Annali della Scuola Normale Superiore di Pisa Classe di Scienze

CARLO BIRINDELLI

Sopra un teorema di derivazione per serie del Tonelli

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 2^e série, tome 10, n° 2 (1941), p. 157-165

http://www.numdam.org/item?id=ASNSP_1941_2_10_2_157_0

© Scuola Normale Superiore, Pisa, 1941, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SOPRA UN TEOREMA DI DERIVAZIONE PER SERIE DEL TONELLI

di CARLO BIRINDELLI (Palermo).

INTRODUZIONE. - Nella prima parte di questa nota si fanno, sopra un teorema di derivazione per serie del Prof. Tonelli (¹), alcune immediate osservazioni, in base alle quali si può enunciare il teorema stesso in una forma lievemente più generale e che contiene, come caso particolare, anche una proposizione di S. CINQUINI (²).

Nella seconda parte vengono estese le considerazioni precedenti alle serie di funzioni di più variabili, e si perviene così ad un teorema, che assicura la convergenza uniforme di una serie di funzioni di più variabili, della quale si sappia la convergenza soltanto in un numero finito di punti.

Rileviamo ancora che, allo scopo di porre sotto forma più ampia i risultati che otteniamo, faremo uso di metodi di sommazione delle serie soddisfacenti al principio di permanenza.

Se

$$\sum_{s=1}^{\infty} a_s$$

è la serie che si vuole sommare, si cerca il limite, per $n \to \infty$, del polinomio

$$B_n = \sum_{s=1}^n b_{n,s} a_s,$$

intendendo che i coefficienti reali positivi $b_{n,s}$, relativi al metodo B_n , siano, per s fissato, non decrescenti col crescere di n e tendenti ad 1, per $n \to \infty$.

La ordinaria sommazione della serie $\sum_{s=1}^{\infty} a_s$ è un particolarissimo procedimento, che si ha per $b_{n,s}=1$.

⁽¹⁾ L. Tonelli: Un teorema sulla derivazione delle serie. Rendiconti dei Lincei, 1931, p. 163.

⁽²⁾ S. CINQUINI: Sopra un recente teorema di derivazione per serie del prof. Tonelli. Rendiconti Reale Istituto Lombardo di Scienze e Lettere, vol. LXIV, fasc. XI-XV-1931.

1. - Osserviamo innanzi tutto, che la estensione del teorema del Tonelli (e così di quello del Cinquini) alla sommazione B_n delle serie di funzioni è cosa immediata, per il fatto che la sommazione della serie

$$\sum_{n=1}^{\infty} f_n(x)$$

con il metodo B_n , cioè la ricerca del limite per $n\to\infty$ della successione

$$B_n(x) = \sum_{s=1}^n b_{n,s} f_s(x), \qquad (n=1, 2,...),$$

è equivalente alla sommazione ordinaria della serie, avente per termine generale

$$B_n(x) - B_{n-1}(x) = b_{n,n} f_n(x) + \sum_{s=1}^{n-1} (b_{n,s} - b_{n-1,s}) f_s(x)$$

ove, per le ipotesi che si fanno sui numeri $b_{n,s}$, quest'ultima serie soddisfa a tutte le ipotesi, che figurano nei teoremi citati.

Ciò premesso, indichiamo in qual modo si dimostra la seguente proposizione, che fornisce una lieve generalizzazione del teorema del Tonelli (e contiene quello del Cinquini).

Sia, per ogni $n=1, 2, 3,..., f_n(x)$ una funzione reale della variabile reale x, finita e continua in tutto l'intervallo (a, b), insieme con le proprie derivate $f_n(x), f_n(x),..., f_n^{(k-1)}(x)$, e inoltre le curve

$$y = f_n^{(k-1)}(x), \quad a \le x \le b, \quad n = 1, 2, 3, ...,$$

siano tutte concave verso l'alto (il basso). Allora, se la serie

$$\sum_{n=1}^{\infty} f_n(x)$$

è sommabile B_n in almeno k+2 punti distinti $x_1 < x_2 < < x_{k+2}$ di (a, b), si dimostra che

- a) la serie $\sum_{1}^{\infty} f_n(x)$ è uniformemente sommabile B_n in tutto (x_1, x_{k+2}) ;
- b) le serie $\sum_{1}^{\infty} f_n^{(r)}(x)$ per ogni r=1, 2, 3,..., k-1, sono uniformemente sommabili B_n in ogni intervallo (a', b') completamente interno ad (x_1, x_{k+2}) , $[x_1 < a' < b' < x_{k+2}]$. In un insieme E' di punti di (a', b') di misura uguale a quella di (a', b') esistono finite le $f_n^{(k)}(x)$ e in E' la $\sum_{1}^{\infty} f_n^{(k)}(x)$ è uniformemente sommabile B_n ;

c) la somma generalizzata F(x) della serie $\sum_{1}^{\infty} f_n(x)$ ammette, in ogni punto interno ad (x_1, x_{k+2}) , le derivate $F^{(i)}(x)$ (i=1, 2,..., k-1) finite, che sono le somme generalizzate delle serie $\sum_{1}^{\infty} f_n^{(i)}(x)$. Nei punti di E' esiste anche la $F^{(k)}(x)$, che è la somma generalizzata di $\sum_{1}^{\infty} f_n^{(k)}(x)$.

Per la sommabilità B_n della $\sum_{1}^{\infty} f_n(x)$ nei punti $x_1, x_2, ..., x_{k+2}$, preso ε positivo arbitrario, è possibile determinare un m_0 positivo tale che, per ogni coppia di numeri interi positivi m ed m', maggiori di m_0 , $(m>m'>m_0)$, sia, posto

$$g_{m,\,m'}(x) = B_m(x) - B_{m'}(x),$$
 $\mid g_{m,\,m'}(x_1) \mid < \varepsilon; \qquad \mid g_{m,\,m'}(x_{2}) \mid < \varepsilon; \ldots; \qquad \mid g_{m,\,m'}(x_{k+2}) \mid < \varepsilon.$

La funzione $g_{m,m'}(x)$ è, per le ipotesi fatte sulle $f_n(x)$, continua in (a,b) e in ogni punto interno ad (a,b) ammette finite le derivate successive fino all'ordine k-1, e $g_{m,m'}^{(k-1)}(x)$ è continua; e, per essere $b_{m,s}-b_{m',s}\geqslant 0$, le funzioni

$$(b_{m,s}-b_{m',s})f_s^{(k-1)}(x)$$

risultano concave verso l'alto (il basso) e della stessa proprietà godono anche le

$$g_{m, m'}^{(k-1)}(x) = B_m^{(k-1)}(x) - B_{m'}^{(k-1)}(x).$$

Applicando alla funzione $g_{m,m'}(x)$ quanto è stato fatto dal TONELLI (¹) nella dimostrazione del lemma nel n. 1, per la funzione g(x), e mantenendo le notazioni del l. c., si provano le disuguaglianze

(1)
$$|g_{m,m'}^{(s)}(x_r^{(s)})| < \Delta \varepsilon$$
, $s=1, 2,..., k-1$, $r=1, 2,..., k+2-s$,

con

$$\Delta = \left(\frac{6}{\delta}\right)^k \cdot 3^{k(k-1):2} \quad \text{se} \quad \delta \leqslant 6,$$

е

$$\Delta = 3^{k(k-1):2}$$
 in caso contrario.

A noi interessa il caso di s=k-1:

Nei tre punti

$$x_1^{(k-1)} < x_2^{(k-1)} < x_3^{(k-1)}$$

risulta

$$|g_{m,m'}^{(k-1)}(x_1^{(k-1)})| < \Delta \varepsilon, \quad |g_{m,m'}^{(k-1)}(x_2^{(k-1)})| < \Delta \varepsilon, \quad |g_{m,m'}^{(k-1)}(x_3^{(k-1)})| < \Delta \varepsilon;$$

quindi per la concavità di $g_{m,m'}^{(k-1)}(x)$ ne segue, in tutto $(x_1^{(k-1)}, x_3^{(k-1)})$,

$$g_{m, m'}^{(k-1)}(x) < \Delta \varepsilon$$

e, ripetendo letteralmente alcune considerazioni fatte dal CINQUINI, si conclude che la serie $\sum_{n=1}^{\infty} f_n^{(k-1)}(x)$ è uniformemente sommabile col metodo B_n in tutto l'intervallo $(x_1^{(k-1)}, x_3^{(k-1)})$.

Sia ora (x', x'') interno completamente a $(x_1^{(k-1)}, x_3^{(k-1)})$. Procedendo ancora in modo perfettamente analogo al CINQUINI, si prova che la serie $\sum_{n=1}^{\infty} f_n^{(k)}(x)$ è uniformemente sommabile col metodo B_n , in ogni intervallo (x', x'') completamente interno ad $(x_1^{(k-1)}, x_3^{(k-1)})$, intendendo di considerare di (x', x''), solo i punti appartenenti ad un insieme E' (di misura uguale a quella di (x', x''), nei cui punti esistono finite le derivate di ordine k di tutte le funzioni $f_n(x)$.

Scegliendo opportunamente grande m_0 , valgono simultaneamente le

(3)
$$|g_{m,m'}^{(k-1)}(x)| < \Delta \varepsilon$$
, in tutto $(x_1^{(k-1)}, x_3^{(k-1)})$,

(4)
$$|g_{m,m'}^{(k)}(x)| < \Delta \varepsilon$$
, in $(x_1^{(k)}, x_2^{(k)})$ e limitatamente agli x di E' .

Per x interno ad (x_1, x_{k+2}) , la $g_{m,m'}^{(k)}(x)$ è integrabile secondo Lebesgue, poichè è la derivata di una funzione assolutamente continua. Si può quindi applicare all'integrale

$$\int_{x_2^{(k-1)}}^x t \cdot g_{m, m'}^{(k)}(t) dt,$$

il teorema di integrazione per parti e risulta

(5)
$$\int t g_{m,m'}^{(k)}(t) dt = t g_{m,m'}^{(k-1)}(t) - \int g_{m,m'}^{(k-1)}(t) dt.$$

Procediamo ora in modo analogo al TONELLI, osservando che, per essere $x_2^{(k-1)}$ e $x_2^{(k-2)}$ interni a $(x_1^{(k-1)}, x_3^{(k-1)})$, si ha, per la (3),

$$|g_{m,m'}^{(k-2)}(x_2^{(k-2)}) - g_{m,m'}^{(k-2)}(x_2^{(k-1)})| < \Delta \varepsilon l, \quad l = x_{k+2} - x_1$$

e quindi, tenendo presente la (1),

$$|g_{m,m'}^{(k-2)}(x_2^{(k-1)})| < \Delta \varepsilon + \Delta \varepsilon l = \Delta \varepsilon \cdot (1+l).$$

Per x di $(x_2^{(k-1)}, x_4^{(k-2)})$, la (5) dà

(6)
$$g_{m,m'}^{(k-2)}(x) = g_{m,m'}^{(k-2)}(x_2^{(k-1)}) + g_{m,m'}^{(k-1)}(x_2^{(k-1)}) \left[x - x_2^{(k-1)}\right] + \int_{x_2^{(k-1)}}^x (x-t) \cdot g_{m,m'}^{(k)}(t) dt.$$

Detto ξ il confine superiore degli x dell'intervallo $(x_2^{(k-1)}, x_4^{(k-2)})$, pei quali è

$$g_{m,m'}^{(k)}(x) \leqslant \Delta \varepsilon$$

si ha

Avendosi dalla (6)

$$\begin{split} \left| \int\limits_{x_{2}^{(k-2)}}^{x_{4}^{(k-2)}} (x_{4}^{(k)} - t) \ g_{m, m'}^{(k)} (t) \ dt \right| &\leq \left| g_{m, m'}^{(k-2)} (x_{4}^{(k-2)}) \right| + \left| g_{m, m'}^{(k-2)} (x_{2}^{(k-1)}) \right| + \\ &+ \left| g_{m, m'}^{(k-1)} (x_{2}^{(k-1)}) \cdot (x_{4}^{(k-2)} - x_{2}^{(k-1)}) \right| &\leq \Delta \varepsilon (2 + l) + \Delta \varepsilon \ l = 2\Delta \varepsilon (1 + l), \end{split}$$

risulta

$$\int_{\xi} |(x_4^{(k-2)} - t) g_{m, m'}^{(k)}(t)| dt = \left| \int_{\xi}^{x_4^{(k-2)}} (x_4^{(k-2)} - t) g_{m, m'}^{(k)}(t) dt \right| =
= \left| \int_{x_2^{(k-1)}}^{x_4^{(k-2)}} \int_{x_2^{(k-1)}}^{\xi} \dots \right| < 2 \Delta \varepsilon (1+l) + \Delta \varepsilon l^2 = \Delta \varepsilon (l^2 + 2l + 2).$$

Per ogni x di $(x_2^{(k-1)}, x_4^{(k-2)})$ è dunque

$$\int_{x_{m,m'}^{(k-1)}}^{x} |(x_{4}^{(k-2)}-t)| g_{m,m'}^{(k)}(t)| dt < \Delta \varepsilon l^{2} + \Delta \varepsilon (l^{2}+2l+2) = 2\Delta \varepsilon (l^{2}+l+1).$$

Dalla (6) segue che in $(x_2^{(k-1)}, x_4^{(k-2)})$ come pure in tutto $(x_1^{(k-2)}, x_4^{(k-2)})$ è $|g_{m,m'}^{(k-2)}(x)| < \Delta \varepsilon (1+l) + \Delta \varepsilon l + 2\Delta \varepsilon (l^2+l+1) = \Delta \varepsilon (2l^2+4l+3).$

Riassumendo:

in $(x_1^{(k)}, x_2^{(k)})$ è, limitatamente ai punti di E',

$$|g_{m,m'}^{(k)}(x)| < \Delta \varepsilon;$$

scegliendo m_0 opportunamente grande si può altresì fare in modo che in tutto $(x_1^{(k-1)}, x_3^{(k-1)})$ sia

$$|g_{m,m'}^{(k-1)}(x)| < \Delta \varepsilon l;$$

in tutto $(x_1^{(k-2)}, x_4^{(k-2)})$ è

$$|g_{m,m'}^{(k-2)}(x)| < \Delta \varepsilon (2l^2 + 4l + 3).$$

Proseguendo, si conclude, in modo perfettamente identico al TONELLI, che in tutto l'intervallo $(x_1^{(k-s)}, x_{s+2}^{(k-s)})$, per s=0, 1, 2,..., k, è

$$|g_{m,m'}^{(k-s)}(x)| < \Delta \cdot \varepsilon P_s(x_{k+2}-x_1), \quad \text{con} \quad m > m' > m_0,$$

dove $P_s(z)$ è un certo polinomio in z, a coefficienti positivi, di grado s, intendendo che, per s=0, la relativa disuguaglianza vale solo nei punti di E'.

Per provare l'asserto non rimane che ragionare in modo analogo al TONELLI.

OSSERVAZIONE I. - In base al lemma del n. 1 del l. c. in $(^2)$ si può, nell'enunciato del teorema, sostituire all'ipotesi che le $f_n^{(k-1)}(x)$ siano continue e concave verso l'alto (il basso), quella di essere le $f_n^{(k-1)}(x)$ assolutamente continue in (a, b) e le $f_n^{(k)}(x)$, (considerate solo dove esistono finite), non decrescenti (non crescenti).

OSSERVAZIONE II. - Il citato teorema del Tonelli si deduce, come è ben naturale, da quello del presente numero, limitando i metodi B_n al caso della sommazione ordinaria delle serie e tenendo presente l'Osservazione I.

Questo teorema è inoltre la generalizzazione di quello già citato del CINQUINI.

2. - Vogliamo qui segnalare la possibilità di estendere alle funzioni di più variabili (3), alcune delle considerazioni trattate al numero precedente, nel caso delle funzioni di una sola variabile, dimostrando il seguente

TEOREMA. - Sia $f_n(x, y)$ per n=1, 2, 3,..., una successione di funzioni reali, delle variabili reali x ed y, tutte concave verso l'alto (il basso) in tutto un campo \sum' semplicemente connesso e convesso. Allora, se la serie $\sum_{n=1}^{\infty} f_n(x,y)$ è sommabile B_n in almeno quattro punti distinti P_1, P_2, P_3, P_4 , interni ad \sum' e tali che uno di essi, ad esempio P_4 , sia interno al triangolo, avente per vertici gli altri tre, $T \equiv P_1 P_2 P_3$:

a) la serie

$$\sum_{n=1}^{\infty} f_n(x, y)$$

è sommabile B_n uniformemente in tutto il triangolo T;

b) le serie

$$\sum_{n=1}^{\infty} \frac{\partial f_n}{\partial x} , \sum_{n=1}^{\infty} \frac{\partial f_n}{\partial y} ,$$

⁽³⁾ L. GALVANI: Sulle funzioni convesse di una o due variabili definite in un aggregato qualunque. Circolo Matematico di Palermo, T. XLI, 1916.

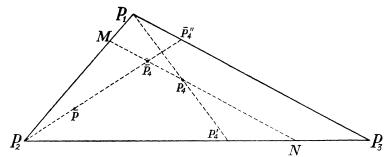
sono sommabili B_n , uniformemente, in ogni insieme Ω , tutto costituito di punti interni al triangolo T, tale che i suoi punti abbiano, dai lati del perimetro del triangolo, una minima distanza, non inferiore ad un numero $\mu>0$, e tale, inoltre, che in ogni suo punto esistano finite le $\frac{\partial f_n}{\partial x}$, $\frac{\partial f_n}{\partial y}$, di tutte le $f_n(x,y)$; in ogni punto di Ω , la somma generaliz-

zata F(x, y) della $\sum_{n=1}^{\infty} f_n(x, y)$, ammette le $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$, finite, che sono le somme generalizzate delle $\sum_{n=1}^{\infty} \frac{\partial f_n}{\partial x}$, $\sum_{n=1}^{\infty} \frac{\partial f_n}{\partial y}$.

Siccome la sezione ottenuta dalla superficie $z=f_n(x,y)$, mediante il piano π , parallelo all'asse z e passante pei punti P_1 e P_4 , è concava verso l'alto (il basso), tale risulta pure una qualunque curva C, ottenuta dall'intersezione del piano π con la superficie

$$z = g_{m, m'}(x, y) = B_m(x, y) - B_{m'}(x, y)$$

se m > m'.



Per la sommabilità B_n della serie $\sum_{n=1}^{\infty} f_n(x,y)$, nei due punti P_1 , P_4 , preso ε positivo arbitrario, si può determinare un numero intero positivo m_0 , tale che, per $m>m'>m_0$, sia

$$|g_{m, m'}(x_1, y_1)| < \varepsilon, \qquad |g_{m, m'}(x_4, y_4)| < \varepsilon.$$

Sia P_4' il punto d'intersezione di P_1 P_4 con P_2 P_3 . Anche la sezione, ottenuta dalla superficie

$$z=g_{m,m'}(x,y),$$

mediante il piano parallelo all'asse z e passante pei punti P_2 , P_4 ', P_3 , è concava verso l'alto; quindi, poichè, negli estremi P_2 e P_3 del segmento P_2 P_3 (se m_0 è scelto in modo opportuno), valgono le

$$|g_{m,m'}(x_2,y_2)| < \varepsilon, \qquad |g_{m,m'}(x_3,y_3)| < \varepsilon,$$

è pure

$$g_{m, m'}(x_4', y_4') < \varepsilon$$
.

Quindi, lungo tutto il segmento P₁ P₄', è

(7)
$$g_{m, m'}(x, y) < \varepsilon.$$

La curva C, nei punti corrispondenti al segmento P_4 P_4' , (che appartiene a quello P_4 P_4'), è compresa fra la corda della curva C, relativa ai punti P_4 , P_4' e il prolungamento di quella, relativa ai punti P_1 , P_4 . Lungo tutto il segmento P_4 P_4' è dunque sempre

(8)
$$g_{m, m'}(x, y) \geqslant -\varepsilon - |P_4 P_4'| \frac{2\varepsilon}{|P_4 P_4|} = -\left(1 + 2\left|\frac{P_4 P_4'}{P_4 P_4}\right|\right)\varepsilon = -D \cdot \varepsilon,$$

ove D indica una costante, rispetto agli x ed y dei punti di P_4 P_4' . Pertanto lungo tutto il segmento P_4 P_4' è, per le (7), (8),

$$|g_{m, m'}(x, y)| < D \cdot \varepsilon$$

cioè

$$|B_m(x, y) - B_{m'}(x, y)| < D \cdot \varepsilon$$

se $m>m'>m_0$. La successione $B_m(x,y)$ converge, dunque, uniformemente, lungo tutto P_4 P_4' e, per la proposizione del n. 1, ove si intenda k=1, anche lungo tutto il segmento P_4 P_4' . Dalla convergenza di $B_m(x,y)$ in P_4' , oltre che in P_2 e P_3 , segue, sempre per la proposizione del n. 1, che anche lungo tutto P_2 P_3 , la $B_m(x,y)$ è uniformemente convergente, per $m\to\infty$. Con considerazioni del tutto analoghe alle precedenti, si perviene alla giustificazione della convergenza uniforme della $B_m(x,y)$, lungo anche gli altri due lati P_4 P_2 e P_4 P_3 del triangolo $T\equiv P_4$ P_2 P_3 . Se M ed N sono le intersezioni di P_4 P_2 e P_2 P_3 con la parallela, pel punto P_4 , a P_4 P_3 , dalla convergenza di $B_m(x,y)$ nei tre punti M, N, P_4 , segue che lungo tutto MN, la successione $B_m(x,y)$ converge uniformemente, per $m\to\infty$.

Preso allora σ positivo o arbitrario, è possibile scegliere m_{σ} in modo opportuno, affinchè sia, per ogni P del segmento MN e del perimetro di T,

$$|g_{m,m'}(P)| = |B_m(P) - B_{m'}(P)| < \sigma$$

se $m>m'>m_{\sigma}$. Sia \overline{P} un qualsiasi punto in T. Congiungiamo P_2 con \overline{P} e siano \overline{P}_4 \overline{P}_4 " i punti di intersezione di questa retta con le MN e P_4 P_3 . È

$$|g_{m, m'}(P_2)| < \sigma$$
, $|g_{m, m'}(\overline{P}_4)| < \sigma$, $|g_{m, m'}(\overline{P}_4'')| < \sigma$,

se $m>m'>m_\sigma$. Indichiamo con h_1 la misura del massimo lato di T e con h_2 quella del minore dei due segmenti dati dalla distanza di P_2 da MN e da quella di MN da P_1 P_3 . Con dimostrazione del tutto analoga a quella svolta nel n. 2 del l. c. in (²) si prova che se L è il numero 1+2 $\frac{h_1}{h_2}$ (sempre mag-

giore del più grande dei due numeri 1+2 $\frac{P_2 \overline{P_4}}{P_4 \overline{P_4}^{\prime\prime}}$, 1+2 $\frac{\overline{P_4} \overline{P_4}^{\prime\prime}}{P_2 \overline{P_4}}$, vale la

$$|g_{m,\,m'}(\bar{P})| < L\sigma$$

in tutto T, se $m>m'>m_{\sigma}$. Ciò prova la convergenza uniforme della $B_m(x,y)$ in tutto il triangolo T.

Sia Ω un insieme tutto costituito di punti interni a T e tale che i suoi punti abbiano, dai lati del perimetro di T, una minima distanza non inferiore ad un numero $\mu>0$ e, in ogni P di Ω , esistano finite le $\frac{\partial f_n}{\partial x}$, $\frac{\partial f_n}{\partial y}$, di tutte le $f_n(x,y)$ e quindi le $\frac{\partial B_m(x,y)}{\partial x}$, $\frac{\partial B_m(x,y)}{\partial y}$, di tutte le $B_m(x,y)$. Preso un ε positivo, sia m_ε tale che, per $m>m'>m_\varepsilon$, risulti in tutto Ω ,

$$|g_{m,m'}(x,y)| < \varepsilon.$$

Se P è un qualsiasi punto di Ω , si consideri l'insieme E_P di punti, di Ω , che assieme a P stanno lungo la parallela all'asse delle x, passante per P. Con dimostrazione del tutto analoga a quella svolta nel n. 2 del l. c. in (²) si vede, chiamando con L_1 il numero $\frac{2}{\mu}$, che è in tutti i punti di E_P

$$\left| \frac{\partial g_{m,m'}(x,y)}{\partial x} \right| = \left| \frac{\partial B_m(x,y)}{\partial x} - \frac{\partial B_{m'}(x,y)}{\partial x} \right| < L_i \cdot \varepsilon$$

se $m>m'>m_{\varepsilon}$; questa disuguaglianza vale inoltre in tutto l'insieme Ω e di conseguenza la successione $\frac{dB_m(x,y)}{dx}$ converge uniformemente in tutto l'insieme Ω . Nello stesso modo si dimostra la convergenza uniforme della successione $\frac{\partial B_m(x,y)}{\partial y}$, in tutto l'insieme Ω , e si conclude infine in modo noto.

Osservazione. - Il teorema precedente è ovviamente suscettibile di varie estensioni ; ${}_{\infty}$

- a) Per le funzioni di due variabili basta supporre che la $\sum_{n=1}^{\infty} f_n(x, y)$ sia sommabile col metodo B_n nei vertici di un poligono, convesso e interno a \sum' , e in un punto interno al poligono.
- b) Per le funzioni di tre variabili si potrebbe supporre che la serie $\sum_{n=1}^{\infty} f_n(x, y, z) \text{ fosse sommabile col metodo } B_n \text{ nei quattro vertici di un tetraedro, interno ad un campo, in cui tutte le } f_n(x, y, z) \text{ siano supposte convesse (concave), oltre che in un quinto punto } P_5 \text{ interno al tetraedro, oppure nei vertici di poliedro convesso e in un punto ad esso interno.}$