Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Probabilités et applications

RITA GIULIANO ANTONINI

Sur le comportement asymptotique du processus de Ornstein-Uhlenbeck multidimensionnel

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 96, série Probabilités et applications, n° 9 (1991), p. 33-44

http://www.numdam.org/item?id=ASCFPA 1991 96 9 33 0>

© Université de Clermont-Ferrand 2, 1991, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

SUR LE COMPORTEMENT ASYMPTOTIQUE DU PROCESSUS DE ORNSTEIN-UHLENBECK MULTIDIMENSIONNEL

RITA GIULIANO ANTONINI

0. Introduction.

Soit $(X_t)_t$ le processus de Ornstein-Uhlenbeck uni-dimensionnel, c'est-à-dire la solution de l'E.D.S.

$$\begin{cases} dX_t = -\lambda X_t dt + \sigma dB_t \\ X_0 = x \end{cases}$$

pour $x \in \mathbb{R}$; ici σ et λ sont deux nombres réels strictement positifs et B est un mouvement brownien canonique. L'équation (0.1) admet la solution explicite

$$X_t = e^{-\lambda t} x + e^{-\lambda t} \sigma \int_0^t e^{\lambda s} dB_s.$$

Par changement du temps, on peut écrire

$$X_t = e^{-\lambda t} x + e^{-\lambda t} \sigma \tilde{B}_{A_t},$$

où \tilde{B} est un mouvement brownien et A_t est défini par

$$A_t = \int_0^t e^{2\lambda s} ds = rac{e^{2\lambda t} - 1}{2\lambda} \ .$$

À l'aide de la loi du logarithme itéré, on voit aisément que l'ensemble des valeurs d'adhérence pour le processus

$$Z_t = \frac{\sqrt{2} X_t}{\sigma \sqrt{\log t}} ,$$

lorsque $t \to \infty$, est l'intervalle $\left[-\sqrt{\frac{2}{\lambda}}, \sqrt{\frac{2}{\lambda}}\right]$.

Dans le présent article nous nous proposons d'étudier l'ensemble des valeurs d'adhérence pour le processus $(Z_t)_t$ lorsque $(X_t)_t$ est le processus de Ornstein-Uhlenbeck multidimensionnel.

Naturellement, si la dimension est supérieure à 1, le changement de temps utilisé ci-dessus n'est plus possible. Notre démonstration est inspirée à celle de la loi classique du logarithme itéré (voir [1] pour une méthode analogue).

L'auteur remercie très vivement Mons. P. Baldi pour ses conseilles et améliorations.

1. Le théorème principal.

Soit $(X_t)_t$ le processus de Ornstein-Uhlenbeck en dimension m, c'est-à-dire la solution de l'E.D.S.

(1.1)
$$\begin{cases} dX_t = -bX_t dt + \sigma dB_t \\ X_0 = x \end{cases}$$

pour $x \in \mathbb{R}^m$ (m > 1); ici σ est un nombre réel strictement positif, b une matrice $m \times m$ symétrique définie positive, B un mouvement brownien de dimension m. Il est bien connu que la solution de l'équation (1.1) s'écrit explicitement de la façon suivante:

$$(1.2) X_t = e^{-bt}x + e^{-bt}\sigma \int_0^t e^{bs}dB_s.$$

Soit maintenant $(Z_t)_t$ le processus défini par

$$Z_t = \frac{\sqrt{2}}{\sigma \sqrt{\log t}} \ X_t.$$

Nous allons prouver le résultat suivant

(1.3) THÉORÈME. Pour tout $x \in \mathbb{R}^m$, presque sûrement $(Z_t)_t$ est compact dans \mathbb{R}^m et admet l'ellipse $C = \{y \in \mathbb{R}^m : \frac{1}{2} < by, y > \leq 1\}$ comme ensemble des valeurs d'adhérence lorsque $t \to \infty$.

On remarquera d'abord que, d'après (1.2), les valeurs d'adhérence pour $(Z_t)_t$ sont les mêmes que pour le processus

$$Y_t = rac{\sqrt{2} \ e^{-bt}}{\sqrt{\log \ t}} \ \int_0^t e^{bs} dB_s.$$

Nous pourrons donc nous borner à ne considérer que le processus $(Y_t)_t$. De plus, la fonction de covariance de $(X_t)_t$ est

$$\frac{\sigma^2}{2} b^{-1} \left(e^{-b|t-s|} - e^{-b(t+s)} \right)$$

(voir [2], par. 1.8, p. 260); donc la fonction de covariance de $(Y_t)_t$ est

$$\frac{1}{\sqrt{\log s} \sqrt{\log t}} b^{-1} \left(e^{-b|t-s|} - e^{-b(t+s)} \right).$$

Enfin, par un changement de coordonnées orthogonal, on peut supposer que la matrice b est diagonale et qu'elle admet des valeurs propres $\lambda_1, ..., \lambda_m$ strictement positives. On a alors $\langle by, y \rangle = \sum_{i=1}^m \lambda_i y_i^2$ et la fonction de covariance de $(Y_t)_t$ (elle aussi diagonale) admet comme valeurs propres

(1.4)
$$\frac{e^{-\lambda_i|t-s|} - e^{-\lambda_i(t+s)}}{\lambda_i \sqrt{\log s} \sqrt{\log t}}.$$

La démonstration du théorème (1.3) (pour $(Y_t)_t$) sera divisée en deux étapes:

- (1.5) PROPOSITION. L'ensemble des valeurs d'adhérence de $(Y_t)_t$ est contenu dans C.
- (1.6) PROPOSITION. Chaque point de C est une valeur d'adhérence pour $(Y_t)_t$.

Les démonstrations de ces deux résultats seront développées dans le paragraphe suivant.

2. Les démonstrations.

Nous démontrerons d'abord la proposition (1.5), en commençant par un résultat très simple.

(2.1) PROPOSITION. Pour $\delta > 0$ fixé, considérons l'ensemble

$$V_\delta = ig\{y \in {
m I\!R}^m; rac{1}{2} \sum_{i=1}^m \lambda_i y_i^2 \geq 1 + \deltaig\}.$$

Pour chaque c > 0, et pour presque tout ω , il existe un entier n_0 tel que l'on ait $Y_{nc}(\omega) \notin V_{\delta}$ pour tout $n > n_0$.

DÉMONSTRATION.

La loi de Y_t est gaussienne; elle admet comme densité

$$f_t(x) = rac{1}{(2\pi)^{m/2}ig(\prod\limits_{i=1}^m D_i(t)ig)^{1/2}} \, \expig(-rac{1}{2}\sum_{i=1}^m rac{x_i^2}{D_i(t)}ig),$$

où

$$D_i(t) = \operatorname{Var} \, Y_t^{(i)} = rac{1 - e^{-2\lambda_i t}}{\lambda_i \, \log \, t} \sim rac{1}{\lambda_i \, \log \, t} \quad ext{pour} \ \ t o \infty.$$

Fixons $\epsilon > 0$. On a alors, pour t assez grand,

$$P(Y_t \in V_\delta) \leq rac{inom{m}{1-1} \lambda_i^{1/2}}{(2\pi)^{m/2} (1-\epsilon)^m} \int_{V_\delta} \expig(-rac{1}{2} (1-\epsilon)^2 \log\,t \sum_{i=1}^m \lambda_i x_i^2ig) dx.$$

Utilisons le changement de variable $y_i = (\lambda_i \log t)^{1/2} (1 - \epsilon) x_i$, et posons

$$V_\delta' = igg\{ y \in {
m
m I\!
m R}^m : |y| \geq ig(2(1+\delta)(1-\epsilon)^2 {
m log} \,\, t ig)^{1/2} igg\}.$$

Nous trouvons, pour t assez grand,

$$P(Y_t \in V_\delta) \leq \mathrm{const} \int_{V_\delta'} rac{1}{(2\pi)^{m/2}} \, \expig(-rac{1}{2} \sum_{i=1}^m y_i^2ig) dy \leq$$

$$\leq \operatorname{const} \exp(-(1-\epsilon)^2(1+\delta)\log t)),$$

en vertu de la majoration

$$\int_x^{+\infty} \expig(-rac{z^2}{2}ig) dz \le \mathrm{const}\, \expig(-rac{x^2}{2}ig).$$

Fixons $\epsilon > 0$ tel que $(1 - \epsilon)^2 (1 + \delta) = \alpha > 1$; pour t grand on a alors

$$P(Y_t \in V_{\delta}) \leq \mathrm{const} \,\, rac{1}{t^{lpha}}.$$

Il en résulte, pour n assez grand,

$$P(Y_{nc} \in V_{\delta}) \leq ext{const } rac{1}{n^{lpha}}.$$

Le lemme di Borel-Cantelli permet alors de conclure.

La proposition suivante (avec celle qu'on vient de démontrer) achève la preuve de (1.5).

(2.2) PROPOSITION. Pour tout c > 0 posons

$$Z_n = \sup_{nc < t < (n+1)c} |Y_t - Y_{nc}|.$$

Alors, pour tout $\eta > 0$, on peut trouver $c_{\eta} > 0$ tel que, pour tout $c < c_{\eta}$, et presque tout ω , il existe un entier n_0 tel que l'on ait $Z_n(\omega) \leq \eta$ pour $n > n_0$.

DÉMONSTRATION.

En vertu du lemme de Borel-Cantelli, il suffit de prouver qu'il existe $c_{\eta} > 0$ tel que $P(Z_n > \eta)$ soit sommable en n pour $c < c_{\eta}$. Posons, pour tout i = 1, ..., m

$$Z_n^{(i)} = \sup_{nc \le t \le (n+1)c} |Y_t^{(i)} - Y_{nc}^{(i)}|.$$

D'après les relations

$$\left(\sum_{i=1}^m Z_n^{(i)^2}\right)^{1/2} \geq Z_n,$$

$$P(Z_n > \eta) \leq \sum_{i=1}^m P\Big(Z_n^{(i)} \geq rac{\eta}{\sqrt{m}}\Big),$$

il suffit de prouver que $\sum\limits_n P(Z_n^{(i)} > \eta) < +\infty$ pour chaque i.

Posons

$$ilde{Y}_t^{(i)} = \int_0^t e^{\lambda_i s} dB_s.$$

On a alors

$$Z_n^{(i)} \leq \sup_{nc \leq t \leq (n+1)c} rac{e^{-\lambda_i t}}{\sqrt{\log t}} | ilde{Y}_t^{(i)} - ilde{Y}_{nc}^{(i)}| +$$

$$+ \sup_{nc < t < (n+1)c} \left| \frac{e^{-\lambda_i t}}{\sqrt{\log t}} - \frac{e^{-\lambda_i nc}}{\sqrt{\log nc}} \right| \tilde{Y}_{nc}^{(i)} = I_n + J_n.$$

Occupons nous d'abord du terme I_n . On a

$$I_n \leq rac{e^{-\lambda_i \, nc}}{\sqrt{\log \, nc}} \sup_{nc \leq t \leq (n+1)c} | ilde{Y}_t^{(i)} - ilde{Y}_{nc}^{(i)}|.$$

Par changement du temps, on peut écrire $\tilde{Y}_t^{(i)}$ sous la forme

$$\tilde{Y}_t^{(i)} = W_{A_a^{(i)}},$$

où W est un mouvement brownien et

$$A_t^{(i)} = \frac{e^{2\lambda_i t} - 1}{2\lambda_i}.$$

Le principe de réflexion entraîne alors

$$egin{aligned} Pig(I_n > rac{\eta}{2}ig) & \leq Pig\{ \sup_{0 \leq t \leq A_{(n+1)c}^{(i)} - A_{nc}^{(i)}} \geq rac{\sqrt{\log\,nc}\,\,e^{\lambda_i\,nc}\eta}{2} ig\} \leq \ & \leq \mathrm{const}\,\,Pig\{W_{A_{(n+1)c}^{(i)} - A_{nc}^{(i)}} \geq rac{\sqrt{\log\,nc}\,\,e^{\lambda_i\,nc}\eta}{2} ig\} \leq \ & \leq \mathrm{const}\,\,\expig(-rac{\epsilon^2}{4}\log\,nc\,\,rac{e^{2\lambda_i\,nc}}{A_{(n+1)c}^{(i)} - A_{nc}^{(i)}} ig), \end{aligned}$$

et cette quantité est sommable en n si l'on choisit c assez petit.

Passons au terme J_n , qu'on peut mettre sous la forme

$$J_n = \left(1 - e^{-\lambda_i c} \sqrt{\frac{\log nc}{\log(n+1)c}}\right) Y_{nc}.$$

La proposition (2.1) entraı̂ne que Y_{nc} est borné pour n assez grand, tandis que, pour c assez petit et n fixé, le nombre $\left(1-e^{-\lambda_i c}\sqrt{\frac{\log nc}{\log (n+1)c}}\right) \text{ est inférieur à }\epsilon.$ Ceci achève la démonstration.

Dans le reste de ce paragraphe nous allons prouver la proposition (1.6), qui découlera immédiatement du résultat suivant.

(2.3) PROPOSITION. Si $y \in \mathbb{R}^m$ est tel que $\frac{1}{2} < by, y >= 1 - \alpha < 1$, alors, pour tout $\eta > 0$, il existe $c_{\eta} > 0$ tel que, pour $c > c_n$,

$$P(\limsup_{n}\{|Y_{nc}-y|<\eta\})=1.$$

DÉMONSTRATION.

Posons, pour c > 0

$$W_n = Y_{nc} - e^{-bc} \frac{\sqrt{\log(n-1)c}}{\log nc} Y_{(n-1)}c.$$

On peut alors écrire

$$|Y_{nc} - y| \leq |W_n - y| + e^{-bc} \frac{\sqrt{\log(n-1)c}}{\log nc} |Y_{(n-1)}c|.$$

La proposition (2.1) entraîne que, pour n assez grand, $Y_{(n-1)c}$ est borné presque sûrement; il s'ensuit qu'on peut rendre petit le second terme dans la somme ci-dessus en choisissant c assez grand. Il nous reste à prouver que l'on a

$$P(\limsup_n \{|W_{nc} - y| < \eta\}) = 1.$$

A l'aide de (1.4) on vérifie aisément que (W_n) est une suite de variables aléatoires indépendantes; de plus, W_n a une loi gaussienne d'espérance nulle et de matrice de covariance diagonale admettant comme valeurs propres

$$(2.4) \Delta_n^{(i)} = \frac{1 - e^{-2\lambda_i c}}{\lambda_i \log nc} \sim \frac{1 - e^{-2\lambda_i c}}{\lambda_i \log n} \quad \text{pour } n \to \infty.$$

Posons

$$V_n = \{x \in \mathbb{R}^m : |x - y| < \eta\}.$$

Si f_n est la densité de W_n , on a

$$P(|W_n-y|<\eta)=\int_{V_{oldsymbol{\eta}}}f_n(x)dx\geq ext{const } \inf_{oldsymbol{x}\in V_{oldsymbol{\eta}}}f_n(x).$$

Fixons $\epsilon > 0$, et soit λ le plus petit des λ_i ; (2.4) entraîne alors

$$\Delta_n^{(i)} \geq (1-\epsilon)(1-e^{-2\lambda_i c})rac{1}{\lambda_i \log n}$$

pour n grand, d'où

$$f_n(x) = rac{1}{(2\pi)^{m/2}ig(\prod\limits_{i=1}^m \Delta_n^{(i)}ig)^{1/2}} \, \expig(-rac{1}{2}\sum_{i=1}^m rac{x_i^2}{\Delta_n^{(i)}}ig) \geq$$

$$0 \geq \mathrm{const} \ \sqrt{\log \, n} \ \mathrm{exp} \Bigg(- rac{1}{(1 - \epsilon)(1 - e^{-2\lambda c})} rac{1}{2} < bx, x > \log \, n \Bigg).$$

Si η est assez petit et $x \in V_{\eta}$, alors $\frac{1}{2} < bx, x > \leq 1 - \frac{\alpha}{2}$ et, pour n grand,

$$\inf_{oldsymbol{x} \in V_{oldsymbol{\eta}}} f_n(x) \geq \mathrm{const} \ \sqrt{\log \, n} \ \mathrm{exp}\Big(- rac{1 - rac{lpha}{2}}{(1 - \epsilon)(1 - e^{-2\lambda c})} \mathrm{log} \ n \Big)$$

$$\geq \ {
m const} \ rac{\sqrt{\log n}}{n^{1-\gamma}},$$

où l'on choisit ϵ assez petit et c assez grand pour que l'on ait

$$\frac{1-\frac{\alpha}{2}}{(1-\epsilon)(1-e^{-2\lambda c})}=1-\gamma<1.$$

Le lemme de Borel-Cantelli achève alors la démonstration.

(2.5) REMARQUE. Notre résultat (théorème (1.3)) est analogue au suivant

Soit $(X_n)_n$ une suite de variables aléatoires indépendantes, admettant une même loi à support borné, avec variance égale à σ^2 . Alors

$$P\left(\left\{\limsup_{n} \frac{|X_n|}{\sqrt{\log n}} = \sqrt{2} \ \sigma\right\}\right) = 1.$$

Cette proposition peut être prouvée, à quelques modifications près, par les mêmes techniques employées dans [4], chap. 2, par.11.

Le comportement asymptotique du processus de Ornstein-Uhlenbeck relativement à $\frac{1}{\sqrt{\log t}}$ est probablement dû au fait que les positions X_s, X_t deviennent rapidement indépendantes entre elles lorsque s, t s'eloignent l'un de l'autre. Cette remarque suggère des résultats analogues pour des processus gaussiens stationnaires ayant fonction de covariance $\varphi(h)$ qui converge vers zéro (lorsque $h \to \infty$) avec une vitesse convenable. Nous ésperons traiter ces probèmes dans un article à venir.

(2.6) REMARQUE. La proposition (2.2) peut être demontrée aussi à l'aide du lemme suivant, dû à X. Fernique:

LEMME. Soit $(W_t)_{0 \le t \le 1}$ un processus gaussien de dimension 1, $\Gamma(s,t)$ sa fonction de covariance. Pour tout h > 0, posons

$$arphi(h) = \sup_{\substack{0 \leq s,t \leq 1 \ |t-s| \leq h}} \sqrt{\Gamma(s,s) + \Gamma(t,t) - 2\Gamma(s,t)}.$$

Supposons que l'integrale $\int_1^{+\infty} \varphi(e^{-x^2}) dx$ soit convergente. Alors, pour tout entier $p \geq 2$ et tout nombre réel $x > \sqrt{1+4 \log p}$, on a

$$Pigg(\sup_{0\leq s,t\leq 1} |X_t| \geq x \Big[\sup_{0\leq s,t\leq 1} \sqrt{\Gamma(s,t)} + (2+\sqrt{2}) \int_1^{+\infty} arphi(p^{-u^2}) du \Big]igg)$$

$$\leq rac{5}{2} \; p^2 \int_x^{+\infty} \; \exp \; ig(-rac{u^2}{2} ig) du.$$

Cette seconde preuve est bien plus compliquée que la présente; toutefois, grâce à sa généralité, le lemme de Fernique pourrait être employé dans le cadre des processus stationnaires mentionné ci-dessus (Remarque (2.5)).

Bibliographie

- [1] P.BALDI, Large deviations and functional iterated logarithm law for diffusion processes, Prob. Th. and Rel. Fields (Z. Wahrscheinlichkeitstheor. Verw. Geb.) 71, 435-453 (1986).
- [2] M.CHALEYAT MAUREL L.ELIE, Diffusions gaussiennes, en "Géodesiques et diffusions en temps petits", Séminaire de Probabilités Université de Paris VII, Astérisque 84-85 (1981).
- [3] X.FERNIQUE, Regularité des trajectoires des fonctions aléatoires gaussiennes. SPRINGER, Lecture Notes, 480 (1975).
- [4] J.LAMPERTI, Probability: a survey of the mathematical theory. Benjamin (1966).

ita Giuliano ANTONINI
ipartimento di Matematica
niversità di Pisa
ia F. Buonarroti, 2,
6100 PISA Italy