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ASYMPTOTIC COVARIANCES OF EMPIRICAL PROCESSES

C.S. WITHERS

Formulae are given for the asymptotic variance of a sum of random

variables (r.v.s.) and the asymptotic covariances of the weighted empirical

process, the rank process, and the signed rank process, when the sample

consists of non-stationary strongly dependent r.v.s. from R. A central

limit theorem (C.L.T.) for such r.v.s. is also given.

§ 1. INTRODUCTION

When adjacent values within a sample are strongly dependent, nearly

every test (including so-called robust tests) will give an incorrect a-

level. Generally, if adjacent values are positively (negatively)

correlated, then variances will be larger (smaller) than in the independent

case and the actual type 1 error will be larger (smaller) than the assigned

value. If one is able to specify the nature of the pairwise dependence of

r.v.s., the results below will often allow computation of the correct

asymptotic variance or covariance, and hence provide (at least asymptotic-

ally) the correct a-level.

These results apply, for example, to statistics TN approximated by

h where D -~ R satisfies {sup xl -~ 0, x continuous}N N N 10&#x3E;11
h(x) for some h, as N -+ and where LN i s either a weighted

empirical process (e.g., k-sample goodness of fit tests), or a rank process

(e.g., linear rank statistics), or a signed rank process (e.g., many tests

of symmetry). (See Billingsley [1] for definition of D.)

The restrictions we impose on the covariances are shown to hold when

a suitable arrangement of the sample is a-mixing and Ea(i)  00. We do not
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assume stationarity of subsamples, nor do we need to consider infinite

sequences of r.v.s. For applications to signed and unsigned linear rank

statistics see Withers [6].

§5 gives a C.L.T. for mixing r.v.s. on R.

If G is a c.d.f. on R we use G-1 to denote its right-continuous

i nverse ~ i . e. , G’- of Withers [5]).

§2. THE VARIANCE OF WEIGHTED SUMS

We begin with consideration of a weighted sum of r.v.s.

For example this result allows correction of the 2-sample t-test when

the sub-samples are either dependent or dependent within themselves. (The

special case where the sample is stationary was considered in Lemma 3,

p. 172 of Billingsley [1]).

THEOREM 1. Suppose

(1) for N &#x3E; 1 1,..,kl are integers such that- Q, 
I

say, be r.v.s. with 0 such that

00 

,(2) E max 
iN 

= 1,.. ,k/V l,l’ = 1,.. 

where the max i s taken over all such 

(3) Suppose for = 1,...,k for all fixed B, that

where j is summed from max (1,1-~) to min (m

(4) Suppose ~~, finite, 
= l,... ,~.
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where

Further, if ml =...= m k then (4) can be weakened to

provided (7) is replaced by

In either case the expression for is absolutely convergent

77?n
PROOF. It suffices to prove that for Q. = Z z iiN

j=l

(9) E Q 1Q2 converges absolutely to X1A12 when 

If X2 &#x3E; x1 then m2 &#x3E; m1 for N large. If X = a1 then the subsequence for

which im 2  m1} can be treated in the same way as that for which ~m &#x3E; m 1 ~,
Hence we may assume m2 &#x3E; M1* .
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so that by (2) and the Lebesgue Convergence Theorem (LCT)

convergence being absolute.

convergence being absolute. This together

with (10) implies (9).

converges absolutely to À1A12 given by (7)’.

COROLLARY 1. Suppose (1), (4) hold and are r.v.s. in RP such

that E 0 and

, where the max i s over j,N such that

I where j is summed from
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Then for s N defined by (5), as N -~ 00

PROOF. Apply Theorem 1 with

suffices to show (3)’ _&#x3E; (3) holds with k = 1 where

Consider the case a &#x3E; 0. Assume without loss

v

ml. Then

,

It is worth emphasising that (2) ensures that the asymptotic

variance given by (6)~ does not depend on the nature of the dependency

between subsamples. This is in contrast to the asymptotic variance

given by (6): (2) allows for strong dependencies between z. and N

for example, but will generally be false i s a-mi xi ng, say.

Of course ~2)~ is implied by
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EXAMPLE 1. Suppose (1), (4) hold and are r.v.s. such that cov

~~ = ~ 181 I p~ -~ p, o~ 2 d I I °
Then for given by (11),

Before applying the above, we give sufficient mixing conditions to

.ensure (8) and hence (8)’. Of course (8) is equivalent to (2) if

For example, (12) holds if the subsamples are uncorrelated. (For definition

of a-, ~-, and ~-mixing for a finite sample, see Withers [2] . )

LEMMA 1 (a). If for a given l and for all

is a-mixing and

then (2) and (8) hold for Z’ = t. The same is true if ’a-mixing’ is

replaced by ’~-mixing’ and (13) is replaced by

OR if ’a-mixing’ is replaced by ’~-mixing’ and (13) is replaced by

suppose that (13) holds and
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. is a-mixing

where Af = 

Then (8) holds. The same is true if ’a-mixing’ is replaced by ’~-mixing,

and (13) is replaced by (14), OR if ’a-mixing’ is replaced by 

and (13) is replaced by (15).

NOTE 1. In the applications in §2-4, max 11  00, so that
l,N,i 

ilN 00l,N,i oo

m

(2) is implied by (12) and E  00.
1

PROOF. (a) follows from Lemma 1 of [3]. (b) follows from

LEMMA 2. Suppose are a-mixing, o-mixing, and Y-mixing

(Y1) N

Then for 1  k  k + 2  M, the following are upper bounds for

i s a-mixing and hence by

the proof of Lemma 1 of Withers [2]
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Minimising

For simplicity we shall only apply Corollary 1 with p = 1. This is

not really a restriction, as the case p = 1 contains the case of general

p. In particular is a-mixing for N &#x3E; 1 and E a(i)  m
" 1N 

, I

=&#x3E; the sample of size n is a-mixing for N &#x3E; 1 and

E  00. (In fact, in writing the former set of {a(i)} as {a’(i)},

we have a’(ip) = a(2).~

§3. COVARIANCE OF THE WEIGHTED EMPIRICAL PROCESS

An immediate consequence of Lemma 2 of Wi thers [3], Corollary 1, and

Lemma 1 (a) is the following expression for the asymptotic covariance of

the weighted empirical process.

COROLLARY 2. Suppose

and (1), (4) hold. Fix in [0,1]. Suppose for all that (2)’

and (3)’ hold for given by (11) with p = 1, where
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Suppose also

Then (1.8) of Withers [4] holds with

where

is the coefficient

The expression for absolutely convergent. Further,

(2)’ holds if

where is summed from max to mi n

then (3)’ holds and

NOTE 2. (23) holds if for

and Y has a continuous distribution,
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NOTE 3. If = V(S,x,y), then (20), (21), (24) imply

, convergence being

absolute. (Use the fact that 0(S,x,y) = 

NOTE 4. The only restriction on the marginal c.d.f.s is (23) for

~ - 0. This holds with

and WOis the Brownian Bridge and w is an independent Wiener process;

when Fl(x,0) = a(x)la(O) for 0  x  0  1, a simpler characterisation

is L’ = A W(a/A ) where A is given on p.1108 of Withers [3].

§4. COVARIANCES OF SIGNED AND UNSIGNED RANK PROCESSES

Corollaries 3, 4 give the asymptotic covariance of the empirical

rank process and the empirical signed rank process. They follow

immediately from Lemma 2.12 of Withers [5], Lemma l(a) and Corollary 1.

For definition of H, E , ~~+, H+, s, cic I see [5]. denotes 

COROLLARY 3. Suppose (1), (4), (17), (19) hold and that for all p , p1 2

(2) I, (11), (3)’ 
I hold for p = 1 and
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Then (1.10) of Withers 151 holds with

The expression for Xk Ag (t~,t2) is absolutely convergent. Further,

(2)~ is implied by (22). Also, if (1), (4), (23) hold and

and in (21) is given by

Also, if (1.9) of [4] holds and for Q = 1, ... ,k

then (28) holds with

NOTE 5. If for t = 1, ... ,k = and and

, then under mild conditions
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COROLLARY 4. Suppose (1),(4), (17), (19) hold and that for all p~, P2

(2) ~ , (3)’,(11) hold for p = 1 and

Then (1.10)* of [5] holds with

The expression for Àt is absolutely convergent. Further,

(2)’ is implied by (22).

Also, if (1), (4) hold and

where j is summed from max ( 1, to min 

and if ~(.r) ~ a(x ) where a(~) is a c.d.f.,

then (3)’ holds and in (21) is given by
l 1 2



95

then (34) holds with

NOTE 6. The analog of Note 5 holds;

being absolutely

convergent,where
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EXAMPLE 3. If CiN = 1 and the subsamples are independent and i.i.d.

In parti cul ar, i f aiN - 1 and Ix. I are i . i . d. H, independent ofiN 
::: 

2N

and H+ i s conti nuous and 0(t) = i s di fferen-

hence is also symmetrically distributed about 0, then T in

Withers [5] is the Wiener process.

§5. A C.L.T. FOR MIXING R.V.S.

The proofs of Theorems 18.5.1 - 18.5.4 of Ibragimov and Linnik [2]

can readily be shown to generalise to non-stationary sequences of real

r.v.s. ~ = 00 as N -~ 00. one thus obtains

THEOREM 2. Suppose E 0 and

either (a) ~N is a-mixing and (13) holds with = 

or (b) (N is ~-mixing and
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-,I, n L 2
Then n-1/2 EX .-* 00.

NOTE 5. (a) with p = 00 also follows from Theorem 1 of Withers [3]

with p, chosen as on p. 349 of [2]. M. Ghosh has pointed out to

me that (6) of [3] is redundant, as

In Corollary i(g) of [3] the condition on r, .d should be

7~ + 5d  1; alternatively, one may use the version at the end of [4]

in which "d  1/b" should read "d  1/6".

COROLLARY 5. Suppose

(a) or (b) of Theorem 2 hold.

PROOF. Apply Theorem 2 to

NOTE 6. M.I. Gordin (p. 420 of ~2~) has shown that for {

stationary and a-mixing, (a) may be weakened to

and that these conditions suffice for the existence of a 2

satisfying (39).

However, his method of proof does not seem to apply to non-

stationary sequences.

Applying Lemma 1 (a) and Theorem 2 to Corollary 1, we have

COROLLARY 6. Suppose (1), (4) hold and Z N = are r.v.s.

in Rpn with EZ. = 0 such that (3)’, (11) hold and either zw is
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a-mixing and (13) holds, or Z is o-mixing and (14) holds, or ZN is
Y-mixing and (15) holds, where =  i , ... , i &#x3E; 

Then for SN defined by (5), and A. defined by (7)’,
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