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A REMARK ON THE REGULARITY AT THE BOUNDARY
FOR SOLUTIONS OF ELLIPTIC EQUATIONS

by M. K. VENKATESHA MURTHY (Bombay).

§ 1. Introduction.

The object of this note is to prove the following result.
Let A be a linear elliptic operator (of order 2m) with infinitely diffe-

rentiable coefficients in a domain D, having a smooth boundary in a

euclidean space and let B~ (0 _ j _ 2m -1) be differential operators, with
infinitely differentiable coefficients on If (A, (B~~) is an admissible

system (see § 2), and f and gi are functions in certain classes of infinitely
differentiable functions (referred to as Friedman classes in the sequel), then
any function u infinitely differentiable in Sd and satisfying Au =, f in S~,
Bju in aS2, is itself in a Friedman class in S~ when the coefficients of
A and of By and the functions which define the boundary aD locally, are
in certain Friedman classes.

When f, gj, and the coefficients of A and of Bj are real analytic
functions of their arguments the real analyticity of the solution u (of the
system) upto the boundary has been proved, using a method of Morrey and
Nirenberg [4], by Magenes and Stampacchia [3] assuming that (A, (Bj]) is

an admissible system and aD is analytic. Our result includes that of Ma-

genes and Stampacchia. In the case of the Dirichlet problem this result
wa.s proved in the case of real analytic functions by Morrey and Niren-
berg [4] and in the case of functions in Friedman classes by Friedman in [2].

The notation, necessary norms, and other preliminaries are introduced

in § 2. In § 3 two lemmas, which lead to L2-estimates for u and its tan-

gential derivatives of all orders and normal derivatives of order upto 2m,
are proved. In §,, 4 L2-estimates for derivatives of all orders of u are obta-
ined and finally an application of Sobolev’s lemma yields the result.

The author wishes to thank Mr. B. V. Singbal for his valuable sugge-
stions and help,
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§ 2. Notation and Preliminaries.

Let Sl denote a bounded domain in a v-dimensional Euclidean space
and let (x, , ... , xy) be a coordinate system in D. First we define certain

classes of infinitely differentiable (C°°) fanctions on Let be a se-

quence of positive numbers satisfying the following condition: there exists
a positive constant 0, independent of. n, such that

Then if p is any non-negative integer, we denote by C (In p ; S the
class of C°°-functions f on S satisfying the following condition: . .

(QA) For every closed subdomaiu of S~ there exist two constants

H, and H2, depending on f and on euch that, for any x E we have

where k =- (ki , ... , ky) and k ~ = k! +... + k" .
We call a class of the type C a cla88.

Siinilal·ly we define the classes C Q) when the condition (QA)
is satisfied in T2.

It is clear that (1) implies

/ r
with a positive constant C independent of n in fact we can take C1 = G .B 

Now we make some remarks on the Friedman classes C (Mn ; Q) which
will be of use in the sequel.

(i) If f is a function in the class C D) such that f (x) =1= 0 for

r E Q then 7 1 . is itself in the class C(3). For, let (,...) be a coor-
f

dinate system in Q and let denote a generic partial differentiation

operator of order one. Therefore, a generic partial differentiation operator
of order k can be written in the ... d’k. Then
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where ( f ) is a homogeneous polynomial of degree n in the set of ar-
guments ( f , ... , f k, dit ... and where the degree
of dit ... is taken to be r. Any monomial of degr6e k in these arguments
is majorized oii any closed subset 00 by (HOH,)k 
Hence one can easily see that

with a suitable positive constant c independent of n.

we see that

on S~a which establishes (i).
(ii) If f, g are in C (1I/,,; D) then their product fg is itself in

In fact, we have for an a = (ai , ... , ay)

by Leibniz formule, where

Then

suitable constant C’ &#x3E; 0.

The remarks (i) and (ii) together imply the following:
(iii) If f, g belong to 0 (~M,,; !J} with g non-vanishing in Q then f/g

is itself in the class C (2M,, ~ Of.
Let s denote a fixed positive real number. Let H8 denote the space 01
,

all tempered distributions 99 such that its h’ourier transform g2 satisfies the
condition that (1-~- ~ ~ ~~)8l2 g~ is square integra~ble and we define the scalar
product in H 8 by

and the corresponding norm

(see [3]).
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In view of the local nature of the problem it is enough to consider
the solution of the problem iu a hemi-sphere with the boundary conditions
defined on the plane part of the boundary.

Throughont, the function u is assumed to be infinitely differentiable
in the hemi-spbere together with the plane part of the boundary. This is so,
for example, in the following cases:

Let the coefficients of A and be infinitely differentiable
functions of their arguments. Then any solution u of A u = f, is

infinitely differentiable either when ’(A, is an elliptic system in the
sense defined. by J. Peetre [5] or when the boundary operators By satisfy
the complementing condition of Agmon, Douglis and Nirenberg [1] with
respect to the elliptic operator A.

Next we introduce the -differential operators. Let o),, denote the hemi-

sphere (x( + ... +  ~ ~ &#x3E; 0) the plane part {~ == 0} of the
boundary of CÏJr. Let no denote the (v -1)-dimensional subspace 

and let x’ denote either (xl , ... , xy_i ~ 0) or (xl , ... , xy_1) inadvert-
ently in the context. We adopt the following notation throughout:

If p = ( pi , ... , py) then ap (x) denotes a function (x) and DP =

Similar notation is used in non also with x’ iu place of x and Dx in
place of DP.

All our functions are (defined in cvxo together with ’tbe plane part
ai wRo of the boundary of wRo where Ro is a fixed positive number. Let

be au elliptic linear partial differential operator of order 2w on wRo with

the coefficients c~~ (x) 6’°° in mm and let

be differential operators (boundary operators) where bp (x’) are G’°° .functions
on al CORO.

Let o (t) .be a real valued C°° function of the variable t (- oo  t  oo)
such that
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then for any pair of positive numbers r aud h with

define

Then clearly we have

and farther for any we have

where C. is a positive constant. depending on v, p and the bounds for the

derivatives of Lo.
DEFINITION. The system (A, (Bj)) is said to be an admissible system

if A and the boundary operators satisfy the following condition : there
exists a constant 03 such that for aiiy C°° function u anu for any r with

we have

where if Bj (cpr,h u) is cousidered as having its support containd in at 
then BJ ((P,,h 11) is extended to the whole of no by taking it to be equal to

zero 11 ~co - a Here is , defined by

REMARK, (a) When (A, ~B~~) is an admissible system the analyticity of
a solution u of upto the boundary (the coefficients of A
and of B~ , and f, gj being real analytic functions of their arguments) was
proved by Magenes and Stampncchia [3].

(b) The iiieqnality (2) has been obtained by J. Peetre when (A, (B;))
is an elliptic system in the sense defined in [5 J. When A is elliptic and

B¡ satisy the complementing condition with respect to A an analogous ine-
quality has been proved by Agmon, Douglis and Nirenberg [1].

The following is the precise statement of onr theorem.
THEOREM. Let (A, (B;)) be an admissible system, with A elliptic, such

that the following conditions are satisfied :

(i) the coefficients ap (x) of A are in C {M~ ; 
and (ii) the coefficients bp (x’) of Bj are hi C (Mn; Ôt 
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Then any function u, C°° in wR0 and satisfying the system

where f is in C (M,,; WBo) and gj are in C at roBot I respectively, is

a function in C mm U at COR.)-
In the course of the proof of the theorem we need the following

norms (introduced in [3]):

and

We make the covention that

and

and introduce the following notation (in analogy with that introduced in [4])

and
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§ 3. In this paragraph we present two lemmas leading t.o the proof of
the main theorem stated in the previous paragraph. In principle we obtain
an L2-estimate for the derivatives, upto order 2m in the transverse direction
and of all orders in the tangential direction, for a function satisfying the
system. To begin with we have the following result due to Magenes and

Stampacchia (see [3] p. 331).
If u is any C°° function and if (A, (Bj)) is an admissible system then

there exists a constant, (,14 , y independent of u, r and h such that for

we have

Now we observe that, for any positive we have

always.

It follows from this that, for k &#x3E; 0, 2m we have

On the otherhand we also have

Taking i can now be written in the form

LEMMA 3.1. If u is any C°° fnnetion and if (A, lbjj) is an admissible

system then there exists a positive constant C5 indendent of u, R and of
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k, such that for any R  k &#x3E; 0 the following inequality holds:

PROOF. Consider any one of the tangential derivatives with

I q = k and apply (3) in the form (7) taking R/2  r  B and

We obtain

Using Leibniz formula for the derivation of a product of two functions and
the fact that

wliere qi and si are non negative integers such that q, +... + qv = k and
81 + ... -E- 8" = p we have the inequalities

aiid

Summing over all q I = k in (9), using the following majorizations
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(with the constants H2 suitably changed) and making use of (5), (6)
we obtain

where 06 is a positive constant independent of R. Moreover we

have I with C7 independent of v. From

this remark it is clear that the last term of the second member of the abo-

ve inequality can be majorized by the last but one term. Hence

where C8 is a positive constant independent lc. Applying the
inequality (4) to the last term of the second member of (10) we obtain

Multiplying both sides of

estimates :

we have the following
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Further since

because Similarly we have

But by and by (1’) it follows thaf,

Hence we have:

Then the inequality (11) becomes

Since it follows that there
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exists a constant C5 such that

Taking It + I = i in the last term of the second member and the sup-
remum for R/2 _ t*  R of the first member we obtain (8) and this completes
the proof of the lemma,

LEMMA 3.2. Let (A, (Bj)) be an admissible system and u be any 000
function satisfying the system

with f and gj respectively in the classes C (M,, ; coR.) and C (
Then there exist two positive constants M and such that

PROOF. We can suppose, if necessary after soine modification that the
constants 8Q and R, are the same as before and are such that

and

Let fJ denote the volume of the unit ball in the y dimensional Euclidean

space. Then for R  R1 we have

Similarly using I positive costant (]
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independent of W, we obtain

using (1’), where °9, are positive constants independent of 2X and k~
Then the inequality (8) becomes, for any k and R  R1 ,

Now proceeding, as in the proof of Magenes and Stampacchia, with the

constants, M ? 3C5 Ot1 and A _ ~3C5 + 1) (H2 B, + 1) we obtain

after using an induction argument on k. This completes the proof of lem-
ma 3.2.

§ 4. We complete the proof of the main theorem (see § 2) in this pa-
ragraph. For this purpose it is necessary to obtain estimates of the type
(12) for all derivatives, tangential as well as transversal, of u. To obtain

such estimates we follow a procedure used by Morrey and Nirenberg in

[4J. We introduce the following norms analogous to those in § 2.
For p ~ 0, q &#x3E; - 2~n define

Analogous to (4) we have
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This implies that

We now prove the following extension of the estimation (12): if R is smaller

than or equal to a fixed number depending only on the given differential
equation, y then ,

with M &#x3E; 1 fixed constants, Â, and 9 depending only on the
_ ,_ 

P g

equation.
The following is a sketch of the derivation of the estimate (15). Let, us

denote 3)" by y for convenience. By assumption y = 0 is not a charecteristic
surface for the given equatiori Au = f. Hence, one can eolve for the. normal
derivative D;tJ’ ‘ u of u in terms of the derivatives involving normal deriva-
tives of u of orders less than 2m :

where in view of the remarks on the classes C (1~" ; .0)~ made in § 2, g and
be are functions belonging to the class C (~n ; This implies that both

for suitable constants Ht, H2 and 80 ~ 1. We can assume these constants
to be the same as before by suitable choice. Then we have from (16)

Hence

It is clear from (12) and (14) that (15) follows for - 2m  q  0 and all

p &#x3E; 0 provided that R  R1  Ro (R1 chosen suitably) and
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We prove (15) for q &#x3E; 0, p &#x3E; 0 by induction on q. Let us assume that (15)
holds for all values of q less than a certain positive integer which we again
denote by q. Squaring both sides of (18) and integrating over wr we obtain

Multiplying both sides of this inequality by

for R  taking the supremum over all r witl R/2  r  R and using
the induction assumption we obtain

where g is a suitable constant.

But by (1) we have the inequality

Then the inequality (20) becomes
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Here all the terms in the summation over a, fl are less than unity. Taking

and the second member does not exceed

which is again less than unity if M &#x3E; 2KH, and

proved that

Thus we have

holds for all q. 2w and for R  R1 if we take

As we have already said in the introduction the result is deduced by
applying Sobolev’s lemma to the L2-norms of the derivatives of u. For this
we need estimates for the square integrals of the type

These are easily obtained from (15) as follows:

Hence

Thus we obtain

Now we apply Sobolev’s lemma in the form used in [4], namely, for 
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Since R - r _ r and R  1 we obtain the following inequality

after using (1’) (K’ being a positive constant independent of p). This proves
the fact that u E C U a ~ thus completing the proof of
the theorem.
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