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ASYMPTOTIC COVARIANCES OF EMPIRICAL PROCESSES

C.S. WITHERS

Formulae are given for the asymptotic variance of a sum of random
variables (r.v.s.) and the asymptotic covariances of the weighted empirical
process, the rank process, and the signed rank process, when the sample
consists of non-stationary strongly dependent r.v.s. from R. A central

1imit theorem (C.L.T.) for such r.v.s. is also given.

§1. INTRODUCTION

When adjacent values within a sample are strongly dependent, nearly
every test (including so-called robust tests) will give an incorrect a-
level. Generally, if adjacent values are positively (negatively)
correlated, then variances will be larger (smaller) than in the independent
case and the actual type 1 error will be larger (smaller) than the assigned
value. 1If one is able to specify the nature of the pairwise dependence of
r.v.s., the results below will often allow computation of the correct
asymptotic variance or covariance, and hence provide (at least asymptotic-
ally) the correct a-level.

These results apply, for example, to statistics TN approximated by

N
=>{hN(xN) -+ h(x) for some h, as N -+ =}, and where Ly is either a weighted

h, (L) where h,: D > R satisfies{sup |x, - =| + 0, = continuous}

empirical process (e.g., k-sample goodness of fit tests), or a rank process
(e.g., linear rank statistics), or a signed rank process (e.g., many tests
of symmetry). (See Billingsley [11 for definition of D.)

The restrictions we impose on the covariances are shown to hold when

a suitable arrangement of the sample is a-mixing and Za(i) < «. We do not
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assume stationarity of subsamples, nor do we need to consider infinite
sequences of r.v.s. For applications to signed and unsigned linear rank
statistics see Withers [6].

§5 gives a C.L.T. for mixing r.v.s. on R.

If ¢ is a c.d.f. on B we use G_' todenote its right-continuous

inverse (i.e., G_ of Withers [5]).

§2. THE VARIANCE OF WEIGHTED SUMS

We begin with consideration of a weighted sum of r.v.s.

For example this result allows correction of the 2-sample t-test when
the sub-samples are either dependent or dependent within themselves. (The
special case where the sample is stationary was considered in Lemma 3,

p. 172 of Billingsley [11).

THEOREM 1. Suppose

(1) forw>1 {mg = mpys & =1,..,k} are integers such that

k

my >, mz/n > xz as N >, ¢ = 1,..,k, where n=nN=§ mp .
MrN31MtM“W”U%“Wzmm”uzmm,”,gmyuZ%m}wq,
say, be r.v.s. with EZ o = 0 such that
) L

(2) ij lrgaj; IEZj+B,Juv Zoggl <o for 4,27 = 1,.. %
where the max is taken over all j,¥ such that 1 < 4 Smp,s 1<+ 8 < my.

(3) Suppose for 2,8' = 1,...,k for all fixed B, that

n_1 ¥~ EZ

J
where j is summed from max (1,1-8) to min (mz-B,mz,).

e, o Zigrg T MIN Ogs Apy) gy (B) as W > e,

(4) Suppose w T finite, as ¥ » o, 2 = 1,...,k.

L
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k My
(5) Let s, = L w L Z.gne
N 9=1 LN i=1 AN
-2 ko k .
(6) Then as ¥ » =, n 'ES; »-17251 2§=1 wewy , Min (Al,xl,) Bogr

where

(7) AJUL' =1 pﬂﬂ,'(j)'

-0

Further, if m; =...=m, then (4) can be weakened to

(8) r max |E 2 E | <o for 2,2 = 1,...k,

. Zayy YV E 2.0 7. ,
B=-o N, j J#+B, AN "N JAN “g+B,L'N

provided (7) is replaced by

(1) Byp0 = 050,000 + T (pg,,(B) + pyy,(-8)).

B=1
In either case the expression for min(xz,kz,) Bogr is absolutely convergent

PROOF. It suffices to prove that for Q2 = I Z,

(9) E Q1Q2 converges absolutely to AA when A, > A,.

If Az > A1 then m, > m, for ¥ large. If Az = A1 then the subsequence for

2 1

which tm, < m1} can be treated in the same way as that for which {m2 3_m1}.
Hence we may assume m, >m,.
;‘Eziwzjzlvﬁli?’imﬂ 1<y <m,
Let p;; = <
‘Lpu(i-j), otherwise
ar, = (m-g)" B S
and 7., = (m.-B Z p. .. Then EQ.Q, = L T Py
18 1 i J+Byd 192 00 g=1-i b i+8
0 M1 m1—1
=4, +A,+A where 4 = I L P;i4p™ % (my-g) Tqg.s

B=1-m, <1=1-8
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m2-1 mZ'B
A, = I I »p

. By (3), 7,5 * p,,(B)
LUE T3 e 41 dm 18 T2

1,148’
so that by (2) and the Lebesgue Convergence Theorem (LCT)

(10) A/n > A b p12(6), convergence being absolute.
0

m2£'1
+ = + =
Now A2 A3 A4 A5 where A4 n T

9
p=1 2
-1 ™ may=1 -1 my=-B mq
T., =n L P +,ps A =n z T. ., T =n(2-2)p...
28 i=1 LUHE TS B=m -m +1 367 38 i=1 =1 tt*B

Since Tog > )\1p12(-8) and Tig > ()\2 - >\1)p12(-6), (2) and the LCT imply
A4/n > 11 ? p12(-B), As/n + 0, convergence being absolute. This together

with (10) implies (9).

my=1
If m, = m, then 4, = 0 and (.zl1 + 443)/n =Tt 851 T{B where
T' - -1m1£6 ( + : h b
1" i1 Pisg,; ¥ Pj j+p)3 hence by (8) and the LCT (4,+ 4,)/n

converges absolutely to A1A12 given by (7)'.

COROLLARY 1. Suppose (1), (4) hold and {gm,...,gmv} are r.v.s. in RE such
that £ gw = 0 and

oo
(2)' I max |E Zi18,0 ZjNI < « where the max is over j,¥ such that

B:_w J
Lejsmleg+Bomandzy =gzy, e = (Lo.l).
xp
2-1
(11) For 1 <2<k, 1< < my let gjw = §M2+J,N where M, = gmz, m, = 0.

(3)' Suppose for 1 < 2 < k and all fixed B that as ¥ + =

-1 ’ .
n 5 E §j+3,w gjw >y pz(B) as N » o where j is summed from

max(1,1-8) to min(mz-B,mQ)-
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Let Z,,, = f'gizw' Then for Sy defined by (5), as N » =

k
' -1 g2 - 2
(6) n! ESy > T 251 A, wi B,

where

(7)’ A, = T e'py(Be.

1 = = * =
PROOF. Apply Theorem 1 with k = 1, w,,, =1 to {ZJQN Wy ngN}. It

*

. ' . _ *  _
suffices to show (3) => (3) holds with k = 1 where Ziy = ZM2+j,2N and

k
p11(B) =LA wi e'pQ(B)e. Consider the case B > 0. Assume without loss
; é ¢
K
that B < mjn m, - Then

* *

2
1 Zj+B,N Z € _+¢€__, where g = § Wow 7 E

gN -t T o W

-1 k "8
=n z Woy w£+1’N z E

EZ., 2. s E Zoom Lsin s
JAN “g+B, AN’ 2N 0=1 j=m£-8+1 JAN “G+B m2,2+1,N

z =0. Bute, = 0(»"") and by (3)' e,y > P,(8). The case

1, k+1,N ~
B < 0 is similar.

It is worth emphasising that (2)' ensures that the asymptotic
variance given by (6)' does not depend on the nature of the dependency
between subsamples. This is in contrast to the asymptotic variance
given by (6): (2) allows for strong dependencies between ijN and ZjR'N
for example, but will generally be false ifgy% is a-mixing, say.

Of course (2)' is implied by

[o e}

1 .
(8) B=>:_w lr;a; |E Zi.mm Ziwn * F Limn Z.7'+B,Nh" < o for nyh'= 1,...,p
>
where gj& = (ZjN1""’Zij) and the max is over j,¥ as in (2)'.



- 88 -

EXAMPLE 1. Suppose (1), (4) hold and {ZjN} are r.v.s. such that cov

= o2 o |8l
v Zirew) T On P

Then for {ijw} given by (11),

where p, > p, 02 > 0% as N > = and |p|< 1.

(2 ¥

m
w L Z
1 a J=1

n~1 var {

2 - K 2
)>0" (1+p) (1-p) Ii w ash->w,
) 1

o™X

JN
Before applying the above, we give sufficient mixing conditions to
-ensure (8) and hence (8)'. Of course (8) is equivalent to (2) if
(12) for m > 1, for 2,2 = 1,...k,EZ7:2N stwv = E‘ij Z;qry forl < 1,
< min (mﬂ,’mﬂ,')'

For example, (12) holds if the subsamples are uncorrelated. (For definition

of a-, ¢-, and Y-mixing for a finite sample, see Withers [2].)

1
DEFINITION. For Z a real r.v. define || 2z Hp = {(E |z|P /p ifl<p<o
ess sup|z| ifp ==

LEMMA 1 (a). 1If for a given & and for all y {Z1lN’222N"""Zm12N}

is a-mixing and

(13) for some p in (2, T a(i)1'2/p < o, max ||
1 i

L]

Zi!LlV ”p <
then (2) and (8) hold for ' = &. The same is true if 'a-mixing' is

replaced by '¢-mixing' and (13) is replaced by

- 1
(14)  for some p in [2,=] z o(2)'" /p < w, max I < o

Zeow |l
N1 3 p
OR if ‘a-mixing' is replaced by 'y-mixing' and (13) is replaced by

(15) W(e) <o, max |z, |l <.

N,z 2

_nM8

(b) For & =1,...k if 7 > mg define Ziop = 0. For ¥ >1and 2,2' =1,...k

suppose that (13) holds and
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(16) ¢ 2o | o (2 ...

o0l } is a-mixing

f
s ZMSLIV

Z

2 20N Zya '

where M = max(mz,mz.).

Then (8) holds. The same is true if 'a-mixing' is replaced by '¢-mixing'
and (13) is replaced by (14), OR if 'g-mixing' is replaced by 'y-mixing'
and (13) is replaced by (15).

NOTE 1. In the applications in §2-4, max
L,N,Z

(2) is implied by (12) and °1>5’ a(i) < o.

”Zizﬂllm< », so that

PROOF. (a) follows from Lemma 1 of [3]1. (b) follows from
LEMMA 2.  Suppose { XM]} are g-mixing, ¢-mixing, and y-mixing

X1)seens
Y1 .YM

.2
r.v.s. in R with means 0. For 1 <p < = let Cyp = max(llxkllp ,

1Xgasll ) €y = max Clly Hlys N2y 11)s € = max(ey ,cy)).

Then for 1 < k < k + 2 < M, the following are upper bounds for

T=|E X Yws ¥ E Xppr Y.].

(a) 6\])(11)0}(1 Cyq

,
(b) 126 'P(s) ¢, ¢, for pl+g =1, 1<p<w

(c) 24 a(2) Cyeo Cyo

1 - -
(d) 60a(7;)/”cpcqfor13pgw,1gqgw,r‘=1-p‘-q

PROOF (d): For ¢,t,>0 {7, =t X0+t } is a-mixing and hence by

1 %N Z’Yilv
the proof of Lemma 1 of Withers [2] |Ezk Zresl 0 sz Hp I Zesi uy(where

]
a = 10 a(z) /”) < alt, Cxp tt, Cyp)(t1 ch tt, cyq). But
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2 2
T ¢.t, < 1EZ, Zpys] ¥t |EX, Xopsl * ot IE’Yk Ypail

2 2 e e s
<atit, (Oyp Cyg * Cxg cyp) + 2a(z, Cyp Cxqg * 2" Crp cyq). Minimising
2 2 - %
over ¢ ,t, we haYe T <o (z° + y° + day) < 6o CpCq where z = (Ckp qu)
_ Y . -
and y = (Cy, Cyp) . Proof of (a) - (c) is very similar.
For simplicity we shall only apply Corollary 1 with p = 1. This is

not really a restriction, as the case p = 1 contains the case of general
p. In particular {§1N""’§nN} is a-mixing for ¥ > 1 and £ a(Z) < «
&= the sample of size mp {§1k,...,gn&} is a-mixing for ¥ > 1 and

% a(z) < ». (In fact, in writing the former set of {a(z)} as {a'(Z)},

we have a'(ip) = a(z).)

§3. COVARIANCE OF THE WEIGHTED EMPIRICAL PROCESS

An immediate consequence of Lemma 2 of Withers (3], Corollary 1, and
Lemma 1 (a) is the following expression for the asymptotic covariance of

the weighted empirical process.

COROLLARY 2.  Suppose

( \
17 fx, Xow Xi1m Xmow|  |%raw szzzv]
{ s ey ]’ = { s ’ s s s ’
S Cu Wy |’ YN Yon Yon
kan J Y

and (1), (4) hold. Fix t_,t, in [0,11. Suppose for all p,,p, that (2)’

and (3)' hold for {ZlN,...,ZnN} given by (11) with p = 1, where

2
= -1 _
(18) Zi!UV = 7.51 pj gil (aN (tj)), where E?:;Q,(x) =

< x) and a_ is a c.d.f. on R.

l(Xiw <z) - P(x -

TN
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Suppose also

k 2
(19) :lekl w, < > 0.

Then (1.8) of Withers [4] holds with
k 2 ko 5
(20) K(t1 ,tz) = ;1 AWy Az(t“tz)/? Awe”s
where

(21) Az(t1,t2)= T

ge-oo

of p.p, in p,(8) in (3)".

pQ(B,t1,t2) and 2p2(B.t1,t2) is the coefficient

The expression for AzAz(t1,t2) is absolutely convergent. Further,
(2)' holds if

(22) for y>1 {le""’th} is a-mixing and % a(Z) < o.

Also, if

= -1
(23) v, (Bszsy) = n §(P(Xj+s.uv @ Xy SY) P (Kyyg oy £ @)

P(ij < y)) has a finite limit, AVy (Bazyy), as N+,
where j is summed from max (1,1-8) to min (mz—B,m), L= 1,...,k

and if aN(x) + a(x), a c.d.f. on R, as N + o,

then (3)' holds and
(24)  py(Bst,0t,) = H(V(t,,t,) + V(t,.t,)), where V(¢ ,¢,) =
V(8,7 (2,), a7 (8,)).

. . L
NOTE 2.  (23) holds if for 1 < 2 < k either (X3+B.2N, X&zw) + Y=

(XBQ’ X&z) uniformly in 1 < j <m,, and Y has a continuous distribution,

L
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and ¥, (8,z.y) = P(Xg, <z, X o <y) -P (X ) <z) P (X, <y),

or xz = 0.

NOTE 3.  If V,(B,z,y) = V(B,x,y), then (20), (21), (24) imply

(25) K(t1,t2) = 1 Vg, a'1(t1), a'1(t2)), convergence being

B= e

absolute. (Use the fact that V(B,xz,y) = V(-B,y»x).)

NOTE 4. The only restriction on the marginal c.d.f.s is (23) for
B = 0. This holds with

V“’(O,x,y) = Gl(m‘in(x,y),oo) - Gg(ac,y) if for all z,y

m

2 .
-1
G o0 =
m, j§1 Fj!LN(x) Fjllv(y) > Gyw,y) as ¥ » » where Fjw(x) P(XjQ,N < z).
'y
For example, if for all z, max Iszﬁ(x) - Fl(x)l + 0 as ¥ > = then
J=1

Voo (0s2,y) = Fo(x)(1-Fo(y)) for z < y. If FjQN(x) = Fy(x,d/my) then

1
V,,(0,2.y) = [0 Folz,0) (1-F)(y,0))do for z < y,

E L'(x) L'(y) where L'(z) = [1W0(F2(x,6))dw (6)
’ 0

and w°is the Brownian Bridge and w is an independent Wiener process;
when Fz(x,e) = alx)/a(6) for 0 < x < 6 < 1, a simpler characterisation

is L' = A W(a/A) where A is given on p.1108 of Withers [3].

§4. COVARIANCES OF SIGNED AND UNSIGNED RANK PROCESSES

Corollaries 3, 4 give the asymptotic covariance of the empirical
rank process and the empirical signed rank process. They follow

immediately from Lemma 2.12 of Withers [5], Lemma 1(a) and Corollary 1.

For definition of H, EN’ H+, Ht, S E;, o, » see [51. f(x) denotes df(x)/dx.

COROLLARY 3. Suppose (1), (4), (17), (19) hold and that for all Py» Py

(2)", (11), (3)' hold for p = 1 and
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(26) 2z, = 321 P (wRN N(tj)) Esq (H'1(tj)) where

.
Then (1.10) of Withers [5] holds with
- k K 2
(27)  clt,»t,) 2ot (t,58,) / 22y ug"s where A, (¢,4%,)

is as in (21).

The expression for Ay By (t1,t2) is absolutely convergent. Further,

(2)' is implied by (22). Also, if (1), (4), (23) hold and
(28) B (t) ~E(t) as ¥ >, 0<t<1and for z in &,

H(z) + alz) as N + =, where a(*) is a c.d.f., then (3)' holds

and pz(B,t1,t2) in (21) is given by
(29)  %(V(t,,t,) + V(z,,t,)) where V(¢ ,t,) = (@ 2<—c(t Yoo -elt, v,
o(2,) olt,)) 7y (807,007 (2,)), e(8) = (£ 1, )% £(3).

Also, if (1.9) of (4] holds and for & = 1,...,k

me

(30) n? m2-1 L (g (¢4 n"%) - Loy(t)) > by (8), finite, as

- -1
N~w, 0<t<1where L, .(¢) = P(x,, < H (¢)),

then (28) holds with
k - 2 _;5 k. .
(31) E(¢) = (% A wp”) Iy py(t).

NOTE 5. If for 2 = 1,...,k L 12N and L12N > Py and
{Liﬂ, , ngz, ..} is Cc-tight, then by Note 1.2 of (6] (1), (4)->(1.9),(1.12)

-1
of [5] and (30). If F. n 2), then under mild conditions

Q,N( z) 2
H(x) + alx) = z A F (x 0) as ¥ > = and (30) holds with pQ\t) =

= F (x,e

X

Fk(a- (), 0).
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COROLLARY 4. Suppose (1), (4), (17), (19) hold and that for all Pqys Py
(2)", (3)", (11) nold for p = 1 and

(32) z., =

: +
TN o1 PJ- (wllv Uiﬂ,(tj) - Cy (tj) Vil(tj))’ where

[ XY

]

- 77 + e r ’ 1] _
U (8) = Uy (H_ (), Uy = U2y - BUL W Up () = 5(x;0 ) LUK, 0] <),

= - + by = ’ - ’ ’ -
Voglt) = V(B (8))s Vg = Vep = EV,oy Violw) = WX, < =),
+

+ I
cN(t) n*o, Ey (¢).

Then (1.10)" of (5] holds with

_

2

+ -
(33) ¢ (¢,5t,) = L .

X, b, (¢ t)/’z(A

N w
g=q 2T T20 00
where A (t1,t2) is as in (21).

The expression for Al Ag (t1,t2) is absolutely convergent. Further,
(2)' is implied by (22).

Also, if (1), (4) hold and

(34) Eh; > E as N+ o

U.
J2
and for 332 = [?

]aSN-*OO
g

-1 ]
(35) = §E’XJ.+B,2(t1) 7o (£,)7 > 2y Z(8,8,¢,,¢))

where j is summed from max (1, 1-8) to min (ml'B’mz)’
and if H+(x) + a(x) as ¥ » = where a(*) is a c.d.f.,

then (3)' holds and pg (st st,) in (21) is given by

_ 2 +
(36) l/z(V(tVtz) + v (tz,t1)), where V (t1,t2) Suwg L, e (t1)u

11 L 221

k 3
- ety T, + et (8)et(8,) By, ot (2) = (T A0y *)E"(2), and

(2;;) = T(a.8.a” (£,)a7 (£))).
2x2
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Also, if (1.9)" of (5] holds and for & = 1,...,k
(37) #im, ) L (e, (¢4 n7F) cw.,. (8)) > b, (), finite, as
oMy 3 Wi i Pgslt)s ,
_ + +
N>, 0<t <1 where “izm(t) = FﬁzN(H_(t)) + szm(-H_(t)-)
then (34) holds with

k .
(38) E'(¢) = (T2 0, 2) 72 T Ay g P, ().

- ™Mx

zn"lé) under

NOTE 6. The analog of Note 5 holds; if Fim(‘”) = Fz(:x:,e
k
mild conditions #'(x) - alx) = 2 Ag(Fy(2,0) - Fy(-2-,0)) as ¥ + = and

(37) holds with p,, () = Foa™'(¢),0) + F,(-a”(£)-,0).

EXAMPLE 2. If c ., =1 and forwy > 1 {xm,...,an} is a~-mixing and

oi?a('i)<°°,n=n +> ® 3§ N + o, H++aaszv+oo, (34) holds and
3

N

1) - n-.B
(35) for ¢,j = 1,2 for all z,y and B > 0, n ' covar
k=1

*
(Yi(k+8.x)s.{j(k,y)) g zij (th9y) as N » »
where Y1 (kyx) = S(XkN) Y, (k,x), Yz(k,x) = l(IXkNI < x),
then (1.10)" of (5] holds with

(33) C+(t1,t2) = 3(0,t1,t2) +2 % E(B,t1,t2) being absolutely
g=1

— _ + +
convergent ,where 2p(B,t1,t2) =0, - F (t1) O,y - E (tz) 9.y

+ +

20,5 = T;5(8,2 5t)) + LBt ut)) + Iy (Batyut,) + I (Bs250t,)

= * -1 -1
and E’/..j(B’t'l’tZ) 27:(7.(8’61 (t.‘)’a (tz))'
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EXAMPLE 3. If c., =1 and the subsamples are independent and i.i.d.

. o k .
Foy and Fyy > Fyu Fy (=) = Fy(@) - Fy(-w-), a =LA Fp and Ly, =

1]

kK . .
LA, A (t1,t2), where

-1 ' +
Fl+(a ), then ¢ (t1,t2) L)

B,(t,st,) = Iy, (min(t ,¢,)) - g (8,0 wg (£,) =1, (£, ) (g (min(e, 4,)) -y (£,)
Loy(t))) - ﬁz(tz)(uz(miﬁ(t1,tz))-uz(ti)L£+(t2))+ﬁ2(t1)ﬁz(tz)(ﬂz+(min(t1.tz)
- Loy (£ )00, (2,)), and y(¢) = Fk(a”(t)) + Fz(-aq(t)—)-Fz(O)-FQ(O-).

In particular, if c.

in = 1 and {XiN} are i.i.d. H, independent of

N, and 5' is continuous and 8(t) = 2a(a" (¢))-£-8(0)-#(0-) is differen-

tiable, then for s < ¢ C+(s,t) =
s(1+6(s)8(¢)) -6 (s)(6(s) +6 (£)) - (8(s)-86(s))(0(t) - £B(£));

hence if X, is also symmetrically distributed about 0, then T+ in

N

Withers (5] is the Wiener process.

§5. A C.L.T. FOR MIXING R.V.S.

The proofs of. Theorems 18.5.1 - 18.5.4 of Ibragimov and Linnik [2]

can readily be shown to generalise to non-stationary scquences of real

’
r.v.s. X = (Xw,..

.,XﬁN), when n = ny > © as i >« One thus obtéins

THEOREM 2. Suppose EX.y = 0 and

4on
(39) = 1E'(§ XiN)2 > 0% < was N+, and

ejther (a) Xy

or (b) Xy is-¢-mixing and

n
o

is a-mixing and (13) holds with Zion N

(40) for some p > 2,%a§|{xﬁm llp < », and if p = 2 then % d)(j)lé < o,
s¢]



- 97 -

L
> N(O,oz) as N » o,

'l/zgx
1

Then = iN

NOTE 5. (a) with p = = also follows from Theorem 1 of Withers [3]
with p, g, k chosen as on p. 349 of [2]. M. Ghosh has pointed out to

me that (6) of [3] is redundant, as
2 2 _
(41) EXy > 0, Y > 0 =ExY, > 0.

In Corollary 1(g) of [3] the condition on r,.d should be
A+ 54 <1; alternatively, one may use the version at the end of [4]

in which "d < 1/b" should read "d < 1/6".

COROLLARY 5.  Suppose

™M

X.
1 N

(42) 0 < 1im inf s 2/nN < w, where 5.2 = var { , and either
1

Vow ¥ N

(a) or (b) of Theorem 2 hold.

n L
Then % (XiN - EXiN) / Sy ¥(0,1) as ¥ -+ o.

r_ Y -1
PROOF.  Apply Theorem 2 to {XiN =n® Sy (XiN - EXiN)}'

NOTE 6. M.I. Gordin (p. 420 of [2]) has shown that for {XZN x.}

stationary and a-mixing, (a) may be weakened to
(43)  for some p in [2,], % a(2)'" P <, max Nxzpll <=
1 N, 2

and that these conditions suffice for the existence of 02

satisfying (39).
However, his method of proof does not seem to apply to non-
stationary sequences.

Applying Lemma 1 (a) and Theorem 2 to Corollary 1, we have

COROLLARY 6.  Suppose (1), (4) hold and ZN = (g1N,..

in P with 82, = 0 such that (3)', (11) hold and either Z, is

.9l .V.S.
’~nN) are r.v.s
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a-mixing and (13) holds, or ZN is ¢-mixing and (14) holds, or ;N is

Y-mixing and (15) holds, where Ziow = (1,...,1) Zson

Then for Sy defined by (5), and By defined by 7",

-y L k
n 5y - n(0, § Ag vy

2
Al).
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