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MIXED PROBLEMS FOR HIGHER ORDER

ELLIPTIC EQUATIONS IN TWO VARIABLES, II (*)

JAAK PEETRE
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INTRODU01.’ION. The purpose of the present paper is to give some

complements to the results obtained in our previous paper [10]. We there

considered mixed problems in two independent variables of the form :

Here S~ is a bounded domain in R2 with C°° boundary r; r + and are

two disjoint open portions of r such that y =1’+ fl r - consists of precisely
two points p’ and p". A, B , B7 are differential operators with C°° coeni

cients ixi (2, on jT 7 on r - respectively, such that A is elliptic, Bt cover
A on r+ , Bj cover A on f- . It was proved that the inequality

(*) This paper was written while t~he author, during the aoademic year 1960/1961,
was a temporary member of the Institute of Mathematical Sciences, New York University,
under the sponsporship of the National Science Foundation. For various reasons the pn-

blioation has been delayed until now.
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holds for all s &#x3E; so , where

p/ being the normal order of except when mod 1 (v=1, 2,..., q)
where al ... , 6q are some well-defined real numbers 2l. (at,..., og
will be called the exceptional of s.) Consider now the mapping

of H8(Q) into, Let N be the null-

space of T and lR the range of T. It follows that, except when s = av mod 1
we have:

1) N is of finite dimension,
2) .R is closed.

In the present paper we will provide a proof of the following state-

ment, which was announced in ~10~ :
3) R is of finite codimension. 

-

Following ~9], we consider the conjugate mapping T of T:

of ~ -’ , Then 3) will be a conse-

quence of the following inequality ( dual to (1)):

We have thus to prove that (4) holds for all s &#x3E; so except when s = av mod 1

(v = 1, 2,..., q). In the proof it is of course sufficient to consider the

« canonical &#x3E;&#x3E; situation of constant coefficients and a half-space. In the proof
of (1), as given in [10], the main trick was to transform (1) into the

corresponding inequality for - what was there called - a Wiener-Hopf
type problem :
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where h is a vector whose entries are functions and ~+ and .K- are ma-

trices whose entries are homogeneus convolution operators of degree 0.

Here we show that (4) can be transformed into the following inequality
(« dual » to (5)) :

The proof is analogous to the one of (5) given in [10] but slightly more

technical (cf. Remark on p. 6). It is now easily seen that (5) and (6) are
simultaneously true, so that the above statement about (4) follows. Let
v = v (s) be the dimension of N and p = O (s) the codimension of R. We

will also show that v and as functions of s, are constant in any interval
that does not contain any exceptional values of s. But, as was shown in

[10] by interpolation, at an exceptional value e or v must have a jump.
This means in particular that no regularity can hold true.

The plan of this paper is the following. In Section 1 we carry out the
reduction of (4) to (6) and establish the equivalence of (5) and (6). In Sec-

tion 2, the regularity is studied. In Section 3 we consider the change of

the index at an exceptional value. The different Sections are, at least what
methods concern, independent of each other.

1. Deduction of the « dual » inequality.
We consider first the case when Bj have constant coefficients

and S~ = R+ , l~’+ = R+ , l~’_ = R_, as Section 1. We make the following
Hypothesis. A is elliptic. Both B; and Bg cover A. and we will con-

sider the inequality

(For the definition of the relevant spaces and norms, we refer to [91,
[ 10]).
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Our main concern will be the following
Problem. For which values of s does (3) hold true 1

We will show that holds true for all s where

it’ being the normal order of except when s = g, mod 1 (v = 1, 2, ... , q)
where o , ... , aq are certain well-defined numbers, q:!~ 1, in fact the same as
in [10], Section 3. It is of course no restriction to assume that A, Bt, B7
are homogeneous. The first step is now to show that is equivalent to
the corresponding inequality when the norms are all replaced by the cor-

responding homogeneous norms, i. e. the inequality

where

:I(: -S+M -8+m
and H 2 etc. stands for the subspace of .g 2+ etc. such that the normR - + 

_

is finite. (Cf. the remark below.) In order to prove (9’) one just has to

replace in (9) ~’ by F~ = F~ (xi , x2) = x~~E) and at by ( G~ )~ =

= (GT). (Xi and let s tend to 0. Conversely fol-

lows froin (9’) by utilizing « partial regalarity » (cf. [9], in particular the
proof of theorem 1) in an appropriate manner. We omit the details. Having
thus established the equivalence of (9) and (9’), let us make use of the

analogue of (9’) for the Dirichlet problem
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which is proved in the same way starting from the analogue of (cf.
[9]), as well as of its trivial converse. Let us determine Fo and OJ such
that

which is obviously possible. Then we have from (9) and the converse of (7)

which in view of (7) is equivalent to (9’). In particular if F° = 0, we obtain

which is also equivalent to (~’). In fact, we have

and, if (5~) holds, all terms on the right hand side can be estimated in

terms of the right hand side of (9"’). Let us now set

Then we obtain

We claim that

I is the « characteristic matrix &#x3E;&#x3E; (with re-
spect to A). But, in the notation of [10], we have
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Thus we shall obtain

or in « matrix form »

To prove (9) let us take Fourier transforms; we obtain

Hence

But, by the Paley-Wiener theorem, F (;1 , 2) is analytic in ;2 ’]’ the half-

plane  0. Let (ep be the roots of the equation A (1, = 0

with positive imaginary parts. Hence, pretending for the moment that they
are distinct, we get

which apparently leads to (9) in view of the definition (4Sj) :

(cf. [8], [9]). The case of non-distinct roots can be easily handeled in a si-

milar manner (cf. [4]).

REMARK. One can give the above calculations as well as the corre-

sponding ones in [10], Section 2, a more precise formulation if one uses

systematically the spaces obtained by completion in the norms II 
etc. (« homogeneous norms N). One is then lead to spaces whose elements in

general are not distributions in the sense of L. Schwartz (f. [5]), but as long as
one is concerned with differential operators with constant coefficients only,
they are for most purposes as useful as the spaces corresponding to the

’+m
norm ]] etc., i. e. HR2 etc.
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Let us now consider (10) more closely. Set, as in [10], Section 2,
Then (10) can be written as

In particular if

Conversely, if (12) holds we have

which together with (12) implies (11) so that (11) and (12) are equivalent.
But (12) is identical with formula (16) in [10], except for the fact that we
have 11T instead of Therefore the results of [10], Section 3, which -
we recall - depend on a result about the spectral properties of the « re-

duced » Hilbert transform (cfr. [7], [11], [12]), imply that (12) holds if and

only if the matrix 
- -

where m+ and m- ars defined as in [10], Section 3, ha,s no negative
eigenvalues. But obviously the eigenvalues of c* and c, where as in [10],
Section 3, c = ’1n+l are conjugate of each other so that (12) holds if

and only if c has no negative eigenvalues. We have thus proved:
The inequality (9) holds if and only if the iuequality (9) of [10] holds,

i. e. if and only if s &#x3E; -go and s ~ av mod 1 (v == 1, 2,..., 6q) where al °2 , ... , 7
are the exceptional values determined in [10].

Having thus settled the case of constant coefficients in a half space,
it is now not difficult to treat the case of variable coefficients in a boun-

ded domain. For the details we refer the reader to [9], [10] where the
same (routine) transition in analogous cases is considered. We have the

following result :
The inequality (4) holds if and only if the inequality (1) holds, i. e. if

and only if s &#x3E; so crncl s ~ o~ mod 1 (v = 1, 2, ... , q) where a1 , 62 , ... , 
aie the exceptional values i~i [10].

In particular we have thus finally also established (cf. introduction) :
3) R is of finite codimension.

In the rest of the paper we shall more closely study the dependence
of e and v of the parameter s.
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2. Study of the regularity. The object of this Section is to prove the

following statement :

e and v are constant in any intervall that does not contain a-rcy exceptio-
nal value.

We need the following lemmas.

and if moreover

and if moreover

..""

We first observe that the analogue of Lemma 1 when (a bounded do.

main) is replaced by R2 is certainly true. For

implies that for every A and every si  8

from which we get, letting 81 -~ 81

and then, letting A ~ oo,

which means and 

Since can be considered as a product of closed subspaces of HS,
Lemma 2 is an immediate consequence.

Let us now prove Lemma 1. Let sn be a sequence tending to s from
below. For every n we can find Un E HSll such that
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Utilizing the fact that the bounded sets in are weakly compact and
the usual diagonalization procedure we may now pick up a subsequence
such that V’ll E and such that v,, (n ? m) converges weakly in HSm. Denote
the common limit by v. Obviously

so that by what we proved above v E Moreover

Hence u E j3~ (S~) and Lemma 1 is proven.
Let us now show that e and v are continuous from below:

when s is not an exceptional value. Suppose that for some s that is not

an exceptional value we have v (sl) &#x3E; v (s) for all 81 &#x3E; s. Then there is u such

that Tu = 0 and u E H81 (S~) for s1  s but u ~ Hs (S~). But since s is not an

exceptional value we have for S1 sufficiently close to s :

with a C independent of 81’ which in view of Lemma 1 leads to a contra

diction. Suppose next that for some s that is not an exceptional value

e (sl)  e (s) for all s. Then there is a v such that v E Ks (,~) and Tu = v
has a solution u E H81 (S~) for every S1  s but not for S1 = s. By an exten-
sion of a well-known compactness argument one can then prove that, since
s is not an exceptional value, for S1 sufficiently close to s it is possible to
choose u such that

where C’ is independent of s1. In view of Lemma 1 we get again a con-
tradiction. Thus o and v are continuous from below.

Let us now give the proof of (14). In fact, we know that

with a constant C independent of 81 if s1 is sufficiently close to s. Let us

split up Hs1 (D) into a direct sum Nll + Msi where Nsi is the nullspace of
T, which by what we said above may be assumed to be independent of si I
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limiting ourselves to S1 close to s, and

Let us show that

with a constant independent of 81’ 7 limiting ourselves to S1 close to s. If

this would not be true there is a sequence 811 tending to s from below
such that

Using Rellich7s theorem we can pick up a subsequence un such that uri is

converging in (S~) for each n to an element u. Now clearly is a

Cauchy sequence in Hsn (S~) for each n. Hence u E Hence by Lemma 1
u E .gs (S~) and 11 u, Since obviously Tu = 0 we have a contradiction.

Applying the above arguments to T and utilizing Lemma 2 instead of
Lemma 1 one readily sees that ~o and v are continuous from above

when s is not an exceptional value. Obviously (13) and (16) together imply
that e and v are continuous in any intervall not containing any exceptional
value.

REMARK. The same method works of course also in other cases than

the mixed problem. E. g. it leads to a simplification of our paper [9] in
the sense that one avoids the introduction of the finite difference argument
in the proof of the regularity theorem.

3. An observation concerning the index. The index of the mapping T
is by definition the number

Whens is figed, c does not change when A, B3 are replaced by

the quantity

being sufficiently small. This follows at once from the results of e. g. At-

kinson [1] in the abstract case (cf. Gohberg and Krein [3], Kato [6] for more
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recent work in thls field) and has in the case of boundary problems been
observed by several authors. We consider here how c changes when s chan-
ges. In view of the results of Section 2, 1 is a constant in any interval

that does not contain any exceptional values, so it remains only to study
the behavior of t near an exceptional value. Our guess ts that the index

changes by one unit at an exceptional value of « multiplicity » one:

if u is an exceptional value of multiplicity one. We shall not prove this
statement in all generality but just support the conjecture by proving it in

an illustrative special case, namely the case when A = L1 and B+ is diffe-

rentiation d/ds along the field of tangent vectors of T and B- is differen-
tiation dlde along an arbitrary field of vectors e, which is essentially the

situation studied by Fichera [2]. We assume that e forms with r the an-

gels na’ and na" at the points ~’ and p" where F+ and r meet. As was

shown in [10], example p. 347, the exceptional values are in this case

s = a’ mod 1 and s = a" mod 1. We may also assume that 0  a’  a"  1.

Let S1 and s2 be two numbers such that si  82 and that there is precisely
one exceptional value iu between. There are (essentially) two cases:

jo

and

20

where k is an integer. Let us consider for instance the case 1° ; the case
20 can be treated in an analogous way. It is possible to deform e near p’
in such a manner that a’ becomes 0. By what we said above t (S1) and
1 (sN) will remain unchanged throughout this deformation. On the other hand,
if a’ = 0 then a necessary and sufficient condition for a solution u 8 Hsi (Q)
of Tu = v, where ~~lT~(~ to be in HSl (Q) is that the derivatives up to
a certain order of du/ds and du/d; agree at the point p’, whence c (s2) -
- t (S1) =1. This proves our eoujectul’e hi the special case.
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