing the sume with the a’s, the Riesz
property of B settles the question. Since

m
nl ],ca-i—l a,‘f ("‘i ’ (l'i_l) j (0, a‘.—l)—l

i=
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is not void in view of the upper class property of the P’s, any y, in the
intersection will do.

4. By condition (b), it is sufficient to know the sets P, for generators
a of G*. If G+ is a free semigroup, and a; € G+ are free generators, then
prescribing P, arbitrarily on the free generators so that they are upper
classes and satisfy (a), P, for every c€ G+ can uniquely be determined
on the basis of (b). They will obviously satisfy (b) and — as easily seen —
also (a).

§ 7. Antilattices.

The concept of antilattices seems to be of fundamental importance in
the theory of Riesz groups. They play essentially the same role as the fully
ordered groups do in the theory of lattice-ordered groups. They are, roughly
speaking, Riesz groups without proper union or intersection of elements.

A Riesz group H is said to be an antilattice if it satisfies the following
condition :

(*) if a A b exists in H, then either aAb=a or a Ab=10.

This condition is equivalent to saying that the elements of an antilattice
are meet-irreducible. Considering that avbd = (a1 A b~1)~1, (*) implies that
if avb exists in H, then either avb=a or avd=10.

Every fully ordered group is clearly an antilattice. On the other hand,
if an antilattice is lattice-ordered, then it is a fully ordered group. Examples
for antilattices are the groups in Examples 1, 5, 6, 8 of § 3.

LEMMA 7.1. For a Riesz group G, the following conditions are equivalent:
(a) G is an antilattice ;
(b) if anb=¢e for a, DEG, then a =1¢ or b =c¢;
(e) P* is l-directed.
The proof is straightforward and may be left to the reader.
Note that if an antilattice H has an atom & (> e), then every positive
element > ¢ must be = a.
In general, the existence of the intersection @ AbAe¢ does not imply
that of aAb. Therefore it is desirable to know whether or not a finite
number of elements may have an intersection in antilattices.

PROPOSITION 7.2. If in an antilattice a, A ... A a, = b exists, then a;=b
Jor some i.

This being true for » =1, assume n = 2. If a; A... Aa,_; exists, then
on account of (b), either ajA..Aa,;=0>b or a,=0, and the assertion



20 L. FucHs: Riesz

follows by induction on n. If @, A ... A @,_; does not exist, then L(a,,...,a, 1)
being w-directed, there exists a ¢€ L(a;, .., a,—;) such that ¢ > b. We claim
¢ A a, =>. Indeed, if b’ < ¢ and b’ =< a,, then b’ =< a; for every i whence
¥ < b. But then ¢ A a, = b implies a, = b, as we wished to show.

We are going to introduce a topology in dense Riesz groups, the so-called
open-interval topology. As a subbase of open sets in G we take the subsets

G, U*(a), L*(a) for each at@.

Then this is a HAUSDORFF topology if and only if there exists no c€ G
(¢ %= ¢) such that P*¢c= P* (i. e. no pseudo-identities exist in the sense of
§ 8), and in that case G is a topological group in the open-interval topo-
logy (8).

PROPOSITION 7.3. A dense Riesz group without pseudo-identities is an
antilattice if and only if it is not discrete in its open-interval topology.

If the Riesz group H is not an antilattice and if aAd=-e with
@ == e &= b, then the open intervals L*(a), L*(b), U*(a~'), U* (b~7) have the
intersection e, and so H is discrete in the open-interval topology. (The same
conclusion holds when H is an antilattice, but is not dense, for then there
is an atom in H.) Conversely, let H be a dense antilattice, without pseudo-
identities. 1t is to be shown that for a;, b;€ H, the intersection

U* (@) y ey @) 0V L* (b eney D)

is either void or contains a closed interval [e, d|, ¢ < d. Let x belong to
the intersection. Since U*(a,,...,a,) is l-directed and contains no minimal
element (by Proposition 7.2), there is a c¢€ U*(a,,...,a,) with ¢ <Tx. Si-
milarly we can find a d € L* (b, ..., b,) with d > . Then [¢, d] is an interva
in the intersection. Q. e. d.

It should be observed that the proot shows that the open intervals
(¢, d) form a base for the open interval topology in the case covered by the
last result.

Let H Le a commutative torsion-free antilattice whose order is isolated.
By Proposition 2.5, H can be embedded in a divisible commutative Riesz
group D which has isolated order again. Here we point out that 1) will
again be an antilattice, since the orthogonality of « and ) would imply the
orthogonality of a® and b™ (€ H). Clearly, D is a dense antilattice.

The next result is worthwhile mentioning.

(8) Cf. [7], p. 32. For the results on topological groups see [11).
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PROPOSITION 7.4, Let B be a commutative Riesz group that is an
extension of a dense antilattice I' by a dense antilattice G, and let G be
described in terms of f(a,b) and P, as in § 6. B is again an antilattice exactly
if the sets P, (a >>e) are open in the open-interval topology of I.

Since no intersections exist in I" and in @, two elements of (3 can be
orthogonal only if they are of the form (a, @) with @ >> e and (e, f). But
(@, &) A (e, B) = (e, &) is equivalent to

«—1 P,np-1 P,=P,

which can be written in the form
P,NnyP,=uaP, with y=aft.

This amounts to saying that I’ Ny P, has a minimal element «, since —
as readily seen from the interpolation property — P, Ny P, is again I-di-
rected. We see that B is an antilattice exactly if P, Ny P, has no minimal
element unless y€,. If P, Ny P, has no minimal element, then for each
«€P, Ny, some f€I,Ny P, exists with a € U* () P,, and P, is open.
Conversely, it I’, is open and a€P,Ny I, then in case y ¢ P, we have
I,nyP,="DI,nU*(y), thus « lies in the open set I>, N U*(y) and hence
it cannot be minimal there.

Finally, let us note the simple observation :

PRrROPOSTIION 7.5. If an antilattice is connected in the open-interval to-
pology, then it has no o-ideals except the trivial ones.

It the antilattice A satisfies the hypothesis, then every neighborhood
of ¢ generates A as a group. If given a w > e in 4, then the open interval
(w1, u) generates A, i.e. to each a€ A there exists an integer m such that
" < a < v Hence the convex subgroup generated by u coincides with A.

§ 8. Pseudo-identities and pseudo-positive elements.

Let us turn our attention to elements which are exceptional in Riesz
groups in the sense that such elements do not exist in the lattice-ordered
case.

Let & be a Riesz group. An element ¢ € @, distinct from e, is called a

pseudo identity if
cP* = p*

and is said to be pseudo positive if ¢ ¢ I’ and

cbP* C p*
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where as always P* denotes the set of all elements greater than e in G.
Since ¢P* never contains ¢, every pseudo identity is pseudo-positive.

LeMMA 8.1. If in G both ¢ and ¢~ are pseudo-positive, then ¢ is a pseudo-
identity.
Hypothesis implies the inclusions
c¢P*C P* and ¢—'P* € P*.

The second one means P*C ¢P* whence ¢P* = P*.

A lattice-ordered group G contains no pseudo-positive elements. For, if
¢ € @ were such, then c¢ve would satisfy: ¢ <<« implies ¢ve =< x. Hence ¢
would be meet irreducible, and so @ fully ordered. That in fully ordered
groups no pseudo-positive elements may oceur is quite obvious.

In Example 3 of § 8, the complex numbers iy 5= 0 are pseudo-identities.
In Example 1 the numbers # > 0 and iy with y > 0 are pseudo-positive,
and so are the functions f in Examples 6, 8 which are positive everywhere
except for one place.

LEMMA 8.2. In a Riesz group G the pseudo-identities form, together with
e, a convex normal subgroup C. If C ==e, then the factor group G/C is a
dense antilattice without pseudo-identities.

If C denotes the set consisting of e and the pseudo-identities of G,
then ¢, d € C implies (cd) P* = ¢cP* = P*, i.e. ¢d€ C. Clearly, ¢~1€C and
a~lex€ C for each z€ @. Thus C is a normal subgroup which is trivially
ordered, and so convex. Since & < b implies ac < b and a < be for ¢ € C,
we see that if a<Cb for cosets a, b mod C, then for all a€a, b€b one has
a < b. Hence the Riesz property of G/C is immediate.

Now if e < a and if ¢€ O, ¢ 5= ¢, then there exists some x between
the pairs e, ¢ and a, ac, and 80 ¢ < # << @ shows that G is dense whence
G/C is dense too. If for a, b € G/C the element aAb exists and differs from
a, b, then for a€a, beb, d€aAab and e = c€ C we have some x € G between
d, de and a,b. Now d <z < a and 2 < b which is impossible. Hence G and
G/C are dense antilattices. Since each element in a coset mod C which is
a pseudo-identity in G/C is a pseudo-identity in @, the proof is completed.

By making use of this lemma, we can describe the Riesz groups with
pseudo-identities.

THEOREM 8.3. If the Riesz group G contains a pseudo-identity, then it is
a dense antilattice. G contains a trivially ordered convex normal subgroup C
such that the factor group G/C is a dense antilattice without pseudo-identities,

and g€ @G is positive if and only if either g = e or the coset g of g mod C is
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greater than e in G/C. Conversely, every group G which arises in this way
Jrom C and G/C is a dense antilattice.

The statement concerning the positivity of ¢ needs no verification. As-
sume that G is a partially ordered group that arises in the described way.
Then strict inequalities between cosets mod C are equivalent to strict ine-
qualities between arbitrary representatives of the cosets whence everything
is clear.

Since C can be an arbitrary group, it follows that a Riesz group, mo-
reover an antilattice need not be torsion-free.

‘We shall make use of the following characterization of pseudo-identities.

PROPOSITION 8.4, Let G be a partially ordered group with isolated order.
c€ @, ¢ = e is a pseudo-identity of G if and only if together with D, also
{D, ¢} is a trivially ordered subgroup of G.

Since pseudo-identities ¢ have the property that it is allowed to mul-
tiply by them one member of strict inequalities, it is clear that if D is
trivially ordered, then so is {D, ¢]. Conversely, let ¢ &= ¢ have the indicated
property, and let p > e¢. Then d =cp cannot be incomparable with e, for
otherwise D = {d} would be a trivially ordered subgroup of &, but {D, ¢}
would not share this property, since p € {D, ¢]. Hence either cp < e or cp > e.
The first case is by ¢ < ¢p < e excluded, thus c¢p > e for all p € P*. We
conclude that ¢ is pseudo-positive. Similarly ¢—! is pseudo-positive, and
Lemma 8.1 implies that ¢ is a pseudo-identity.

Concerning pseudo-positive elements we do not have much to say. The
product of two pseudo-positive elements may be positive; but trivially, the
set of all positive and pseudo-positive elements is a subsemigroup @ of G
which is clearly normal and convex. If ¢ does not contain elements == e
along with their inverses, then ¢ defines a partial order of @ in which G may
again possess pseudo-positive elements. By means of Example 6 in § 3 it
may be shown that () need not define a Riesz order on @ even if the order
of G we started with has been one.

Finally, let us mention a method of constructing pseudo-positive ele-
ments. L.et G be an arbitrary partially ordered group and N a non-trivial
normal convex subgroup of @. If P is the positivity domain of @, then
delete from P the elements of N with the exception of e. It is straightfor-
ward to check that with this smaller positivity domain P’, G will in fact
be a partially ordered group in which the elements of P not in P’ are
pseudo-positive. It is also easy to see that if ¢ is a Riesz group, N an
o-ideal of G such that G/N is a dense antilattice, then P’ will make @ into
a Riesz group again.
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§ 9. The structure of commutative antilattices.

In the special case of commutative antilattices it is possible to give
more information about the structure, whenever the order is isolated. In
view of Proposition 2.5 and a remark in § 7, we shall confine ourselves to
divisible antilattices.

Let H be a divisible commutative Riesz group with isolated order; thus
H is torsion-free. Among the subgroups of H which are trivially ordered
there exist maximal ones; let C denote one of these. Then C is convex in
H. Now H/C does not contain any trivially ordered subgroup == e, for the
elements of H belonging to these cosets would form a trivially ordered
subgroup of H which properly contains C. The order of H/C is again
isolated, for if the coset a mod C satisfies a” ;_.? for some positive integer
n, then for a representative a€a we have a”=¢ for some c€ (. Now C
being obviously divisible, ¢? = ¢ for some ¢ € C. Hence ¢ = ¢, and thus
a = ¢, , because H has isolated order. Therefore Z_>_: ¢ and the order of H, /C
is in fact isolated. But then H/(' must be fully ordered, since if a€ H/C
were incomparable with ¢ then the powers of « would form a trivially ordered
subgroup of H/C. We conclude that H is an extension of a trivially ordered
group C by a fully ordered group H/C.

Since, because of divisibility, H as an abstract group is isomorphic to
the direct product of ¢ and H/C, the representatives of the cosets can be
chosen so that the factor set f(a,b) collapses to the identity. By making
use of Theorem 6.1 and Remark 2 in § 6, we see that if in the direct pro-
duct of C and H/C the sets I’, € C for positive a € H/C are subject to con-
ditions of Theorem 6.1 and care is taken that a directed group will arise,
then the arising group H = € >< H/C will be a Riesz group, moreover an
antilattice, if orthogonal elements == e¢ do not exist. Since C is trivially
ordered and H/C need not be representable within H by a fnlly ordered
subgroup, Theorem 6.1 is not applicable to the direct product. Hence we
are led to:

THEOREM 9.1. Let H be a divisible commutative Riesz group with isolated
order. Then H as an abstract group is isomorphic to a direct product:

H>G<T

where @ is fully ordered and I is trivially ordered. If H is considered as an
extension of I' by G with factor set f(a,b)=1¢ for all a be G, then the
partially ordered group H* X G >< I' where P, satisfy

(i) P, is not woid if and only if a€ G,

(iiy P, =T+ =¢,
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(ili) Po=TI1if a>e,
has the property that the canonical map of H into H* is an o-monomorphism.
Every group H* awhich arises from «a divisible fully ordered group G and
from a trivially ordered group I' in this way is a Riesz group.

The case when H is osimple is worthwhile mentioning. Then the
o-ideal generated by a positive element a == e coincides with H. This means
that to given «,b > e in H, we can find a positive integer = such that
a® > b. Hence H/C is archimedean, and so it is o-isomorphic to a subgroup
of the real numbers.

COROLLARY 9.2, If the group H of the preceding theorem 1is o-simple,
then G is o-isomorphic to « divisible subgroup of the real numbers. Conversely,
if @ is such a group, then H* is o-simple.

In Example 1 of § 3 we may take C to consists of all (a,d) with b = 0,
and in Example 6 C can be chosen as the set of all polynomials vanishing
at a fixed & in [0,1].

There is another approach of getting information about commutative
antilattices. This is a representation Ly means of {ully ordered groups which
will next be considered. Now the absence of pseudo identities must be assu-
med which is, by virtue of Theorem 3.3. not too restrictive a hypothesis.

Let H be a divisible commutative antilattice with isolated order having
no pseudo-identities. We let (), run over all subgroups of H which are
maximal with respect to the property ot excluding some positive element = ¢
of H. We claim that the intersection ot all these C, is just e. By way of
contradiction, suppose that some x + ¢ belongs to each (,. This x posses-
ses the property that if the subgroup A is trivially ordered, then so is
{4,2]. Thus x would be a pseudo identity ot H (cf. Proposition 8.4). Therefore
n C, = ¢, indeed, and consequently, H is isomorphic to a subdirect product
of the partially ordered groups H/C,. We have shown above that H/C, are
tully ordered, so an o-monomorphism of H into a subdirect product of fully
ordered groups H/(, arises.

This representation has the additional property that if a < b in H, then
we have a, < b, for the components «, of a and b, of b in each H/C, . This
follows from the fact that ba—! never belongs to a C,. Thus we arrive at
the following result:

THEOREM 9.3. Let H be a divisible commutative antilattice whose order
is isolated and wchich contains no pseudo-identities. Then H is o-isomorphic
to « mild subdirect product of fully ordered groups.

It is to be shown that the canonical map ¢ of H into the mild cartesian
product of the H/(C, carries only positive elements into positive elements
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= e. If @ (h) > e for some k€ H, then no C, may include h. Thus kb is not
incomparable with e, and since & < e is absurd, it follows that h > ¢, indeed.

Note that a mild cartesian product of divisible fully ordered groups
is necessarily an antilattice. Also, in Theorem 9.3 «antilattice » can be
replaced by « Riesz group », but then the o-isomorphism does not preserve
meets and unions.

In case the additional assumption is made that H is o-simple, we get
from Corollary 9.2 and Theorem 9.3 :

COROLLARY 9.4, Let H be as in Theorem 9.3 and assume H is o-simple.
Then H is o-isomorphic to a subgroup of real-valued functions on some set =
where a function f is > 0 if and only if (&) > 0 for all £€ 5.

§ 10. Representation of commutative Riesz groups.

We wish to get a subdirect product representation of commutative Riesz
groups such that it preserves not only group operations and order relations,
but unions and intersections as well whenever these happen to exist. Since
the class of Riesz groups is not equationally definable, there is nothing
to guarantee the a priori existence of such a representation.

We begin with considering the subdirectly irreducible Riesz groups (°).

THEOREM 10.1. A commutative Riesz group is subdirectly irreducible if
and only if it is an antilattice.

If the commutative Riesz group G is subdirectly reducible, then there
exist non-trivial o-ideals 4 and B such that A N B =e. Then every posi-
tive element of A is orthogonal to every positive element in B whence ¢
cannot be an antilattice. Thus an antilattice is subdirectly irreduncible.
Conversely, assume that G is not an antilattice. Then we can find elements
a, b in G which are >> e and satisty aAab =e. The set of all positive z€ ¢
orthogonal to ) generates an o-ideal A of G containing a, and the set of
all positive y € G orthogonal to every x generates an o-ideal B containing
b. We have A n B = ¢, since every positive element in the intersection is
orthogonal to itself, and the intersection must again be an o-ideal on account
of Proposition 5.4, We claim that the canonical map @: @ — G/A>< G/B
yields a subdirect product representation of G. Clearly, @ is bijective and
order, union, intersection preserving. It remains to verify that @(g)=e

(?) By subdirect irreducibility we mean that the group is not properly representable
as the subdirect product of two (or a finite number of) factor groups; for the sake of
convenience we assume that the kernels are o-ideals. This is not essential for what follows.
(If we omit the last hypothesis, then the «if» part of Theorem 10.1 should be cancelled.)
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implies ¢ = e. Now ¢ (¢) = ¢ means that the coset of g both mod A and
mod B contains positive elements, say ga = e and gb = e for a€ A, b€ B.
By directedness, we may assume, without loss of generality, that a = ¢ and
b= e. Since aAb = e exists, so does gaAghb=g(aArb)=g. Thus ga,gb=c¢
implies g = ¢, and this completes the proof.

Now we have come to the problem of getting an adequate subdirect
product representation for commntative Riesz groups, namely one which
gives the Lorenzen representation in the special case of lattice-ordered groups.
In establishing the existence of such a representation, a slight modification
of the proof, usually given for equationally definable class of algebras, is
necessary. .

The main result reads as follows.

THEOREM 10.2. Let G be a commutative Riesz group. There exists a family
H; (A€ A) of antilattices and an o-isomorphism ¢ of G onto a subdirect product
of the H; such that ¢ preserves unions and intersections.

Let g range over all elements of G which are not < e. For each such
g take an o-ideal A (g) of G which is maximal with respect to the property
of not intersecting U(g): since.e¢ U(g). A (¢) does exist. We claim that G/A (g)
is an antilattice. Tt suftices to show, on account of Theorem 10.1, that if B,
C are o ideals properly containing A4 (¢), then B n C has the same property.
Let be BN U(g) and ¢€ Cn U (g); evidently, b and ¢ may be chosen to be
positive. By the interpolation property, we can intercalate between ¢, g and
b, ¢ some a€ G, and this « is clearly contained in each of B, C and U (),
i.e. BN C intersects U (g). Now the intersection of all the A (g9) collapses to
e, since if h 3= ¢ then either A (k) or A (h—!) exists and excludes h. There-
fore, if we choose for the H; the antilattices G/A (¢9), then the natural map
@ of G into the cartesian product of the H, is an o-monomorphism preser-
ving unions and intersections. What we still have to verify is that ¢—!is.
order-preserving too, or in other words, that ¢ (¢g) = e implies g = e. But if
@ (g) = e then g cannot be incomparable with e, for if it were so then in
G/A (g71) the coset of g would contain, by the meaning of ¢ (9) = e, a positive
element, say ga = e, a € A (g71), in contradiction to the fact that U (¢—1) does
not meet A (¢—!). This completes the proof of the theorem.

Observe that if G happens to be lattice-ordered, then Thorem 10.2 is
equivalent to the Lorenzen representation theorem. For, in that case the
groups H; — as union and intersection preserving images of @ — must be
lattice-ordered, and so they are fully ordered, indeed.
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§ 11. Irredundant representations.

In Theorem 10.2 it has heen shown that commutative Riesz groups can
be represented as subdirect products of antilattices, preserving unions and
intersections if exist. We are naturally interested in getting conditions under
which the mentioned representations are shortest in the sense that they
don’t have any superfluous components and certain uniqueness statement
can be established.

An o-isomorphism ¢ of a partially ordered group G into the cartesian
product C of antilattices @; will be called a representation of @, if the ker-
nels of the projections G — G; are o-ideals of G. From Theorem 10.2 we
know that a commutative Riesz group always has a representation.

Let vy, denote the projection of (' onto the cartesian product of the G,
with u 4= 4. If for some 1, the composite map @y; is still an isomorphism
of the abstract group @, then we call the component G, superfluous. If gy,
is no longer an isomorphism of . then @, is said to be an essential com-
ponent. Obviously, G, is essential exactly if

(1) ”gl Ker @@, $ ¢

holds true where ¢, denotes the projection of ¢ on G,. Clearly, there is
nothing to prevent us from identifying ¢/ with a subgroup of C under ¢.

If one tries to carry over the representation theory of commutative
lattice-ordered groups, developed by JAFFARD, RIBENBOIM and ('ONRAD, to
the case of Riesz groups, then an unsurmountable difficalty arises: the in-
tersection of infinitely many o-ideals need not be an o-ideal again. In order
to overcome this difficulty, one has the choice either to make restrictions
on the representations to be considered or to assume that we are dealing
with Riesz groups where any intersection of o-ideals is again an o-ideal.
Since the second alternative seems to be the simpler and since this includes
the most important examples, we are going to discuss Riesz groups with
the mentioned property. I'or the sake of brevity, we shall call them strong
Riesz groups; thus a Riesz group is strong if and only if its w-ideals are
o-ideals.

LEMMA 11.1. If G; is an essential component of a strong Riesz group G,
then for some a € G+ with @, (a) 3 e, the carrier a* is minimal in the par-
tially ordered set C of carriers of G.

Now the left member of (1) is an o-ideal of @, since the kernels of ¢,
are such. If @, is an essential component in the representation of @, then
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(1) holds, and hence the left member contains an a € G+, a 5= ¢. This a has
only one component == e in the representation, namely ¢, (a). The carrier a*
must be minimal in €, for if b* =< a* and 0" &= ¢*, then we have also @;(b) e,
for otherwise a Ab = ¢ would hold whence " = a" A b* = ¢*, a contradiction.
If bAx = ¢ for some x € Gt, then necessarily ¢;(x) =e¢, and so aArzxz =c.
This shows that a* < b*, and " = a".

A representation in which every component is essential is called irre-
dundant. We have as a main result:

THEOREM 11.2. 4 commutative strong Riesz group G admits an irredun-
dant representation if and only if it satisfies :

(i) the partially ordeved set C of its carriers is atomic,

(i) if c.(u€M) is a set of positive elements in G such that to each
a€ P* theve is « b€ P* with b =< a and b_Lec, for some u, then x = ¢, for
all p implies ¢ = e.

Any two irredundant representations of G are o-isomorphic.

Assume that @ has an irredundant representation with components G;
(A€ A) which are antilattices, and let ¢, denote the projection G — @G, . Let
U* be an arbitrary carrier of . not equal to et and let b€ d*. There is an
index 4 such that ¢;(b) > e. The component G, being essential, some a€ G+
satisties ¢; («) > e such that a* is a minimal carrier (cf. Lemma 11.1). Since
(i; is an antilattice, ¢; (@) and ¢, (b)) do not have an intersection, and so
a Al fails to exist in G, But then some c€ G+, ¢ k¢, satisfies ¢ < a and
¢ = b. Therefore c¢* < a*, ¢* =< b*, and hence the minimality of a* implies
c* = a*, i.e. ¢ is atomic.

It ¢, is a set as described in (ii) and if # =< ¢, for all u, then let a € G+
such that its A-th component is > e and all its other components equal e.
It ¢, is orthogonal to «, then the A-th component of ¢, must be e. Thus
x = ¢, ftor every g only if the components of x are < e, and so z < e.

Conversely, if € is atomic, then let us consider the set of atoms a}
(indexed by a certain set .1) in €. The set of all elements of G+ orthogonal
to the elements of a fixed af is the positivity domain of an o-ideal I, of G
(Proposition 5.1 and § 4, (f)). This I; clearly contains all the elements of G
coutained in the carriers «f with u =1, but none in a}. We claim that
G'I; = H; is an antilattice. 1f b, ¢ are positive elements of G such that
I, A el = I, in H; and neither 0I, = I,, nor ¢I; = I, then neither b nor ¢
is orthogonal {o any «; (€aj). Hence some «}€af satisfies ay < b and a} < ¢,
and thus a3 I, = 01, a; I, =< ¢l;, in contradiction to bI;Acl; =1I;. Now
the intersection ot all I, does not contain any positive element ==e, for
such an element must be orthogonal to each a;: consequently, N I; = ¢, since
it is by hypothesis an o ideal. But the intersection of the I, with u 3= 1 is
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distinct from e for each fixed A, because it contains the elements in af.
The Jlast two sentences show that G has an o-monomorphism ¢ into the
cartesian product of the antilattices H;, ¢ is induced by the natural o-ho-
momorphisms of G onto H;.

It remains to show that ¢ maps only positive elements upon positive
elcments. x € G is mapped by ¢ upon a positive element in the cartesian
product of the H; if and only if the coset xI, contains a positive element,
for each 1, that is, xc; = e for some c; € I; which may evidently be assumed
to be positive. Now we have a set of positive elements c; (1€ A) which has
the property described in (ii) because of the atomicity of ¢ and the defini-
tion of I,. Hence by (ii) #—! < ¢; implies x~1 <¢, or x = e.

Finally, to show uniqueness up to o-isomorphy, suppose that G has an
irredundant representation by means of the antilattices G,, and let ¢,
denote the projection of G onto G,. By our hypothesis on @, the intersec-
tion 'Q” Ker @, is an o-ideal 4= ¢, hence it contains some positive b, ; this b,

has e for its »th component, » == u. Obviously, b, is an atom in ¢, G,
being an antilattice. Thus each component @, determines uniquely an atom
in €. If a* is an atom in € and if a€a*, then ¢ cannot have two compo-
nents >> e, for if the uth and »th components of a were > e, then both
bp < a" and b, < a", which would contradict the atomic character of «”.
Tlence each atom determines a component @,, and so atoms of C and
components @, of an irredundant representation are in a one-to-one corre-
spondence. Moreover Ker ¢, must be the subgroup generated by the positive
elements of @ orthogonal to b,, i.e. Ker ¢, = I, as defined above. Ilence
G, 2>, G/I, and G, is determined uniquely up to o-isomorphism.

The group in Example 7 of § 3 has a representation, but in no repre-
sentation is it possible to find an essential component. Condition (ii) is
always satisfied in the lattice-ordered case.

§ 12. The Conrad radical.

‘We can associate with each directed group G an w-ideal of G which
is reminiscent of the radical and has been discovered by P. CONRAD in the
lattice ordered case. The discussion to be given here differs from Conrad’s
in that we introduce the radical as the union of certain elements of G, and
then we show that it is the intersection of certain o-ideals.

Throughout this section let G denote a directed group with isolated order.

With a finite set #,,..,%,€ G we associate the subset

(@ 5 ooy @)H = L(U (x4 0ery @)
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We have obviously the rules:
(@) ;€ (@ y ...y 2,)H for each i,
(b) if @i € (Yyyeer s Y for i=1,...,m, then (@1, ..., Z)* S (Y1, 0 y Yu)¥,
(€) z;=<y;for i=1,...,m;j=1,...,n implies (@, .., L.} HC (¥,...,yn)¥,
(d) (ax b, ..., az,b)% =a (x,,..,2,)*D,
(e) e€(a, a1y for each ac€@.
In order to verify (e), let x € U (a, a~?), that is, * = @ and x = a—!. Then
x® = e, and x = ¢ by isolatedness.

The following simple observation will be needed.

LeEMMA 121, If A,,.., A,, are o-ideals of a directed group G with iso-
lated order and if g > e belongs to the o-ideal generated by A,,.., A,,, then
there exist positive elements a;€ A; such that

GE(A ywey Q).

Since (a, , ..., ay)" is a lower class and since to each ¢ in the o-ideal
generated by A,,..,A4,,, there exist g; € AE*'. such that g < g, ... gy , it suf-
fices to establish the assertion for ¢ =g, ... ¢, with giEA?L. If m = 2, then
take (¢, 9,9, gl—l)ﬂ. By (e), this contains ¢, whence g =g, 9,€(9},9,9,97* 92)#=
=(a, a,)* with ) =g}€ A and a,=g g,97'9,€4,. If m>2, then g=
=g e Y € (@1, @")F with @, €4, and o’ = ¢ in the o-ideal generated by
Agy .., A, . By induction, a’ € (ay,..., a,,,)'*t‘t for some a;€ AE". Since both a;
and a’ are contained in (a,, ..., a,)", property (b) shows that (a;, a’)# C
C(a,..,a,)* Hence the desired inclusion ¢ € (ay, ..., a,,)* follows.

The following concept is fundamental for the radical. Call an element
« € @ subordinate to a positive element ¢g € G if whenever

(1) GEGry ey g
holds for positive g¢; € @G, then there is an index ¢ such that
(2) a€1(g;)

where T (g;) denotes the o-ideal generated by ¢;. The sign a €4 ¢ will be used
to denote that a is subordinate to g. If g is not necessarily positive, then
« 4g will mean that if ¢ =g, g;7* with positive 9,19,, then a 4g, g, in the
sense above. That this definition yields the same concept for positive g,
will be clear from (v) below.
We have the obvious properties:
(i) e 4y for each g€ G+;
(i) « 4 g implies a € I (g);
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(iii) in fully ordered groups, @ 4 ¢ if and only if a€ I(g);
(iv) in lattice ordered groups, « 4y means that |g|=g,v..vyg, with
gi= e implies a € I (g;) for some i;
(vifes=adgandife=b=a, e=<g=h, then bah;
(vi) if a 4 ¢, then x—!ax 4y~ gy for arbitrary z,y€ G.
The elements of G to which a fixed @ 3= e is not subordinate form an
o-ideal of G which can easily be characterized.

PROPOSITION 12.2. In a directed group G with isolated order, a == e is
not subordinate to g exactly if ¢€ Q2 (a) where 2(a) denotes the o-ideal gene-
rated by all o-ideals of G that fail to contain a.

Let « be not subordinate to ¢g. Then there is a decomposition g = z, ;!
with x,,2, = e such that &, x,€(g,,.. , g% for some g;€ G+, but a¢ I (g)
for all i. Then x, x, € 2 (a), since ¢, ... 9. € U (g, ..., ¢gu) implies x,x, =< ¢, ... ¢,
and x, 2, € I(¢, , ..., gu). Thus g€ Q(a) Conversely, if g€ 2 (a), then there
exist a finite number of o-ideals 4,,.., A, not containing a such that ¢
belongs to the o-ideal they generate. If ¢ == 27! with z ,x, = e still in
this o-ideal, then also x, #, belongs to the same o-ideal, and hence by Lemmu
12.1 we have x, 2, € (a,, ..., a,)* for suitable a; € A,~+. But a¢ I (a;) S 4;, so
@ is not subordinate to g¢.

The set of all g such that « 4 ¢ implies @« = e will be denoted by I ((/),
and called the Conrad radical of G. We easily obtain the intersection property.

TarorveM 12.3. The Convad radical R(G) of a directed group (i with
isolated order is the interscetion of all Q («) with a % ¢ in G :

R (@) =N Q(a).
azze
Thus R (G) is an w-ideal of G.

If a 4¢ implies & = ¢, then by the preceding result g€ Q(a) for every
a €@, a = e; and conversely.

In Example 1 of § 3 the Conrad radical is 0, since this group is o-simple,
In Example 5 of § 3 the Conrad radical is the whole gronp, since a non zero
polynomial cannot be subordinate to any polinomial.

The following terminology will be useful in our subsequent considera-
tions. If ¢ € @ and if M is an o-ideal of ( that is maximal with respeet to
the exclusion of «, then we call M a regular o-ideal associated acith . The
intersection of all o-ideals of /' properly containing M contains «, and ihus
it is the only w-ideal M* of ¢ for which M cC M* and there is no wideal
between M and M*. Obviously, £ (a) is just the union of all regular o ideals
of @ associated with a.
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Call an o-ideal A of G essential [4] if
(A) it is regular, and
(B) there is a b & ¢ in @ such that 4 D Q ().
If to some a € G there is only one regular o-ideal M associated with a, then
M = Q (a), and hence M is essential.

LEMMA 12.4. A regular o-ideal M is essential if and only if the intersection
of all regular o-ideals of G not contained in M is different from e.

Assume that the intersection of all regular o-ideals N not in M con-
tains some element a == e. Then no regular o-ideal associated with & may
occur among the N, whence M contains all regular o-ideals associated with
a. Therefore M 2 2 (a), and M is essential. Conversely, if 2 (a) € M, then
a must belong to the indicated intersection.

By making use of the concepts of regular and essential l-ideals, CON-
RAD [4] has shown that the radical is a lattice-invariant of a lattice-ordered
group: it can be characterized lattice-theoretically in the lattice of all I-
ideals of @ (which is a complete sublattice of all normal subgroups of @).
This result admits a generalization to our present case.

Let G be a directed group with isolated order, ) the lattice of its
normal subgroups and U the set of its o-ideals. Now the regular o-ideals
of ¢ can be characterized as elements of ) which cannot be represented as
the intersection (taken in i) of any set of greater elements of ). By virtue
of the last Lemma, the essential o-ideals can also be singled out by means
of U and ). The next result will show that the same holds for the
CONRAD radical R (G).

THEOREM 12.5. The Conrad radical R (G) of a directed group G with
isolated order is the intersection of all essential o-ideals of G@.

From the definition it follows that the intersection of all essential o-
ideals of (# contains the intersection of all the £ (a) (a & ¢), and hence
R (G) owing to Theorem 12.3. To prove the converse, let g ¢ R (@), that is
to say, g ¢ 2 (a) for some @ 3¢ in G. By Zorn’s lemma, there is a regular
o-ideal M, containing £ (a), associated with g. This M is essential, and so
the intersection of the essential o-ideals does not contain g either. This
completes the proof.

Budapest and Pisa.
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