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OPTIMAL STATE ESTIMATION OF A MARKOV
PROCESS FROM POINT PROCESS OBSERVATIONS

TRAN HUNG THAO
INSTITUTE OF MATHEMATICS

HANOI, VIETNAM

Abstract. The aim of this paper is to study the problem of filtering of a
Feller- Markov process from point process observations. A modification
of a result of Kunita will be made and a stochastic diferential equation
for quasi-filtering will be investigated.

0. INTRODUCTION

In [3], H. Kunita has studied the nonlinear filtering of Markov processes from ob-
servations driven by a standard Wiener process. In this paper we consider the filtering
from Poisson process observations. In Section 1 we recall some recent results of filtering
of a semimartingale from point process observations. In Sections 2, 3 the method of
Kunita is used to the case where the observation process is a Poisson process; the un-
normalized distribution of state estimation (quasi-filtering) is considered as a stochastic
process taking values in the set of all probability measures over the state space.

1. FILTERING OF A SEMIMARTINGALE FROM POINT
PROCESS OBSERVATIONS

Let (Q, F, p) be a complete proba,bility space on which all processes are defined
and ada,pted to a filtration (Ft). "Usual conditions" are supposed to be satisfied by
(Ft).

The system process is a real semimartingale

where Zt is a. Ft-martingale, Ht is a bounded Ft-progressive process and I I 
00 .

The observation is given by an N-vector of point process Ft-semimaxtingales of
the form

where Aft is an N-dimensional Ft-martingale with mean 0 ht = h(Xt) is an N-vector of
positive bounded Ft-progressive processes ht = ~ ht , , , ,, 



2

Denote by FY the natural filtration of Y which provide observation datas con-
cerning Xt .

Suppose that the processes uis= d ds  Z,M’ &#x3E;s , ( s  t ) ,1  i  n) , are
Fs-predictable, where , &#x3E; stands for the quadratic variation of two processes. Denote
also by the FYt-predictable projection of us.

The filtering process is defined by

where Ft is the a-algebra generated by all Ys , s  t : Ft = s  t).
Let 7r(ht) be the N-dimensional filtering process corresponding to the process in

(1.2). The following facts are well known :
1. The process

is an N-dimensional point process Ft -martingale and it can be expressed by

Furthermore, for any t, the future a-field 1Ttt : 1£ &#x3E; t is independent of
FYt.
2. The cr-field generated by mt is included in Ft : s  t) C Ft and mt is called
the innovation of the point process Yt .

3. If is the innovation of Yt and Rt is an N-dimensional FYt-martingale then

where Ii t is an N-dimensional FYt-predietable process such that

and the notation (,) is understood as an inner product in .RN :

(See, for instance, [1]).
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4. THEOREM 1.1 (cf. [4]). The filtering process is given by

where

and

The equation is up to an indistinguishability.
5. Filtering by the method of Probability of Reference

The filtering equation (1.8) obtained by the innovation method, have some dis-
vantages in applications because of the appearance of the factors and the

quadratic terms These disvantages will be disappeared when we con-
sider the Zakai equation for unnormalized distributions derived from the method of
probability of reference.

Suppose that under the reference probability Q the observations are given by an
N vector of standard Poisson processes. Then

are Q- , Ft)-martingales, where Ft = FXoo V FY , F§§ is the (7-algebra sgeqo).
Suppose now that the probability P is obtained from Q by all absolutely contin-

uous change of P such that

are P, Ft-ma.rtingales. Let us denote

A Bayes formula give us (see, for instance, [1]) :

Denote by a(Xt) the filtering under Q of XtLt : a(Xt) = EQ[XtLt I ] we have
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DEFINITION : o,(Xt) is called the quasi-filtering process of Xt from point process
observations Yt .

It is known that an equation for quasi-filtering (Zakai equation) is given by :
THEOREM 1.2 (R. Elliott, cf. [2])

The system process and the observation process are supposed as in the begining
of § 1. Then we have :

where

This equation is linear in ~.

2. FILTERING OF A MARKOV PROCESS

In this section, a modification of a theorem of Kunita [3] for the case of point
process observations will be made.

The system process ~’t is supposed now to be a homogeneous Feller Markov
process taking values in a, compa,ct separable Hausdorff spa,ce S. The semigxoup Pt , t &#x3E; 0

associated with the transition probabilities Pt(x, E) is a Feller semigroup, that is

maps C(S) into itself for all t &#x3E; 0 and satisfies

uniformly in S for all f E C(S) where C(S) is the space of all real continuous functions
over S.

Assume that the observation Yt is an N-vector of Poisson processes of intensities

’ 

The filtering process is defined now by the conditional distributions

Denote by mt the N-dimensional innovation :
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where m’ = 1, ....N) are F,Y - martingales. Note that the 
FYt and u(mv - t  u  v) are independent for all t &#x3E; 0.

1. Filtering by Innovation Method.

THEOREM 2.1. If A is the infinitesimal generator of semigroup Pt of the system proeea
then the filteriiig process 7r(f(Xt)) satisfies the two following equations

where ~’ E D(.4),

Proof. a) Note that the process

is an Ft-martingale, so a direct a.pplication of the formula (1.8) for the semimartingale

yields (2.4) in noticing that the corresponding process u is 0 hence u = 0 , because of
the independence of Ct from M = (m)t .

b) It is known also that if f E C(S) and t &#x3E; 0 , the process

::.1 an Ft-martingale.
In writing the equation ( 1.8) for the signal Q, at a fixed instant t then using an

argument on a monotone class, we (2.5)

2. equation
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We have now

where a(f(Xt)) = E(Lt. f (Xt) ~ which is caled now the quasi - filtering of Xt by f .

Denote again 03BCt = (pi t ..., Pt N) with

A direct application of Theorem 1,2 yields :
THEOREM 2.2. The quasi - filtering of Xt by f satisfies the following two types of
stochastic differential equation :

R.el11arks. If Xt is of continuous sample paths, = ~T9 (0  ~ y t) hence the two
above equations can be briefly rewritten as follows

3. A STOCHASTIC DIFFERENTIAL EQUATION
The process Xt is supposed as in Section 2, in particular it takes values in a

compact Hausdorff space. Denote by M(S) the set of all probability measures over S.
Then M(S) is also a compact Hausdorff space with the induced topology. Assume that
Yt , t &#x3E; 0 is an N - vector process and set pt = (Yt I -t7...) t =

point
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Yti - t , i =1, ..., N . Let ao be an M(S) - valued random variable independent of (pt)
defined on a probability space (Q, F, P).

An M(S) - valued stochastic process at is called a solution of the following equa.-
tion

where crt(f ) = J f(Xt)dUt for f E C(S), if Us is independent of the u - field 
03BCu; s  u  v) for all s &#x3E; 0 and satisfies this equation. The quasi - filtering at defined
in §2 can be considered as a solution of (3.1 ), where Yt is the observation process.

THEOREM 3.1. There exists a unique solution at of (3.1) for arbitrary initial
condition Furthermore, this solution ot is r(/~ 2013~o ; 0  s  measurable,
where F(ao ) is the a - field generated by the M(S) - valued random variable 7.

Proof. The method of Kunita will be repeated step by step to prove the above stated
theorem. For simplicity we shall prove the theorem in case N = 1.

a/ We prove first the uniqueness of the solution of (1.3). Let at and u) be solutions of
(1.3) with the same initial condition Set

where I If I I = 

On the other hand we have by definition (3.2) of et(f) :

Thus

By virtue of (3.3( the latter relation can be rewritten as follows
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or in noting that :

Substitute (3.5) to the right hand side of (3.4) and repeat this procedure n - times. We
get then

Let n tend to infinity : the right hand side of (3.6) tends to zero and we have for any
f E C(S)

0

that prove the uniqueness of the solution.

b/ To prove the measurability of the solution, consider the following equation

where is the truncated function of ot (f ) by a finite positive constant K :

A computational analogous to that of for (3.4) yields
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On the other hand, in choosing K ] we have

Substituting (3.12) into the right hand side of (3.11) we have :

By induction

1

By consequence the series E’ 0 convergent. We can see from the followingY q n= t (f )]2 g
relation

that convergese in L~(P) to a stochastic Because each 

is measurable with respect to ;0~~)socr~(/)is. 
’

Suppose now that at is the M(S) - valued solution of (3.1). If the constant K

is chosen such as K &#x3E; then at is also a solution of (3.7) since _

crt(f), fEC(S).
It holds

where c is a positive constant depending on only. Set
We have by virtue of (3.14)

and
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By an argument similar to the above we can see that et(f) = 0 hence at = ~~°°~. . The
measurability of ot with respect to ; o - u - v  ~~ V is thus proved.

c/ As we see in §2, if pt is defined such that the Poisson process Yt is the observation
process then the quasi - filtering ~~ based on Ft is the solution of (3.1~ and it can be
expressed by a functional

When Yt and pt are defined as in in the beginning of §3, then the same functional o
expresses the solution of (3.1) in terms of ao 0  s ~ t. Thus, the existence
of (3.1 ) is proved.
REMARK. As in [3] we can show that the M(S) - valued solution at of (3.1) is a Feller
- Markov process with the transition probability defined by

IIt(v, B) = E B) ; B = Borel sets of M(S) ,
where ~t is the solution corresponding to the initial condition M(S).
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