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RIESZ GROUPS

by L. FUCHS(*)
Dedicated to my F’ather on his 80th birthday

Several authors have devoted their interest to investigating lattice-or-
dered groups, and recently the theory of lattice-ordered groups has made a

great progress. There is a class of partially ordered groups which lies very
closely to lattice-ordered groups and which however has not been dealt

with systematically, though it deserves great interest because plenty of

examples may be found for such groups in different fields of mathematics.

This class consists of the directed groups G with the following interpolation
property: if at , a2 , bi , b2 E G satisfy

then there exists some c E C-~ such that

In his investigations on linear operators, F. I?IEsz has called attention to
such groups [1:{ J (1), and this is the reason why we shall call them Iliesz 
lie has introduced them by the refinement property : if ..., 7 ... bn
are positive elements of (G and

Pervento alia Redazione il 28 Agosto 1964.
(*) The author was supported by a grant from Conxiglio Nazionale delle Ricerche at

Centro Ricerche Fisica e Matematica in Pisa.

(~ ) Nmnbers iii brackets refer to the bibliography given at the end of this paper.
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then there exist positive elements c;; (i = l, ... , = 1,..., n) such that

for every i and j. Later BIRKHOFF [2] has established some properties of
Riesz groups. For some recent applications we may refer to BAUER [1] and
NAMIOKA [10].

The aim of the present paper is to lay down a systematic treatment
of Riesz groups from the algebraic point of view. A large part of the di-

scussion runs parallel to the theory of lattice-ordered groups. In order to

ensure that certain theorems on Riesz groups contain important results on
lattice-ordered groups as’ special cases, one has to consider Riesz groups
not simply as partially ordered groups with some special type of order, but
rather as partially ordered groups in which for certain pairs of elements
« meet » or « union » operation is defined. Thus Riesz groups are to be re-

garded as algebraic systems with not everyvhere defined operations « meet &#x3E;&#x3E;

and ( union ». This fact causes some difficulties at several places. Another

difficulty stems from the fact that while lattice-ordered groups form an equa-
tionally definable class of algebras, and so do those lattice ordered groups
which are representable as subdirect products of fully ordered groups, the

Riesz groups fail to have this property. Therefore, special care must be
taken when subdirect representations are discussed.

First we lay down the most important terminologies and notations to

be used throughout the paper (§ 1 ). Then we begin with different characte-
rizations of Riesz groups (§ 2). It turns out that this class of partially or-

dered groups admits several equivalent definitions, showing that it is not

only of importance from the point of view of applications, but it is at the

same time a very natural generalization of the concept of lattice-ordered

group. Some of the simplest examples of Riesz groups which are not lattice-
ordered may be found in § 3. The next section (§ 4) is devoted to the

notions of orthogonality and carrier; they are useful in Riesz groups as
well. In § 5, the important concept of o-ideal is discussed. In Riesz groups
the o-ideals play a similar role as the 1-ideals do in lattice-ordered groups.
The property of being a Itiesz group is preserved on passing modulo o-ideals.
The main result on o-ideals states that in lliesz groups they form a distri-
hutive sublattice of the lattice of all normal subgroups.

The next § 6 deals with extensions of commutative Riesz groups ana-

logously to the Schreier extension theory of groups. Among the extensions
of’ a Riesz group by another one, the Riesz groups can be characterized

easily. The results of this section serve as tools for obtaining some theorems
in the subsequent sections.
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Of great importance are the Riesz groups in which two elements may
have an intersection (or union) only if one is greater than or equal to the
other. These Riesz groups, called anti lattices, play the same role in the

theory of Riesz groups as the fully ordered groups do in the lattice-ordered
case. They are introduced in § 7, and in § 9 we get full descriptions of
antilattices in the commutative case. First, it is shown that a commutative

antilattice with isolated order is an extension of a trivially ordered group

by a fully ordered group. The other structure theorem states that they can
l)e obtained as subgroups of cartesian products of fully ordered groups
where an element of this product is to be considered greater than e only
if each of its components is greater tban e. Exceptional elements, called

pseudo-identities and pseudo-positive elements, are discussed in § 8.

In § 10 it is shown that a commutative Riesz group is subdirectly
irreducible if and only if it is an antilattice. By making use of this result
it is proved that to every commutative. Riesz group there exists a meet

and union preserving o-isomorphism with a subdirect product of antilattices.
The next § 11 contains the discussion of the case when the subdirect pro-
duct representations by means of antilattices are irredundant. Like in case
of lattice ordered groups, they are then unique up to o-isomorphisms.

The final § 12 deals with the analogue of the Conrad radical of lattice-
ordered groups. Here the underlying group is supposed to be only directed
and to have isolated order, and even in this rather general case the existence
and some of the main properties of the Conrad radical can be established.
(In general, we do not lay stress on formulating and proving the results
in most general form.)

§ 1. Terminology and notation.

By a partially o)-dered group G we mean a group (whose operation will
1&#x3E;e written as multiplication) which is at the same time a partially ordered
set under a relation , and the monotony law holds : a:!!~~ b implies ca  cb
and ac  bc for all c E G. If G is a lattice under , then it is called a

lattice-ordered group. The set of all x E G with x &#x3E; e, e the group identity,
is the positivity dontain P = G+ of G. The symbol P* will be used for P

with e omitted. G+ completely determines the partial order of G~ since a  b
if and only if ba-1 E G+. G is trivially ordered if G+ = e. Q’+ generates the
group G if and only if G is directed in the sense that to a, b E G there is

always a c E G satisfying a  c, b  c.

The partial order  is called isolated if an &#x3E; e for some positive
It is called dense if given a  b there ahvays exists some
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g E G such that a  c  b. This amounts to requiring the same for a = e,
and hence to P*2 = P*. (Here and in the sequel multiplication of subsets
in G means complex multiplication.)

For at , ... , a" E G, ... , all) and L ... , will denote the set of

all upper and lower bounds of ... , a" in G. The symbols U* ... , a,,)
and Z ~ (ai , ... , a") will be used to denote the sets of elements in G which

are greater than and less than, respectively, each of a1 , ... , a,, (equality ex-
cluded). A subset is an upper (lower) class implies U (a) C S
(L (a) C 8). We say that S is u-directed (1-directed) if a, b E S implies the

existence of an xES such that . ~S is called convex

and a, b E ~S, x E G imply 
Let G and G’ be partially ordered groups and g a mapping from G

into G’. If 99 is a group liomomorpliisni which preserves order relation,
then it is called an An o-homomorphism, which is surjective
and ,under which the preimnge of a positive element always contains a

positive element is an If cp is a group isomorphism preserving
order relation, we say g is ano-morphisim Finally, if cp is a group

isomorphism and if 9’, rp-1 preserve order relation, then rp will be said to be
an 

If A is a convex normal subgroup of G, then the partial order  of G

induces one in G/A : one puts b  c for the cosets b, c mod A if and only
if some b E b and c E c satisfy b  c. Then the canonical map b - bA is an

o-epimorphism of G onto (~/~4. (,onversely, if 99 is an o-epinlorphism of G
onto some G’ and if A is the kernel then A is a convex normal sub-

group of G such that the o-isomorphism G’ holds.

Let 0). be a family of’ partially ordered groups with A ranging over

some index set A. The cartesian product C = Gi of the Gi is made into
a partially ordered group by between two elements of C if

for the components ht of g, h in each The direct product
IIGA is a partially ordered subgroup of C, and so is every snbdirect product of
the If we define g  h in the cartesian product C to mean  hi for
each A, then we call the ariHing partially ordered group the cartesian

products of the G).. Mild subdi’rect products will mean subdirect products with
this definition of order. &#x3E;

For the concepts not mentioned here we refer to [7].

1 § 2. Characterizations of Riesz groups.

Now v-e turn to our main objective, i. e. to Riesz groups.
1B partially ordered group G is called a Riesz group it’ it has the follo-
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wing two properties :
(i) it is directed ;
(ii) it has the interpolation property : to all a2, b2 E G with

ai c = 1, 2 ; j = 1, 2) there exists a c E G such that

Property (ii) may be called the (2~2)-interpolation property, if in general
we mean by the (nt, n)-interpolation property that given ... ~ am and bl 1... 
in G such that

then there exists a c E G satisfying

Since property (i) may be viewed as the (2,0)-interpolation property, it

follows at once by induction :

2.1. A partially ordered group G is a Riesz group if and only
if it e&#x3E;ijoy,q tlze (i)i, for all integers m2, n &#x3E; 0.

Note that if, in addition to directedness, the (2, oo)-interpolation pro-
perty is also assumed (oo means an arbitrary cardinality), then this is

equivalent to tlce hypothesis of’ being lattice-ordered. It is clear that the

(00, oo)-interpolation property amounts to conditional completeness. Thus,
roughly speaking, Riesz groups are in the same ratio to lattice-ordered

groups as these to complete lattice-ordered groups.
While lattice-ordered groups are necessarily Riesz groups, there are a

lot of examples for Riesz groups which fail to be lattice-ordered. See § 3.

The main properties of’ Riesz groups are summarized in the following
theorem.

THEOREM 2.2. For a directed grouln G, tlae following conditions are

equivalent (2) :
(1) G is a group ;

(2) for all ai , ... , a7n E G, the set U ... , am) is 1-directed
(:3) for all ai , ... , am and bi , ... , bn E G we have

--- - -_ --- - - -

(2) Of course, even the duals of (2)-(5) are equivalent with (1). Portions of this theo-
rom have been published in ( 13~, [2J, [lJ; cf. also ( 15~.
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(4) the intervals [e, a] are multiplicative :

(5) if a satisfies

with

then there exist elements a, E G that

where

(1) and (2) are equivalent. Assume (1) and let bi , b2 E IT (at , ... , 
Then for i = 1, ... , m, j = 1, 2 and by the (m, 2)-interpolation pro-
perty some c E C~ satisfies for all i and j. Thus 
and U (at, ..., is 1-directed,, That (2) implies (1) follows on using the
reverse argument.

(1) and (3) are equivalent. First assume (1), and note that in any G

Thus it suffices to show that every x E U (ai bi , ..., belongs to

U (a~ , ..., am) U (b1 , ... , bn).  x, and so a’i  bjt 1 for all

i and j. By the (m, n) interpolation property there is a y E G such that

for all i and j. Now xy E U(a1,...,am) and y E U (b1 , ... , bn),
and thus , indeed. Conversely, suppose (3)
and let for Then I

implies I with some c E U (a, , a2) and This c sa-

tisfies ai  c  b; for all i and j.
(1) implies (4). It is enough to verify for a Riesz group G that if

e  x  ab for some x E G where e  a, e ~ b, then there exist elements
y E [e, a], z E [e, b] such that x = yz. Now any one of xb-1, e is less than

or equal to any one of x, a, hence some y E G can be inserted between

them. If we define z = then e  z  b and (4) follows.

(4) implies (5). Property (4) gives by induction

where bi ? e. If a belongs to the left member, then it belongs to the right
member. This is nothing else than (5).
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i B-/ ,*J. BV/ --- v = "’1 , I - - "’2 , "’" ~ -1 ~ - = -2 .

Then e  bi  b2 (a-1 b,), and (5) implies the existence of a c ~t e, such that
c-1 bi &#x3E; e and c  b2 , 9 c-1 bi  a-’ bt . This c lies between e, d and bi , b2 .

This completes the proof.
In commutative groups we have a further equivalent property :

THEOREM 2.3. A commutative directed group G is a Riesz group if and
only if it satisfies

(6) if for positive ai, ..., am, bj ... , bn in G

then there exist positive Cí such that

and

If G is a Riesz group and the positive elements ai , bi satisfy
a1 ... a’ln = bi ... bit 7 then we have

(5) guarantees that there are elements E G such for

every and Now c2j ’ .. are certainly positive and satisfyevery J ant ((,1 = ell". C1n. o"r 2j = oj clj are cer aUI Y sa IS Y

A simple induction on the number of establishes (6). Conversely, if

a directed group (~ satisfies (6), then (5) follows at once.

Let us mention 

PROPOSITION 2.4. The direct (or the cartesian) product of _partially ordered
is a lliesz group and only af each factoo is a Riesz The 1nild

product ~f dense -Riesz is again a l-licsz 

The proofs of the statements are straightforward and may be left to
the reader.

It is known that every abelian group (B) can be embedded in a minimal
divisible group and divisible groups are easy to liandle, W’e now show that

torsion free abelian Riesz groups can he embedded in divisible Riesz groups:

(:~) For the needed results on gruups we refer e. g. to 16 J.
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PROPOSITION 2.5. Let G be a torsion free abelian Riesz group and D

its divisible hull. The order of G can be extended in a unique way to a minimal
isolated order in D. Then D will again be a Riesz group.

As usual, a E D is defined to be positive if for some natural integer
n, an E G is positive. This makes D into a partially ordered group which is
obviously again directed. If given at , a2, I b2 E D such that ai  bj
(i = 1, 2 ; j = 1, 2), then choosing a positive integer n such that af, bj E G,
we find a c E G satisfying for all i, j. The unique nth root of
c lies between the ai’s and &#x26;/s.

In particular, we see that the order of a torsion free abelian Riesz

group can always be extended to a minimal isolated order under which it

is again a Riesz group.

REMARK. If the definition of Riesz groups is formulated in a much

more general way, a family of intermediate notions between Riesz groups
and lattice-ordered groups arises. Let M and it be infinite cardinal numbers.

By the (M, n)-interpolation property we understand the following 
of a partially ordered group G : if given two subsets A and B of G such
that the cardinality of A is less than flt, that of B is less than n and

a £ b for all a E A and b E B,

then there exists a c E G satisfying

for all a E A and b E B.

In this sense, Riesz groups are characterized by the (Xo , 0)-interpoltion
property, and lattice-ordered groups of power  f11 by the in) intcrpo
lation property. Plenty of our results can at once be extended matiitii

mutandis to the general case.

§ 3. Examples.

Since lattice-ordered groups are necessarily lticsz groups aud we are
furnished with a lot of examples for lattice-ordered groups, in what follows

we are going to exhibit only examples for Riesz groups which fail to have

a lattice-order.

1. Let G be the additive group of complex numbers and let the j&#x3E;nsi-
tivity domain P consist of all x + iy (x, y real) for which either x .--- y 0
01’ z &#x3E; 0, y &#x3E; 0.
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2. The same group G, but P now consists of all x + iy for which

0.

3. The same group G, now let positivity be defined such that P consists
of 0 and of all x -~- iy with x &#x3E; 0 (y is arbitrary).

4. Let G be an arbitrary dense fully ordered group and T an arbitrary
group with no order at all. If’ K3 is a group which contains T as a normal

. subgroup such that (group-isomorphism), then G may be ordered
so that its positivity domain consists of the identity and of all the elements
which belong to strictly positive cosets (ordering as in G (4)).

Thus a Riesz group may contain elements of finite order, and need
not have isolated order.

5. Let G be the additive group of all polynomials (or rational functions)
with real coefficients, and define f &#x3E; 0 if and only if f (x) &#x3E; 0 for each

real number x in the closed interval [0, 1 J.

6. The same gronp G, but let f ) 0 mean that f (x) &#x3E; 0 for every
x E (0, 1].

7. Let G consist of the additive group of all real-valued functions

which are denned and differentiable in the interval (0, 1]. For f E G set
1 f~ I for each x E [0, 1J.

8. The same group, but let f &#x3E; 0 mean that f (x) &#x3E; 0 everywhere
in [0, 1].

9. Iliirmonic functions in a region of the plane form an additive group
in which we 0 if j (x) ? 0 for every x. 

-

10. Let G be a group with a valuation iv, i. e. w is a function defined

on G with real values such that

(i) 10 (ab) (a) + 2c (b) for all a, b E G,
(ii) w (e) = U.

In ad.1ition we assume

(iii) the set of values 1V (a) is an infinite dense subset of the real

numbers.

(4) Here G can be replaced by a dense autil8,ttice.
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Then putting a E P if and only if either a = e or tv (a) &#x3E; 0. G is
made into a Riesz group (5).

If, for instance, G is the free group with the free geiierators ..., an,...
and if we define zv as the valuation induced by

then we get a Riesz group on the countably generated free group. (The
same can be done in the abelian case.)

§ 4. Orthogonality, carriers.

As usual in lattice-ordered groups, we call the elements tt, b of any
partially ordered group G o/rtllogonal if

which means nothing else than L (a, b) = L (e). ()rthogouality may be de
noted as usual hy the symbol a I b.

This definition of ortliogouality is equivalent to the oue introduced by
[9]; he has defined orthogonality hy the relation 1 n I’!m’ = I’.

Orthogonality in the general sense preserves several properties ui’ ort 110-

gonality in lattice-ordered groups. Let m list some of’ them here.

(a) If a A b = e and if c ? e, then

We have clearly

’1’liia is a (’011-

sequence of (a).
are pairicise orthogonal then

exists and

By (b), a, ... is orthogonal to Hence from the identity x (.r A Y) -’ y =

= x v y we infer al ... n,_1 v a, = y ... a,,-, an. A simple induction 
the proof.

(5) Note that Example 10 is a special case of Kxamph 4.
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(d) Orthogonal elements cotiimute. This follows from (c) in the special
case n = 2.

(e) If a Riesz group G is the direct product of its convex normal sub.

groups A and B , G = A &#x3E; B, then the positive elements of A are orthogonal
to the positive elements of B.

Let a E A, b E B be positive elements. Then (a-, b). If g E G + belongs
to L (a, b), then by convexity g E A and g E B whence g = e. If

and if ’g were incomparable with e, then by the dual of (2) in Theorem 2.2,
. 

there would exist an h E L (a, b) such that e C h and g C h which has been
shown to be impossible.

(f) The set X* of elements of G+ orthogonal to every element of 11, sub-
set X of G+ is a convex containing e, of G+.

Evidently, and X * is convex. (b) implies that it is a semigroup,
in fact.

In trying to generalize the notion of orthogonality to non-positive ele-

ments, analoguously to the lattice-ordered case, a serious difficulty arises.
This stems from the fact that in our present case the absolute of an ele-
ment fails to exist in general. Though it can be replaced by a certain

subset of G (see FuoHS (7 J, p; 77), which is adequate for certain purposes,
it does not lead to a very natural concept of generalized orthogonality.
Therefore we do not discuss it here.

On using ortllogonality, the notion of (.filet) can be introduced

in the same way as in lattice-ordered groups (cf. (8]).
The positive elements a, b of G are said to belong to the same 

if a n x = e for some x E G implies b A X = e and viceversa. This subdivides

G+ into pairwise disjoint carriers~; the one containing a is denoted by a".
It follows at once :

(A) The are convex subsemigroups of G+.
In fact, for positive a, b, = e if and only = e and

e.

mean that b A x = e implies cr A x = e, for each x E G. Then

this definition is independent of the representatives a, b of a", b" A and makes
the set C of carriers of G into a partially ordered set. The map a - a" of

G+ onto C is obvionsly isotone.
(B) The union of a,", b" always exists, and satisfies

The inequalities being obvious, let 0^ satisfy
I and let c E c". Then c A x = e implies both a A x = e and

b A x = e. By (b) these imply ab A x == ~ whence  c., a.s we wished to

show.
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(C) If a"  b^ and if a E a", then there is a b E bit such that a  b.

Taking some bl E bl, we have, in view of (1»),
thus b = b, a is an element of the desired type.

(D) (t is distributive in the sense that if b" exists, then so does
(aA v cA) A (b^ v el) for each cA E (: and

= all. A lJA; then obviously dA v c" v c" and d" b" v c".

Assume that .x" exists v c" and which is v r".

Then by (B) there is also one such that d" v c"  x". Let d E dA, and

let x E xl, a E a", b E b’ satisfy which can be achieved

because of (C). Then d’  for equality would imply (dc)" = d" v c" ==
== v c" = x", against hypothesis. But xc-l E L (a, b) implies  a",

"  b", a contradiction to tlce cloice of d".

THEOREM 4.1. If a p(ti-tially ordered group G laas a finite of
carriers, then the partially ordered set (; of its carriers is a Boolean algebra.

By (11), g is a union semi-lattice, therefore the existence of a minimal
element e’ in (¡ and the assumed finiteness of’ d imply that (! is a lattice.
By (D) it is distributive. If are the atoms of C, and if

b" E G satisfies but thenc"

will be the complement of’ b" in C. For,
......

Furthermore u = bc (b E b", c E c") satisfies v c" = ui for every
i whence implies for all i ; thus x" contains no atoms,
x = e and u" is the maximal element of d.

§ 5. o ideals.

The importance of the role played by 1-ideals in lattice ordered groups,

is well-known. In arbitrary partially ordered groups, in particular in Riesz

groups, the o-ideals seem to have corresponding though not so important a

role. We are going to mention the main properties of’ o-ideals.

Recall that a subset A of a partially ordered group G is called an

o ideal if

(i) A is a normal subgroup of G ;
(ii) A is a convex subset of G;

(iii) A is a directed set.
It is evident that an o-ideal of a lattice-ordered group is nothing- else

than an 1-ideal. Note that
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(A) o-ideals contain unions and intersections of their elements whenever

they exist in G.

(B) Neither the union nor the intersection of two o-ideals need be

an o-ideal.

(C) The union of’ an ascending chain of o-ideals is again an o-ideal.

Therefore, if A is an o-ideal of G and x E G does not belong. to A, then

there exists an o-ideal B of G maximal with respect to the properties of

containing A and excluding x.

(D) o-ideals generated by sets of positive elements do have a meaning.
The convex hull of the normal subsen1igronp with e generated by a given
set of positive elements is obviously a convex normal subsemigroup ~S of P

which must be contained in all o-ideals generated by the given set. The rest
follows from

PROPOSITION 5.1. :fhere is a one-to.one betiveen the o-ideals

A of a partially o)-de)-ed groulJ G and all convex S of
(.J+ containing e. The are given by (6)

are int’e’fse to each othet..

It is clear that if A is an o-ideal, then G+ f1 A is a convex normal

subsemigroup with e. Also, because A is directed; thus (1)
gy is the identity. Now if 8 is as formulated, then (8’ ) = A is plainly a

normal subgroup which is directed. To see convexity let x E G satisfy
(a, b, c, d E S). Then on right multiplication by bd we get

xbd bd where ad E 8 and c (d-1 bd ) E ~. So - in view of the

convexity have y = xbd E S. Thus x = y ~S ) . Finally,
G+ n ~~~’ ~ = 8, for if a, b E ~S~ satisfy ab-1 E G+ , then e  ab-l  a implies
ab-I E S. So is again the identity map.

Note that the o ideal corresponding to G+ coincides with G if and only
if G is directed. Also, the o-ideal generated by a family of o-ideals does have
a meaning.

(E) 1’hue canonical i)tap of’ a partially ordered group G onto its factor
group GIA ivith respect to an o-ideal A of G preserves unions a,nd intersections.
I f; for ~~ y E G, exists in G, then for the corresponding cosets

lllOd A one has evidently z  x and z  y. If the coset u satisfies u  x

------- -- -

(6) IS! denotes the subgroup generated by the subset S.
(7) In :t product of Dlappings the left factor is followed by the right one.
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and u  y, then for some zc2 E zc, x and u.  y. By the directedness
of cosets, there is a u E u such that ui , u  u;~ . Therefore u  x and
u  y, and thus u  Z. Consequently, z = x A y.

It should be noted that property (A) or (E) is not characteristic for

o-ideals. In fact, there exists a larger class of convex subgroups which shares
this property. Calling a subgroup C of G an w-ideal if it is the intersection

of a family of o-ideals Aa of G, it is obvious that C still contains unions

and intersections of its elements if they exist. Furthermore, (E) also prevails,
since is canonically isomorphic to a subdirect product of the 

and since the natural homomorphisms G - preserve unions and inter-

sections, so does the map G -+ G/C they induce. The (M-ideals have the

advantage that the w-ideal generated by an arbitrary subset of G has a

well-defined meaning.
Next let G be an arbitrary partially ordered group, and consider the

set O of all o-ideals of G, partially ordered hy inclusion. It is rather sur-

prising that ® is a lattice (but it is only exceptionally a sublattice of all

normal subgroups of G, cf. Theorem 5.6):

PROPOSITION 5.2. If the set of, all o-ideals of a partially ordered group
G i.s ordered by inclusion, then it is a complete lattice.

By what has been noted at the end of (D) it follows that the set O of
o-ideals is a complete semilattice under union. By a standard result in lat-

tice theory, ® is then a complete lattice provided it has a minimum element

which is now the case.

Up to now we have considered o-ideals in arbitrary partially ordered

groups; in the rest of this section we shall be concerned with those in

Riesz groups.

PROPOSI’rION 5.3. The factor group G/A of a .Riesz group G with res-
pect to an o-ideat A is again a Riesz group.

Let the cosets a2 , bJ , b2 (i = 1, 2, j = 1, 2).
Then given ai E ai arbitrarily, there exist elements bji E bj satisfying ai  lyi
(i = 1, 2 ; ~j = 1, 2). By the directedness of cosets, there are bj (j = 1, 2) &#x3E;

such that b~2  b~ . We apply the interpolation property to the pairs
and bi, b2 to couclude the existence of a c E G such tlat ai  c 

for all i, j. Then the coset c containing c satisfies ai c c  bj for all i, j.

PROPOSITION 5.4. The intersection of a finite number of o-ideals is also 
We prove that A n B is an o-ideal if so are A and B. VTe need only

show that A n I3 is directed. Let x, y E A fl B. For some a E A and b E Ip Bve
lcave x, y  a and x, y  b. Let c lie between the pairs x, y and a, b. By
convexity, c E A and c E B, and so c is an upper bound for .x, ,y in A n /;.
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For infinite intersections the last proposition fails in general. For ins-

tance, let H?y (n = 1, 2,... ) be the fully ordered group of rationals and H..
the same group with the trivial order. Let G be the lexicographic product
of the groups j3~ ,... , ... , (in this order). It is easy to check that

G is a Riesz group in which the lexicographic product A~l of is

an o-ideal for n = 1, 2,.... But the intersection of all these An is equal to
H~ which is not an o-ideal.

. PROPOSITION 5.5. The prodzcet of’ a finite nuntber 0.( o-ideals is again an
o-ideal. The .subgroup generated by an arbitrary .set of’ o ideals i.s likewise an

o-ideal. 
,

We show that A B is an o-ideal if so are A and B. Since the elements

of AB are of the form ab (a E A, b E B) and A, B are directed, it is evident

that AB is directed. To see the convexity of AB, assume x E G satisfies

e  x  ab for some a E A, b E B ; in view of directedness a and b may be
assumed to be positive. Theorem 2.2, (J) ensures the existence of a’, b’ E G
satisfying e  a’  cc, e  b’  b and x = a’b’. Here certainly a’ E A, b’E B,
and consequently, x E AB. Since the subgroup generated by a family of
o ideals is the set union of the subgroups generated by finite subfamilies,
the second statement is an immediate consequence of the first one.

The next result is a generalization of the corresponding statement on
1-ideals in lattice-ordered groups.

THEOREM 5.6. 1’he o-ideals of cc Riesz group G fo)-m a distributive sub-

lattice ’in the lattice of all of G.
By virtue of Propositions 5.4 5.5, we need only verify the distributivity

tor o-ideals A, B, C of G. It suffices to establish the inclusion C . Let 

(b E B, c E C) belong to the left member ; without loss of generality e C a

may be assnmed. By directedness, B and C contain positive elements bi 7 el
such that b  b~ ~ I c  ct . Applying (5) of Theorem 2.2 to e  a  bic1 we
inter that a = b2c, for some b. cz with . Since

b~ E rt, c2 E C and b2  a, C2  (l, it follows that b2 E A fl B, cz E A and

thus a E n B) (A n C), as desired.
It is to be observed that even the infinite distributive law

holds true when 1?~ runs over an arbitrary set of o.ideals of a Riesz group.
This is an immediate consequence of the finite distributive law and the fact



16

that a subgroup generated by infinitely many subsets is the set union of

subgroups generated by a finite number of subsets.
In Riesz groups we also have :

PROPOSITION 5.7. If G is a Riesz group and A is an o-ideal of 0, an(I
if x, y, z are cosets of A such that

then to every x E x and to every z  z satiqfyittg x  z there exists 

such that

Under the given hypotheses, there exist y2 E Y such that x ~ yi ,
and Y2  z. The coset y heing directed, some Y3 E y satisfies y, 1  Ya and

Y2  y3 . By the interpolation property, some y E G lies between x, Y2 and

Y3 , z. But Y2  Y  Y3 implies y E y, so y is a desired element.

The following result may be of’ some interest.

PROPOSITION 5.S. If G is a -Riesz and if ... , An ot-e o.ideal.’l

of G such that G as an abstract group i.s the direct product of the .~1 ~ ~ then (.1

as a partially ordered i.s also the direct pi-oditct of the ordered

groups Ai.
We need to prove that ai ... &#x3E; e (ai E Ai) implies (ii &#x3E; e tor each i.

There exists to eacll a, positive hJ E Aj stich that bJ ? and replace
the by to get , also write

1 with positive in Ai. Since ci commutes with bJ (j =t= i), we
have

Here the + i) must be orthogonal to ci , in view of’ § 4 (e). On account

of § 4 (a) we infer

which means bi &#x3E; I that is, e.

§ 6. Extensions of commutative Ri(~sz groups.

The Schreier extension problem for partially ordered groups lias been

considered by the author [5]. The lattice ordered case has been investigated
by R. TELLER [14] ; here we need the extensions for commutative Riesz

groups, discussed recently by TELLER (1;5). For sakp we

prove here his main result (Theorem 
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Let G and 1~ be partially ordered groups and 0 an extension of r by
G. This means that 0 can be regarded as the set of pairs (a, a) with a E G,

such that

(a, a) = (b, fl) is equivalent to a = b, a = fJ,
and

ITere f denotes a factor set, i.e. a function from the product set G X (J
into 1~ satisfying

(i) f (a, e) = 8 for all a E G (8 denotes the neutral element of r);

The order relation in 0 can be given in terms of the sets :

= the set of all a E 1~ such that (a, a) ? (e, e).

These Pa satisfy:
(iv) Pa is not void if and only if a &#x3E; e ;

The equivalence of extensions may be foromated in the obvious way;
we sliall not need this notion.

W’e are interested in Itiesz groups. For them we have [15]:
6.1. Let G and F be commutative Riegz and G a coin.

mutative exten.sion of 1 by G, corresponding to b), Then 0 is again
a Riesz group if and only if

(a) Pa is 1-directed for eaclc a E G+ ;

First assnme that G is a Riesz group. Let E Pa and choose some

y E I’ witli y  a, y  f. Then each of (e, e), (a, y) is  each of (a, a), (a, fl); i
consequently, some (d, 6) can he inserted between tlem. Evidently, d = a, and
so 6E satisfies 6  a, 6  /’). Ifence (a) is a necessary condition. To

we can certainly find elements sucli that a E 

and y  oc;~,~’ (cc, b), because the sets P are upper classes. Then

implies the existenee of a’ E Pit anci Bi’ E Pb such that y = a’ fJ’ f (a, b). Thus
, alla by (vi), we get (b).
let G and 1~’ he Riesz groups, and let f satisfy (a)

and (h). Ill order to prove that G is again a Riesz group, let

2. SC1Lola Norm. b’2cp. - Pisa.
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with a E E Pb. We show that (e, 7) = (a’, a’) . (b’, for some

By the Riesz property of G, c = a, bo for some ao, bo E G 
e  bo  b. We also have (e, 8)  (a, a) for some ao E Pao , since

and so a = (tXtX;;-l) ao with tXtXõl E Paaõl 1 f j (a, ao 1)-1 and ao E P a .° ° 0 "°

Similarly, (e, e)  (by,  (b, fl) for some PO. Since y E Pc = Paubo =
= Pao Pbo f (ao , bo) and Pao , P60 are 1-directed, ao , Po may be assumed to be
chosen so as to satisfy ao Po f (ao, bo)  y. Then dividing by (ao , ao) and
(bo, flo), we have reduced (1) to the case c = e.

In the case c = e we have and so

for some 

a.~ ~2  ai ~81  Thus the Riesz property of .1~ implies that ai Pi = 
with a, :!!5~ 0&#x26;, :!E~~ a, j8/! fl,a, :!!5 OG = OG SO On putting a’ = 

fJ’ = we have (e, a’) (e, ~’) = (e, y) where
). This completes the proof.

REMARKS. 1. If I’ is a fully ordered group, then condition (a) may be
omitted.

2. If the group T is assumed only to have the interpolation property
(and not to be directed), then 0 will certainly be a Riesz group provided
it is directed.

3. The Riesz group ($ has the property that if (a;, ai)  bj, Pj) for
i = 1 ~ ... ~ m ; j = 1, ... , n, and if c E (~ c  b~ for all i, j, then
to this c we can find a y E .,T’ satisfying

It suffices to show that we can find a yo E I’ such that (fti, ai)  (c, yo)7 f’or

then setting _ (c, Yo) and doing the same with the it’s, the Riesz

property of ($ settles the question. Since
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is not void in view of the upper class property of the P’s, any yo in the
intersection will do.

4. By condition (b), it is sufficient to know the sets Pa for generators
a of G+. If G+’ is a free semigroup, and ai E G+ are free generators, then
prescribing Pa, arbitrarily on the free generators so that they are upper
classes and satisfy (a), P~ for every c E G+ can uniquely be determined

on the basis of (b). They will obviously satisfy (b) and - as easily seen -

also (a).

§ 7. Antilattices.

The concept of antilattices seems to be of fundamental importance in
the theory of Itiesz groups. They play essentially the same role as the fully
ordered groups do in the theory of lattice-ordered groups. They are, roughly
speaking, Riesz groups without proper union or intersection of elements.

A Riesz group H is said to be an anti lattice if it satisfies the following
condition:

(*) if a A b exists in H, then either or 

This condition is equivalent to saying that the elements of an antilattice
are meet irreducible. Considering that , (*) implies that
i f a v b exists in 7?, then either a v b = a or a v b = b.

Every fully ordered group is clearly an antilattice. On the other hand,
an anti lattice is lattice-ordered, fully ordered group. Examples

for antilattices are the groups in Examples 1, 5, 6, 8 of § 3.

LEMMA 7.1. For a Riesz group G, tlce following conditions are 
(a) G is an anti lattice ;

(c) P* is 1-directed,.

The proof is straightforward and may be left to the reader.
Note that if an antilattice H has an atom a (&#x3E; e), then every positive

element &#x3E; e must be &#x3E; a.
In general the existence of the intersection a A b A c does not imply

that of aA b. Therefore it is desirable to know whether or not a finite
number of elements may have an intersection in antilattices.

PROPOSITION 7.2. If in an antilattice exists, then ai = b
for some i.

This being true for n = 1, assume n &#x3E; 2. If al A ... A exists, then
on account of’ (h), either ai A ... A = b or an = b, and the assertion
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follows by induction on n. If at A... A an-l does not exist, then L (al , ... , an-l)
being u-directed, there exists a c E L (a, , .., such that c &#x3E; b. We claim

c A an = b. Indeed, if b’  c and b’  an, then b’ for every i whence
b’  b. But then c A an = b implies an = b, as we wished to show.

We are going to introduce a topology in dense Riesz groups, the so called

open-interval topology. As a subbase of open sets in G we take the subsets

Then this is a HAUSDORFF topology if and only if there exists no c E G

(c ~ e) such that P*c = P* (i. e. no pseudo-identities exist in the sense of

§ ~ and in that case G is a topological group in the open-interval topo-
logy (g).

PROPOSITION 7.3. A dense Riesz grotil) /without pseudo-identities i-v an

anti lattice if and only if’ it is not in its topology.
If the Riesz group H is not an antilattice and if a A b = e witch

a ={= ~ =t= b, then the open intervals have 

intersection e, and so H is discrete in the open-interval topology. (The same
conclusion holds when H is an antilattice, but is not dense, for then there

is am atom in H.) Conversely, let .g be a dense antilattice, without pseudo-
identities. It is to be shown that for ai, bj E H, the intersection

is either void or contains a closed interval (c, dJ, c  d. Let x belong to
the intersection. Since U~ (ac1 , ... , is l-directed and contains no minimal

element (by Proposition 7.2), there is a c E U~ (cc~ , ... , a",) witii c  x. Si-

milarly we can find a with (I&#x3E; x. Then (o, d] is an inter vn

in the intersection. Q. e. d.
It should be observed that the proof shows that the open intervals

(c, d) form a base for the open interval topology in the case covered by the
last result.

Let H be a commutative torsion-free antilattice whose order is isolatec1.

By Proposition 2.5, H can he embedded in a divisible commutative 1?,iesz

group D which has isolated order again. Here we point out that 1) will

agaiii be an antilattice, since the orthogonality of a and would imply the
orthogonality of all Clearly, D is a dense antilattice.

The next result is w-ortlmlhile mentioning.

(8) Cf. [71. p. For the rciiiltx on groups see (11 ).
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PROPOSITION 7.4. Let 0 be a commutative Riesz group that is an

extension of a dense anti lattice r by a dense antilattice G, and let G be

described in terms of f (a, b) and Pa as in § 6. G is again an antilattice exactly
if the sets Pa (a j e) are open in the o p en-interval topology of T.

Since no intersections exist in r and in G, two elements of 0 can be
orthogonal only if they are of the form (a, a) with a &#x3E; e and (e, But

is equivalent to

which can be written in the form

This amounts to saying that y Pe has a minimal element a, since -

as readily seen from the interpolation property - Pe is again 
rected. We see that G is an antilattice exactly if Pa f1 y Pe has no minimal
element unless y E If Pa fl y P, has no minimal element, then for each
a E Pa f1 7 1&#x3E;~ , some ~ E l’a n y Pe exists with a E U~ C 1’a , and Pa is open.
Conversely., if is open and a E Pa n y then in case y ~ Pa we have

thus a lies in the open set and hence

it cannot be minimal there.

Finally, let us note the simple observation :
PROPOSITION 7.5. If a,n antilattices is eonneeted in the open-interval to-

holocJy, then it has no o-ideal.3 except the trivia 1 ones.

It’ the antilattice A satisfies the hypothesis., then every neighborhood
of c generates A as a group. It’ given a it &#x3E; e in A, then the open interval

(1£-1, u) generates A, i. e. to each a E A there exists an integer n such that
u-n  a  un. Hence the convex subgroup generated by u coincides with A.

§ 8. Pseudo-identities aml pseudo-positive elements.

Let us turn our attention to elements which are exceptional in Riesz

groups in the sense that such elements do not exist in the lattice-ordered

case.

Let G be a Riesz group. An element c E G, distinct from e, is called a

pseudo identity if 
- ..

and is said to be pseudo positive if c ~ .~’ and
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where as always P’~‘ denotes the set of all elements greater than e in G.

Since cP* never contains c, every pseudo identity is pseudo.positive.

LEMMA 8.1. If in G both c and c-1 are pseudo-positive, then c is a pseud o-
id entity.

Hypothesis implies the inclusions

The second one means P* C cP* whence cP* = P*.

A lattice-ordered group G contains no pseudo-positive elements. For, if
c E G were such, then c v e would satisfy: c  x implies c v e  x. Hence c

would be meet irreducible, and so G fully ordered. That in fully ordered

groups no pseudo-positive elements may occur is quite obvious.
In Example 3 of § 8, the complex numbers iy ~ 0 are pseudo.identities.

In Example 1 the numbers x &#x3E; 0 and iy with y &#x3E; 0 are pseudo-positive,
and so are the functions f in Examples 6, 8 which are positive everywhere
except for one place.

LEMMA 8.2. In a Riesz group G tlue pseud o-id entities together Ifith

e, a convex normal subgroup 0. If 0 =t= e, then the factor group G/C is (i

dense antilattice without pseudo -identities.
If C denotes the set consisting of e and the pseudo-identities of G,

then c, d E C implies (cd) P* = cP* = P*, i.e. cd E C. Clearly, c-1 E C and

cx E C for each x E G. Thus C is a normal subgroup which is trivially
ordered, and so convex. Since a  b implies ac  b and a  be for c E (~
we see that if a  b for cosets a, b mod C, then for all a E a, b E b one has

a  b. Hence the Riesz property of GIC is immediate.
Now if e  a and if c E C, c # e, then there exists some x between

the pairs e, c and a, arc, and so e  x  a shows that G is dense whence

G/ C is dense too. If for a, bE G/ C the element a A b exists and differs from
a, b, then for and e # c E C we have some x E G between

dy de and a, b. Now d  x  a and x  b which is impossible. Hence G and

GIC are dense antilattices. Since each element in a coset mod C which is

a pseudo-identity in GIC is a pseudo-identity in G, the proof is completed.
By making use of this lemma, we can describe the Riesz groups with

pseudo-identities.

THEOREM 8.3. If the Riesz group G contains a pseudo-identity, then it i.s

a dense antilattice. G contains a trivially ordered convex subgroup C
suck that the factor group G/C is a dense antilattice without pseudo -identities,
and g positive if’ and only if either g = e oi- the coset g of g inod C is
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greater than e in G/ C. Conversely, every group G which arises in this way

from C and G/C is a dense antilattice.
The statement concerning the positivity of g needs no verification. As-

sume that G is a partially ordered group that arises in the described way.
Then strict inequalities between cosets mod C are equivalent to strict ine-

qualities between arbitrary representatives of the cosets whence everything
is clear.

Since C can be an arbitrary group, it follows that a Riesz group, mo-

reover an antilattice need not be torsion-free.

We shall make use of the following characterization of pseudo-identities.

PROPOSITION 8.4. Let G be a partially ordered group with isolated ordet-.

c E G, c ~ e, is a pseudo.identity of’ G if and only if together with D, also

(D, cj is a trivially ordered s2cbgroup of G.
Since pseudo-identities c liave the property that it is allowed to mul-

tiply by them one member of strict inequalities, it is clear that if D is

trivially ordered, then so is ID, c). Conversely, let c ~= e have the indicated

property, and let p &#x3E; e. Then d = cp cannot be incomparable with e, for
otherwise D = would be a trivially ordered subgroup of U, but ID, el
would not share this property, since p E el. Hence either cp ~ e or cp ~ e.
The first case is by c  cp C e excluded, thus cp &#x3E; e for all p E P*. We

conclude that c is pseudo-positive. Similarly cw is pseudo-positive~ and

Lemma 8.1 implies that c is a pseudo-identity.
Concerning pseudo-positive elements we do not liave much to say. The

product of two pseudo-positive elements may be positive; but trivially, the
set of all positive and pseudo positive elements is a subsemigroup Q of G
which is clearly normal and convex. If Q does not contain elements # e
along with their inverses, then Q defines a partial order of G in which G may
again possess pseudo positive elements. By means of Example 6 in § 3 it

may be shown that need not define a Riesz order on G even if the order
of G we started with has been one.

Finally, let us mention a method of constructing pseudo-positive ele-
ments. Let G be an arbitrary partially ordered group and JV a non-trivial

normal convex subgroup of G. If’ 1’ is the positivity domain of G, then
delete from P the elements of N with the exception of e. It is straightfor-
ward to check that with this smaller positivity domain P’, G will in fact
be a partially ordered group in which the elements of P not in P’ are

pseudo-positive. It is also easy to see that if G is a Riesz group, N an
o-ideal of G such that G/N is a dense antilattice, then P’ will make G into
a Riesz group again.
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§ 9. The structure of commutative autilattices.

In the special case of commutative antilattices it is possible to give
more information about the structure, whenever the order is isolated. In

view of Proposition 2.5 and a remark in § 7, we shall confine ourselves to

divisible antilattices.

Let H be a divisible commutative Riesz group with isolated order; thus
H is torsion-free. Among the subgroups of .H which are trivially ordered
there exist maximal ones; let C denote one of these. Then C is convex in

H. Now H/C does not contain any trivially ordered subgroup # e, for the

elements of H belonging to these cosets would form a trivially ordered

subgroup of H which properly contains C. The order of H/ C is again
isolated, for if the coset a mod C satisfies all e for some positive integer
n, then for a representative a E a we have all c for some c E C. Now G’

being obviously divisihle, cn = c for some c~ E C. lfence all &#x3E; and thus

a &#x3E; co , 7 because H lias isolated order. Therefore (( &#x3E; e and the order of H) (?
is in fact isolated. But then H/C’ must be fully ordered since if a E IIIC
were incomparable with e then the powers of (-¡: would form a trivially ordered
subgroup of We conclude that H is an extension of a trivially ordered
group C by a fully ordered group Hle.

Since, because of clivisibility, .H as an abstract group is isomorphic to
the direct product of C and the representatives of the cosets can be

chosen so that the factor set f («, b) collapses to the identity. By making
use of Theorem 6.1 and Remark 2 in § 6, we see that if in the direct pro
duct of C and H/C the sets 1’a C C for positive are subject to con-
ditions of Theorem 6.1 and care is taken that a directed group will arise,
then the arising group H = C X H,l C will be a Riesz group, moreover an

antilattice, if orthogonal elements # e do not exist. Since C is trivially-
ordered and H/ C need not be representable within H by a fully ordered

subgroup, Theorem 6.1 is not applicable to the direct product. Ilence we

are led to :

THEOREM 9.1. Let H be a divisible commutative Riesz group with isolated

order. 1.’hen H as an abstract group is iso’1norphic to a direct product:

where 0. is fully ordered and .1 is trivially ordered. If H is con.,;idered as an
extension of‘ r by G with factor set f (a, b) = E f’or all a b E G, then tlae

partially ordered grouJJ H~ ·’ G X .r 11 a satisfy
(i) Pa is not void if and if’ a E G+,
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hccs the property that the canonical 1nap of H into H* is an 

Every group H* ’which arises cr divisible fully ordered group G and

trivially o14dc’red t/)-otil) l’ in this cc,ccy is a Riesz group.
The case when H is o simple is worthwhile mentioning. Then the

o-ideal generated by a positive element a ~ e coincides with H. This means
that to given a, b J e in H, we can find a positive integer n such that
all &#x3E; b. Hence HIC is arrhimedean, and so it is o-isomorphic to a subgroup

. of the real numbers.

COROLLARY 9.2. If the group H o.l the pi-ecediiig tlleore1n is 

then G is to a divisible siibgi-ozil) Conversely,
if’ G is a then H* is o-.simple.

In Example 1 of’ § 3 we may tal;e C to consists of all (a, b) with b = 0,
and in Example 6 C can be chosen as the set of all I polyllomials vanishing
at a fixed $ in [0,1].

There is another approach of’ getting information about commutative

antilattices. ’1’his is a representation by means of’ fully ordered groups which
will next be considered. ’-B’ow the absence of pseutlo identities must be assu-
med which is, by virtue of Theorem 8.:~. not too restrictive a hypothesis.

Let H be a divisible commutative antilattice v-ith isolated order having
no psendo-identit ies. V’e let (’, run over all subgroups of H which are

maximal with respect to the property of excluding some positive element # e
of If. V’e claim tliat the intersection ot’ all these is just e. By way of
contradiction, suppose that some x T l’ belongs to each This x posses-
ses the property that if the subgroup ;1 is trivially ordered, then so is

{A,x} Thus x would be a pseudo identity ot’H (cf. Proposition 8.4). Therefore
n Ce = e, indeed, and consequently,H is isomorphie to a subdirect product
of the partially ordered groups We have shown above that are

fully ordered., so an o-monomorphism of H into a subdirect product of fully
ordered groups arises.

This representation has the additional property that if a C b in H, then
we have ffp  b, for the coitil)oneiits (t, of a and b, of b in each HIO(!. This
follows trom the fact tlat ba-1 never belongs to a C, . Thus we arrive at
the following result:

THEOREM Let H be cx, divisible commutative antilattice whose order

iR isolated and ichich contains no pseudo-identities. 1’hen H is o-isomorphic
to a of fully ordered 

It is to be sliown that the canonical map 99 into the mild cartesian

product of the carries only positive elements into positive elements
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# e. If rp (h) &#x3E; e for some h E H, then no Ce may include h. Thus h is not

incomparable with e, and since h  e is absurd, it follows that h &#x3E; e, indeed.
Note that a mild cartesian product of divisible fully ordered groups

is necessarily an antilattice. Also, in Theorem 9.3 « antilattice » can be

replaced by « Riesz group », but then the o-isomorphism does not preserve
meets and unions.

In case the additional assumption is made that .bI is o-simple, we get
from Corollary 9.2 and Theorem 9.3 :

COROLLARY 1).4. Let H be as in Theorem 9.3 and assume H is 

Then H is o-iso1norphic to a subgroup of real-valued functions on some 8et
where a function f is &#x3E; 0 i f and only if f (~) &#x3E; 0 for all ~ E ~ .

§ 10. ltepi-esentation of coinmutative Riesz groups.

W’e wish to get a subdirect product representation of commutative Riesz
groups such that it preserves not only group operations and order relations,
but unions and intersections as well whenever these happen to exist. Since

the class of Riesz groups is not equationally definable, there is nothing.
to guarantee the a priori existence of such a representation.

We begin with considering the subdirectly irreducible Riesz groups (9).

THEOREM 10.1. A comomutative Riesz is subdirectly irreducible if’
and only if it is an antilattice.

If the commutative Riesz group G is subdirectly reducible, then there
exist non-trivial o-ideals A and B such that A n B = e. Then every posi
tive element of A is orthogonal to every positive element in B whence G

cannot be an antilattice. Thus an antilattice is snbdirectly irreducible.

Conversely, assume that G is not an antilattice. Then we can find elements

a, b in G which are &#x3E; e and satisfy a A b = e. The set of all positive r E G

orthogonal to b generates an o ideal A of G containing a, and the set of

all positive y E G orthogonal to every x generates an o-ideal B containing
b. We have A n B = e, since every positive element in the intersection is

orthogonal to itself, and the intersection must again be an o-ideal on account
of Proposition 5.4. We claim that the canonical iiiap G/A x 

yields a subdirect product representation of G. Clearly, cp is hijective and

order, union, intersection pregerving. It remains to verify that 

(9) By subdirect irredncibility we mean that the group is not properly representahle
as the subdirect product of two (or a finite number of) factor groups ; for the sake of

convenience we assume that the kernels are o-ideals. This is not essential for what follows.

(If we omit the last hypothesis, then the « if » part of Theorem 10.1 should be cancelled.) &#x3E;
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implies g ? e. Now q) (g) g e means that the coset of g both mod A and
mod B contains positive elements, say ga ~: e and gb &#x3E; e for a E A, bE B.

By directedness, we may assume, without loss of generality, that a &#x3E; e and

b &#x3E; e. Since a A b = e exists, so does ga, A gb = g (a A b) = g. Thus ga., gb &#x3E; e

implies g ? e, and this completes the proof.
Now we have come to the problem of getting an adequate subdirect

product representation for commntative Riesz groups, namely one which

gives the Lorenzen representation in the special case of lattice-ordered groups.
. In establishing the existence of such a representation, a slight modification

of the proof, usually given for equationally definable class of algebras, is

necessary.
The main result reads as follows.

THEOREM 10.2. Let G be a commutative -Riesz group. There exists a falnily
H~ (A E A) o f antilattices and an g~ of G onto a subdirect product
of the Hi such that qJ preserves and intersections.

Let g range over all elements of G which are not  e. For each such

g take an o-ideal A (g) of G which is inaximal with respect to the property
of not intersecting U(g) : A (g) does exist. We claim that G/A (g)
is an antilattice. It suflices to show, on acconnt of Tlleorem 10.1, that if’ B,
C are o ideals properly containing A (g), then B n C has the same property.
Let b E B n V (g) and c E C fl U (c~) ; evidently, b and c may be chosen to be

positive. By the interpolation property, «e can intercalate between e, g and

b, c some a E G, and tlis cr- is clearly contained in each of B, C and U(g),
i.e. B fl C intersects U (g). Now the intersection of all the A (g) collapses to

e, since if h ~ e then either A or A (h-1) exists and excludes h. There-

fore, if we choose for the H~ the antilattices G/A (g), then the natural map
cup of G into the cartesian product of the Hi is an o-monomorphism preser-
ving unions and intersections. What we still have to verify is that is.

order-preserving too, or in other words, that q (g) ? e implies g &#x3E; e. But if
g (y) &#x3E; e then g cannot be incomparable with e, for if it were so then in

G/A (g-1) the coset of’ g would contain, by the meaning of 99 (g) &#x3E; e, a positive
element, say ga &#x3E; e, a E A (g-1), in contradiction to the fact that U (g-1) does
not meet A (g-1). This completes the proof of the theorem.

Observe that if G happens to be lattice-ordered, then Thorem 10.2 is

equivalent to the Lorenzen representation theorem. For, in that case the

groups as union and intersection preserving images of G - must he

lattice-ordered, and so they are fully ordered, indeed.
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§ 11. Irredulldant representations.

In Theorem 10.2 it has been shown that commutative Riesz groups can
he represented as sublirect products of anti lattices, preserving unions and

intersections if exist. We are naturally interested in getting conditions under
which the mentioned representations are shortest in the sense that they
don’t have any superfluous components and certain uniqueness statement

can be established.

An o-isomorphism 99 of a partially ordered group G into the cartesian
product C of antilattices Ga will be called a representation of G, if the ker-

nels of the projections G - Gi are o-ideals of G. From Theorem 10.2 we

know that a commutative Riesz group always has a representation.
Let yy denote the projection of C onto the cartesian product of the G,t

with u ~ 1. If for some A, the composite map qyi is still an isomorphism
of’ the abstract gronp G, then we call the component G;. superfluous. 1 f 

is no longer an isomorphism of G, tlen GA is said to be an eS8ential com-

ponent. Obviously, 6~ is essential exactly if

holds true denotes the projection of ~’ on G,u . Clearly, there is

nothing to prevent us from identifying G with a subgroup of C under rp.
If one tries to carry over tIe representation theory of commutative

lattice-ordered groups, developed by ,J AFFA RD, and to

the case of Riesz groups, then an unsurmountable diniculty arises : tlie in-

tersection of infinitely many need not be all o-ideal again. In order
to overcome this diffculty, one has the choice either to make restrictions

on the representations to be considered or to assume that we are dealing
with Riesz groups where any intersection of o-ideals is again an o-ideal.

Since the second alternative seems to be the simpler and since this includes
the most important examples, we are going to discuss Itiesz groups with

the mentioned property. For the sake of brevity, we shall call them 

Riesz groups ; thus a Riesz group is strong if and only if its w.ideals arc

o-ideals.

LEMMA 11.1. If Gi fis essential conlponent oj’ a Riesz group G,
then for some a E G+ with ~ e, the ca,rrier a" is i~z the par-

tially ordered set C of ca~~rie~~s of G.
Now the left member of (1) is an o-ideal of G, since the kernels of cp,,

are such. If 6~ is an essential component in the representation of U’, theii
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(1) holds, and hence the left member contains an a E G+, y a ~ e. This a has
only one component ~ e in the representation, namely qi (a). The carrier a"
must be minimal in .t, for if b"  a" and b^ =t= eA, then we have also =t= e,
for otherwise a A b = e would hold whence b’ = aA = e^, a contradiction.
If b A X = e for some x E G+, then necessarily (x) = e, and so a A x = e.

This shows and b^ = aA.

A representation in which every component is essential is called irre-

"7"e have as a main result :

THEOREM 11.2..A commutave strong Riesz gr01tp G ad1nits an ir)-editn-

dant il’ and it 

(i) the ordered set C of’ its is atomic,
(ii) it’ c,,, (ju E set of positive in G such that to each

a E P* .the1’e i,s a b E P* b  a and cu J’or some ~u, then x ~ c,,, for
all /1 Ünplies x  e.

Any tu’o irredundant G lire 

Assume that G has an irredundant representation with components
(1 E A) which are antilattioes, and let denote the projection G 2013~ Let

b" be an arbitrary caruier of (~r, not equal to e", and let b E bA. There is an

index 1 such that ((Î. (b) &#x3E; e. The component G being essential, some a E G+
satisties ~~;~ (cr) &#x3E; e such that aA is a minimal carrier (cf. Lemma 11.1). Since
(ii. is an antilattice, (a) and do lcot have an intersection, and so

a A b fails to exist in G, But then some c E G+, y c # e, satisfies c  a and
c  b. Therefore c"  aA, cA  bA, and lience the minimality of aA implies
CA aA, i.e. C is atomic.

If c,~ is a set as described in (ii) and i f x  c, for all u, then let a E G+
sucli that its 2-th component is &#x3E; e and all its other components equal e.

It’ (’1£ is orthogonal to ll, then tlle loth component of c, must be e. Thus

 r, for every ,rc only if the components of x are  e, and so x  e. _

Couversely if C is atomic, then let us consider the set of atoms a
(indexed by ~1 certain set ~1) in d. The set of all elements of G+ orthogonal
10 the elements Of a fixed a) is the positivity- domain Of an o-ideal 11 of G
(Proposition 5.1 and § 4, (’)). This 1). clearly contains all the elements of G
contained il the carriers cr^ =t= 1, but none in W’e claim that

= H; is an antilattice. If b c are positive elements of G such that

b Ti A cI; = I;, icl Hz and neither hI;. = IA , nor CIA = IA, then neither b nor c
is orthogonal to any lIence some E (( satisfies 01  b and al  e,
mol thus aA’ in contradiction to A = Ii . Now
the intersection of all Ii does not contain any positive element # e, for
sncit an element must be orthogonal to consequently, fl h, = e, since
it i, by hypothesis an o ideal. But the intersection of the 1 p. with a =)= ~ is
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distinct from e for each fixed A, because it contains the elements in a~ .
The last two sentences show that G has an o-monomorphism 99 into the
cartesian product of the antilattices 99 is induced by the natural o-ho-

momorphisms of G onto HA.
It remains to show that (p maps only positive elements upon positive

elements. x E G is mapped by rp upon a positive element in the cartesian

product of the ~ if and only if the coset contains a positive element,
for each A, that is, xcx ? e for some ci E IA which may evidently be assumed
to be positive. Now we have a set of positive elements cA (1 E 11) which has
the property described in (ii) because of the atomicity of (t and the defini-
tion of Hence by (ii)  c~ implies or x &#x3E; e.

Finally, to show uniqueness up to o-isomorphy, suppose that G has an

irredundant representation by means of the antilattices 6~ ~ and let gj,
denote the projection of G onto By our hypothesis on G, the intersec-
tion fl Ker 99, is an o-ideal # e, hence it contains some positive b, ; this b,t

y?

has e for its vth component, v =t= p. Obviously, b is an atom in G, G,
being an antilattice. Thus each component O,t determines uniquely an atom
in d. If aA is an atom in d and if then a cannot have two compo-

nents &#x3E; e, for if the flth and vtli components of a were &#x3E; e, then both

a", which would contradict the atomic character of aA.
Hence each atom determines a component G,, y and so atoms of C and

components G, of an irredundant representation are in a one-to-one corre-

spondence. Moreover Ker (P,t must be the subgroup generated by the positive
elements of G orthogonal to b~ , 7 i.e. Ker ~p,~ == 7~ as defined above. Hence

G, ’~%o and G, is determined uniquely up to o-isomorphism.
The group in Example 7 of § .3 has a representation, but in no repre-

sentation is it possible to find an essential component. Condition (ii) is

always satisfied in the lattice-ordered case.

§ 12. The Conrad radical.

We can associate with each directed group G an w.ideal of G which

is reminiscent of the radical and has been discovered 1&#x3E;y I). ill the

lattice ordered case. The discussion to be given here differs from 

in that we introduce the radical as the union of certain elements of G, and
then we show that it is the intersection of certain 

Throughout this section let G denote a directed group ’with isolated order.
With a finite set x1 , ... , xyn E G we associate the subset
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We have obviously the rules:
for each i~

(b) if then

(c) Vj for i =1, ... , ma; j =1, ... , n implies
(d) (ax, b, ... , = a ... , b, ,

(e) e E (a, for each a E G.

In order to verify (e), let x E U (a, ~c-1), that is, x &#x3E; a and x &#x3E; a-’. Then

x2 &#x3E; e, and x &#x3E; e by isolatedness.

The following simple observation will be needed.
LEMMA 12.1. If All ..., Am are o-ideals of a directed group G 2oitlr, iso-

lrttetl order and if g &#x3E; e belongs to the o-ideal generated by Am, then
there exist positive elements ai E Ai such that

Since (at , ... , is a lower class and since to each g in the o-ideal
generated by ..., Ani, there exist gi E At such that 9 C 9t ... it suf

fices to establish the assertion for g = g1 ... gm with then

take ]~y (e), this contains e, 

=(~1, with and If iii &#x3E; 2, then g =

= U1 ... Una E (a, , with al E A, and a’ &#x3E; e in the o-ideal generated by
~12 , ... , By induction, a’ E (cc2 ~ ... , a,,,)~’ for some ai E A±. Since both a,
and a’ are contained in (~i,... ~ a,,,)#, property (b) shows that (at, a’)~ C

Hence the desired inclusion g E (at , ... , follows.
The following concept is fundamental for the radical. Call an element

« E G subordinate to a positive element g E G if whenever

holds for positive gi E G, then there is an index i such that

wliere denotes the o-ideal generated by The sign a · g will be used
to denote tlat a is subordinate to g. If g is not necessarily positive, then
~c .~ ~ will mean that I with positive ~~ , g2 , 1 then in the

sense above. That this definition yields the same concept for positive g,
will be clear froni (v) below.

We have tlie obvious properties :
(i) for each 9 E G+ ;
(ii) implies a E I (g) ;
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(iii) in fully ordered groups, if and only if a E I (g) ;
(iv) in lattice ordered groups, a ~ ~ means ( _ g, v ... v g,, with

e implies a E for some i ;
(v) if f and if then

(vi) if a A g, then x-1 ax 4 y-l gy for arbitrary x, y E G.
Tlie elements of G to which a fixed a e is not subordinate form an

o.ideal of C~ which can easily be characterized.

PROPOSITION 12.2. In a directed flroup G isolated order, a =J= e is

not subordinate to g exactly if’ y E Q (a) Q (a) denotes the o-ideal gene-
rated by all o.idealq of G that fail to contain ct.

Let a be not subordinate to fl. Then there is a decomposition g = xl I x2 1
with X2 &#x3E; e such that Xi x2 E (Vi’" for some gi E G+, but a ~ I (9d
for all i. Then Xi X2 E Q (a), since 91 ... gn E LT (9. , ... , g11,) implies xi X2  g, ... Un ,
and xi X2 E I (g1 , 7 g,,). Thus g E S2 (tt). Conversely, if’ g E Q (a), then there

exist a finite number of o-ideals A1 , ... , An not containing- a such that g
belongs to the o-ideal they generate. If’ g = xi 

1 With x 1 X2 &#x3E; e still iii

this o-ideal, then also Xt X2 belongs to the same o.ideal, and hence hy Lemma
12.1 we xl E (a1, ... , any+:+: for suitable ai E But I (ai) so

fi is not subordinate to g.

Tlie set of’ all 9 that ce ~ y inlpJies ct = e will be denoted by II ((1),
and called the Conrad yoccl ical of’ G. easily obtain the intersection property.

THEOREM 12..3. The rccd icctl cc directed G with

is tjae intersection nJ’ all f2 (a) iritlc (t =4= e in G :

Thus 6’.

implies a = e, then by the preceding result for every

a E e ; and conversely.
In Example 1 of § ~3 the Conrnd radical is 0 since this is 

In Example 5 of § 3 the Conrad radical is the since a Hon 

polynomial cannot be subordinate to aiiy 
The following terminology will 1&#x3E;e osef’nl in our subsequent considera

tions. If cc E G and if J1I is an o.ideal of (j that is maximal with respect to

the exclusion of (t, tlien we (’all 37 a with ((. ’1’1ra·

intersection of all o-ideals of G properly containing J/ and 

it is the only cv-icleal uf’ G for whieh .11 and tHere is 11f) 

between M and Obviously, f0 (a) is just union or all 

of G associated witli a.
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Call an o-ideal A of G essential [4] if

(A) it is regular, and
(B) there is a b ~ e in G such (b).

If to some a E G there is only one regular o-ideal M associated with a, then
M = S~ (a), and hence M is essential.

LEMMA 12.4. A regular o-ideal M is essential if and only if the intersection
of alt regular o-ideals of G not contained in M is different from e.

Assume that the intersection of all regular o-ideals N not in M con-
tains some element a # e. Then no regular o-ideal associated with a may
occur among the N, whence M contains all regular o-ideals associated with
a. Therefore MID 92 (a), and M is essential. Conversely, if then

a must belong to the indicated intersection.

By making use of the concepts of regular and essential l-ideals, CoN-
RAD [4] has shown that the radical is a lattice-invariant of a lattice-ordered
group: it can be characterized lattice-theoretically in the lattice of all l.

ideals of G (which is a complete sublattice of all normal subg.roups of G).
This result admits a generalization to our present case.

Let G be a directed group with isolated order, 11 the lattice of its
normal subgroups and 11) the set of its o-ideals. Now the regular o-ideals

of’ C~ can be characterized as elements of 11) which cannot be represented as
the intersection (taken in lil) of any set of greater elements of 11). By virtue
of the last Lemma, the essential o-ideals can also be singled out by means

of 11) and 11. The next result will show that the same holds for the

CONRAD radical R ( G).

THEOREM 12.5. The Conrad radical R ( G) of a directed group G with
isolated order is the intersection of all essential o-ideats of G.

From the definition it follows that the intersection of all essential o-

ideals of G contains the intersection of all the (a ~ e), and hence
R (G) owing to Theorem 12.3. To prove the converse, let that is
to say, (a) for some a # e in G. By Zorn’s lemma, there is a regular
o-ideal M, containing f2 (a), associated with g. This M is essential, and so
the intersection of the essential o-ideals does not contain g either. This
completes the proof.

Budapest and Pi8a.

.1. dl’lla Norm. Sup. - pisa.
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