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WEAK CONVERGENCE TO THE LAW OF THE

BROWNIAN SHEET

Maria JOLIS

Abstract. We obtain the Brownian sheet as a weak limit of processes

constructed from one-parameter Poisson procesaea. Previously we prove
several criteria of tightness for some families of probability measures in

C ((0,1~2 ).

1. INTRODUCTION.
The aim of this paper is to give an approximation of the Brownian

sheet based on those obtained by Stroock (see Stroock, 1982, Chap. II,
Sec. 2). In this book Stroock approximates the one parameter Brownian
motion by processes obtained from a standard Poisson process. A simi-
lar construction with the two parameter Poisson process does not seem

adequate for the approximation of the Brownian sheet. We take two
independent sequences of independent copies of the processes given by
Stroock and prove in Proposition 1 the desired convergence for a sum
of products of these processes. We need before some results on weak
compactness of some classes of processes in C(~0,1~~‘ ).

Here we apply general criteria of weak compactness of measures on
C((o,1~m ), space of all real valued continuous functions on with
the topology of uniform convergence, in order to obtain a criterion of
weak compactness for the family of where

with A a set of parameters, (X§ independent copies of X,B, and
a family of zero mean random variables in

some probability space (0, 1,P), this criterion is given in Theorem 3.
There is a similar idea in a work of M. Yor (see Yor, 1983) where he

gives an alternative proof for a result of Nualart (see Nualart,1981) that
we obtain also in Corollary 2.
The applications of Theorem 3 include sufficient conditions ensuring

the validity of the central limit theorem for a continuous process (see
Theorem 4) and an approximation for the two-parameter Wiener process
(Proposition 1).
The structure of the paper is as follows. In section two we state the

preliminary results and prove the criterion of tightness for families of
processes defined in (1). In section three we give some applications of
Theorem 3. Finally, in section four the approximation of the Brownian
sheet is derived.
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2. THE RESULTS.

We will use the following generalization of Theorem 12.3 of Billings-
ley (see Billingsley, 1968) for multiparameter continuous processes, with
conditions on the moments. Since the notation for the general multipa-
rameter case is complicated, we only state the two-parameter version.
See Bickel and Wichura, 1971 and Centsov, 1969 for similar results.

THEOREM 1. A family (Qa )a of probability measures on C((0,1~2) is

tight if there exists pi &#x3E; 0, i = 1, 2, 3, 4, a,(3,¡ &#x3E; 1, F, G continuous
increasing functions and p a finite nonnegative measure on ~0,1~2 with
continuous marginals such that :

The criterion of weak compactness that we obtain in Theorem 3 for
the families of processes given in (1) is a consequence of the following
inequality. This inequality was obtained by Kai Lai Chung as an imme-
diate corollary of Theorem 13 of the classical paper " Sur les fonctions
independantes " by Marcinkiewicz and Zygmund (see Marcinkiewicz and
Zygmund, 1937 and Kai Lai Chung, 1951), and can be also obtained from
Burkholder’s inequality.

THEOREM 2. Let Çl, ~2 , ... , Çn , ... be zero mean, independent, real
valued random variables. Then, for all r &#x3E; 1 there exists a constant C,
which depends only on r such that

THEOREM 3. Let be a family of zero mean 
random variables. Let (Qn,À) be the laws defined in (I) and
let be the laws of (Xi ) . Then, in order to ensure that 
a tight set of measures on C([0, 1]2) it is sufficient that the family (Q,)
satisfies the conditions of Theorem 1, with the additional assumption

2,i = 1,...,4.

PROOF: We will show that (Q,~,a ) verifies conditions (a) to (d) with
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the same p; , I == l, ... , 4, a, Q and Y and modifying F, G and it by a
constant.

and from this expression we follow as in condition (b). 1

3. APPLICATIONS.

Observe that in the case in which the family (Xi ) is reduced to a single
X these criteria provide sufficient conditions for X to verify the central
limit theorem in C(~0,1~2) ( or in C([0,l]~) ) because, in particular,
conditions (a) to (d) imply that X(s, t) has second order moment in
all (s, t), and by the ordinary central limit theorem we have that the
finite dimensional distributions of Zn converge to a Gaussian distribution
when n - oo. So, we can state the following theorem.

THEOREM 4. Let X be a zero mean C([O, 1]2)-valued random variable,
suppose there are p; &#x3E; 2,i - 1, ..., 4, a,,Q, ~y &#x3E; 1, F and G increasing
continuous functions, and p finite nonnegative measure on (0,1~2 with
continuous marginals, such that :

Then X satisfies the central limit theorem, i.e. if Xi , ... , Xn ... are

independent copies of X, the probability measures induced on 
by n" 1 ~2 (X~ + ... + Xn) converge weakly to the centered Gaussian
measure on C(~0,1~2 ) whose covariance is that of X.
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The m-parameter version of this result includes another one of Araujo
( see Corallary of Section 2 in Araujo, 1978). In that result the hypothe-
ses are : EX(t) ==0,E~(0) 
for all s and t in [0, some a &#x3E; 0, K &#x3E; 0 and r &#x3E; 2. Is not difficult

to show that these conditions imply those of Theorem 4.
On the other hand Jain and Marcus gave, in a well-known result (see

Theorem 1 of Jain and Marcus, 1975), sufficient conditions for X to ver-
ify the central limit theorem in C(S), where (S, d) is a compact metric

space. These conditions are : there exist a nonnegative random variable
M , E(M2) = 1, and a metric p on S, which is continuous with respect
to d such that given s, t E S’, 

and p also satisfies a condition relative to its entropy. When S = [o, 1 ] "~ ,
this criterion does not include Theorem 4, since if X is a continuous

process satisfying the hypotheses of Theorem 4 is not always possible to
find a metric p and a square integrable random variable M satisfying
inequality (2).
We can also state the following result of approximation for the Brow-

nian sheet.

THEOREM 5. be a sequence of zero mean C ([0,1]2)-
valued random variables that verifies the conditions of Theorem 3 and
such that its finite dimensional distributions converge weakly to those
of a zero mean process Y with covariance function ] =
(s A s’ ) (t ~ t’ ) . Then, the laws of the processes

where are independent copies of the process Xk, converge weak-
ly, when n and k tend to oo, to the Wiener measure in C ((o,1~2 ).
PROOF: By Theorem 3 the laws of processes Zn, k form a family of
tight measures in C([0,1]~). In order to see that they converge weakly
to the Wiener measure we will prove that any convergent subsequence
converges to this measure. We will show that the finite dimensional dis-
tributions of this subsequence converge weakly to those of the Brownian
sheet.

be the sequence of indices such that the probability
measures associated with converge weakly.
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Let be the characteristic

function of the random vector ’Z = (~~,~~(Si~i),..., I

(~i,...,~) E R. Put zi = i = 1, ... , d. Since
I,, - - - f - -- B

exists we can compute this limit as [limkl ~ u ) J . But

, ,

where Y is a zero mean process with the same covariance function as the
Wiener process. And from this expression the Theorem follows easily. I

COROLLARY 1. Let be independent sequences of
zero mean random variables. Suppose that there exist
p &#x3E; 2 and 6 &#x3E; 1 and FI ,F2 increasing functions such that

It

Suppose also that the finite dimensional distributions of (Xk ), (Yk ~ con-
verge weakly to those of X, Y, processes with the same covariance func-
tion as the Wiener process in [0, 1]. Then the laws of

converge weakly to the Wiener measure in C([0,lj~), as n --~ oo and
k ---; oo.

PROOF: (i), (ii), and (iii) imply (a), (b), (c) and (d) of Theorem 3
for (Xk (s)Yk (t)), then the laws of form a tight set of measures.
On the other hand we have that the finite dimensional distributions of

Xk (s)Yk (t) converge weakly to those of X’ (s)Y’ (t), where X’ and Y’ are
independent with the same law as X and Y. Since X’ (s)Y’ (t) has the
same covariance function as a two-parameter Wiener process, applying
Theorem 5 the laws of Zn,k converge weakly, when 1~ --~ oo, n --~ oo, to
the Wiener measure in C([O, 1]2). 1
COROLLARY 2. (Nualart) Let E ~0,1~, i E N I and E

E N } be independent sequences of independent copies of two
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independent Brownian motions X and Y. Then, the sequence of two-
parameter continuous processes

converges weakly to a two-parameter Wiener proces.

PROOF: It is an immediate consequence of Corollary 1. Since X, Y
vanish on the axes it is enough to see (ii) and (iii), and these are a
consequence of the fact that for X Brownian motion E(X (t2)-X (tl ))4 =
3 (t2 - t 1 ) 2 . This proves tightness. 1

4. APPROXIMATION OF THE BROWNIAN SHEET FROM
ONE-PARAMETER POISSON PROCESSES.

Let &#x3E; 0} be a standard Poisson prosess. Define 9(t) _
(-1)N ~t~ and x(t) = f 0 t 0 (u) du. For every e &#x3E; 0 set = êX(t/ê2),
t E ~0,1~. Stroock proved (see Stroock, 1982, Chap. II, Sec. 2) that
the laws of the processes x, converge weakly to the Wienner measure in
C([0,1]) when £ - 0. On the other hand we have the result of Nualart
given in Corollary 2.
By using Corollary 1 we can prove the following proposition.

PROPOSITION 1. be independent sequences
of independent copies of the process For (s, t) E ~0,1~2 define

and let Pn,a be the law in C([0,1]~).
~ W when ?t 2013~ oo, E ~ 0, where W is the Wiener

measure in C([O, 1]2).
LEMMA 1. For aII 0  t  t’  1 we have that:

(a) Ex~ (t) _ ~ 1- exp(-2t~~2 )(a) - 

2
(b) There exists C &#x3E; 0 such that E(X.(f) - XE (t))4 ~ C(t’ - t)2,

where X, (t) == x. (t) - Ex, (t).
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We find a bound for E(x(t’) - X(t)14 for all i

bini’s Theorem we can introduce the mathematical expectation into the
integral sign.
Now we compute Let and t’ be such that

.. - 6 a _... a - -.. I-. -. -. -. I I - - _ -,,-..

random variables with Poisson distribution, N (t’2) - N (t i ) + 
will be a random variable with Poisson distribution with parame-

and therefore E(0t1 0t2 0t3 0t4) = e-2(t’2 -t’1+t’4 -t’3).
We can obtain now ft’t ft’f 1: t’ 1: t’ E (TT4 i=1 8 dt dt dt dt4. TheWe can obtain 0t,) 1 2 3 4 The

4-dimensional cube [t, t’]4 can be subdivided in 24 regions of the form
Ao - {(t1,t2,t3,t4) :to(1)to(2)to(3)  r(4)} with cr per-
mutation of {1,2,3,4}. These regions verify that their intersections
have Lebesgue measure zero in R 4 , and by the above arguments we
can write &#x3E; except for

(t¡ , t2 , t3 , belonging to a set of null Lebesgue measure. Therefore

dt1 dt2 dt3 dt4 =

By the change of
variables theorem it is immediate to show that the 24 integrals have
the same value, and then we have to compute

In order to see that this later expression is bounded by I~(t’ - t)2,
consider the function f (x) = 3X2 + 2 - 2 e- 2x . This function
has second derivative bounded in R + and verifies that f (0) = f’ (0) = 0,
so for all x E R+, f (x)  This gives us the desired bound. /
PROOF OF PROPOSITION 1: We will prove that the hypotheses of
Corollary 1 are verified. Since Xe (t) - EXe (t), y, (t) - EYe (t) vanish
at the origin it is enough to verify (ii) and (iii). These conditions are
satisfied by Lemma 1, with p = 4, ~ = 2 &#x3E; 1. This gives tightness.

Finally, we will show that the finite dimensional distributions of X6
and Y, converge weakly to those of the Wiener process in (0,1~. This is
an immediate consequence of the result of Strook and Theorem 4.1 of

Billingsley’s book (see Billingsley, 1968) by using part (a) of Lemma 1. 1
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