Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Probabilités et applications

F. CHAABANE

Approximation d'un flot brownien sur le cercle

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 92, série Probabilités et applications, n° 7 (1988), p. 31-45

http://www.numdam.org/item?id=ASCFPA 1988 92 7 31 0>

© Université de Clermont-Ferrand 2, 1988, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

APPROXIMATION D'UN FLOT BROWNIEN SUR LE CERCLE

F. CHAABANE

Résumé:

Ce travail a pour but d'étudier une approximation d'un flot brownien, défini sur le cercle et associé à une covariance donnée par une suite de transformations aléatoires.

Abstract:

We study the approximation of a Brownian flow which is defined on the circle and associated to a given convariance, by a sequence of random transformations.

INTRODUCTION.

Dans ce travail on étudie l'approximation d'un flot brownien homogène sur le cercle S_1 (identifié à $\mathbb{R}_{2\Pi\mathbb{Z}}$) par une suite de transformations aléatoires. Rappelons qu'un flot stochastique X sur une variété E est une famille d'applications aléatoires $(X_{st}, 0 \le s < t < \infty)$ de E sur E vérifiant les propriétés :

$$-X_{ss} = id_{E}$$

$$- X_{tu} \circ X = X_{su} \qquad 0 \le s < t < u < \infty \quad p.s.$$

Le flot X est dit (dans le cas où E est un espace euclidien)

- Homogène si
$$X_{s+h,t+h}(x+x_0)-x_0$$
 a même loi que $X_{st}(x)$.

- Brownien si $(X_{st}(x), s$ fixé $t \ge s)$ est continue en t; pour tout $s_1 \le t_1 \le s_2 \le t_2 \dots, X_{s_1t_1}, X_{s_2t_2} \dots$ sont indépendants et pour tout $k \in \mathbb{N}^*$, $(x_1 \dots x_k) \in \mathbb{E}^k$, $s \ge 0$.

 $(X_{st}(x_1)...X_{st}(x_k))$ est alors un processus de Markov.

La méthode de construction de l'approximation est inspirée des articles [2] et [3] de T. Harris qui a étudié le cas de $E=\mathbb{R}^2$ et $E=\mathbb{R}$.

Le plan de cet article est le suivant : le résultat principal est énoncé au paragraphe I. Il s'agit d'un théorème de convergence en loi d'une suite de flots stochastiques $(X^n, n \in \mathbb{N}^*)$ que l'on construira, vers le flot brownien X donné par sa covariance.

Au paragraphe II on démontre la convergence finie dimensionnelle (au sens spatial) de la suite X^n vers X.

Au paragraphe III on montre que cette suite $(X^n, n \in \mathbb{N})$ est tendue en tant qu'elément de l'espace des fonctions continues de S_1 dans S_1 .

Notons:

D = ensemble des fonctions cadlag de \mathbb{R} dans $S_1 = \mathbb{R} / 2\pi \mathbb{Z}$.

C = ensemble des fonctions continues de R dans S_1

 $(F_t)_{t>0}$ filtration canonique sur D.

 $(\mathcal{F}_{t}^{k})_{t \geq 0}$ la filtration produit $\mathcal{F}_{t} \otimes \ldots \otimes \mathcal{F}_{t}$

1 - CONSTRUCTION

Pour faire la construction sur le cercle, nous identifierons le cercle à $S_1 = \mathbb{R}/2\Pi\mathbb{Z}$ lequel est en bijection avec $[-\Pi,\Pi[]$. Nous considérons des fonctions 2Π -périodiques définies sur \mathbb{R} .

Nous supposerons donnée une fonction μ 2 Π -périodique, bornée ainsi que sa dérivée, vérifiant :

$$\mu(\alpha) = \sum_{k \in \mathbb{Z}} V_k e^{ik\alpha}$$
, on suppose que:

(a)
$$V_k = \overline{V}_{-k}$$

(b)
$$\sum_{k \in \mathbb{Z}} k^2 |v_k|^2 < +\infty$$

(c)
$$\sum_{k \in \mathbb{Z}} |v_k|^2 = 1.$$

Sous ces hypothèses nous considérons la fonction b définie par

(1-1)
$$b(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mu(\alpha) \quad \mu(\alpha + x) \quad d\alpha .$$

Alors $b(x) = \sum_{k \in \mathbb{Z}} |v_k|^2 e^{ikx}$. Deplus b est définie positive admet un moment d'ordre 2 et b(0) = 1.

Ainsi b définit une covariance à laquelle on associe le flot brownien homogène $(X_{st}, 0 \le s < t < \infty)$. ([3], [4], [8], [9]).

Nous allons définir maintenant deux fonctions F et G qui vont gérer les marches aléatoires.

Ainsi nous considérons F solution de l'équation différentielle

(1-2)
$$\frac{\partial F_{\eta}(x)}{\partial \eta} = \mu(F_{\eta}(x)) \text{ avec la condition initiale } F_{0}(x) = x.$$

Nous posons par la suite $\mu^{\alpha}: \mu^{\alpha}(x) = \mu(x-\alpha)$ et nous appelons F^{α} la solution de l'équation (1-2) associée à μ^{α} avec toujours la condition initiale $F_{\alpha}^{\alpha}(x) = x$.

De la même façon nous définirions G et G^{α} associées respectivement à -u et $-u^{\alpha}$.

Pour tout $n \in \mathbb{N}^*$, on considère $(\Omega_n, F_n, \mathbb{P}_n)$ un espace de probabilité sur lequel nous supposons données:

- (i) Une suite $(\alpha_k, k \in \mathbb{N}^*)$ de variables aléatoires i.i.d. à valeurs dans S_1 de loi v identifiée à la loi uniforme sur l'intervalle $[-\Pi,\Pi[$.
- (ii) Une suite $(\epsilon_k, k \in \mathbb{N}^*)$ de variables aléatoires i.i.d. suivant la loi de Bernoulli $\frac{1}{2} \delta_0 + \frac{1}{2} \delta_1$.

Nous supposons en plus que les deux suites aléatoires $(\alpha_k)_{k \in \mathbb{N}^*}$ et $(\epsilon_k)_{k \in \mathbb{N}^*}$ sont indépendantes.

Nous posons :

$$x_{i}^{n}(\omega) = (1 - \epsilon_{i}) F_{1/\sqrt{n}}^{\alpha_{i}}(x_{i-1}^{n}) + \epsilon_{i} G_{1/\sqrt{n}}^{i}(x_{i-1}^{n}) .$$

$$x_{0} = x$$

$$\xi_{i}^{n} = x_{i}^{n} - x_{i-1}^{n} .$$

(1-4)
$$X_{t}^{n}(x,\omega) = x + \sum_{i=1}^{n} \xi_{i}^{n}.$$

$$(1-4)' X_{t}^{n}(x,\omega) = x + \sum_{i=1}^{n} \xi_{i}^{n} + (nt - [nt]) \xi_{[nt]+1}^{n}.$$

(1-5) Théorème.

La suite des flots stochastiques $(x_t^n, n \in \mathbb{N})$ converge en loi vers le flot brownien x_t quand n tend vers l'infini. Cette convergence a lieu pour t fixé dans l'espace polonais des fonctions continues de S_1 .

Démonstration.

Pour montrer ce théorème, nous montrons que les deux suites $(x_t^n)_{t \in \mathbb{R}^+}$ et $(x_t^n)_{t \in \mathbb{R}^+}$ sont contigües (*) ce qui nous permettra dans la suite de la démonstration d'utiliser l'une ou l'autre des définitions.

Nous procéderons par étapes:

Nous démontrerons dans une première étape qu'il y a convergence finie-dimensionnelle. Il nous restera à montrer dans une deuxième étape qu'il y a une propriété de tension de la famille des distributions des X_t^n

(*)
$$\left(\sup_{s < r} |X_s^n - X_s^n| \frac{P}{n \to \infty}\right) = 0$$
 uniformément en x).

2 - CONVERGENCE FINIE-DIMENSIONNELLE.

(2-1) Lemme.

Soit $(x_1 \dots x_k) \in (S_1^k)$, notons \mathbb{P}_k^n , $x_1 \dots x_k$ la probabilité induite sur \mathbb{D}^k par le processus $(X_t^n(x_1) \dots X_t^n(x_k))$; \mathbb{P}_k^{n} , $x_1 \dots x_k$ la probabilité induite sur \mathbb{C}^k par le processus $(X_t^{n}(x_1) \dots X_t^{n}(x_k))$ et \mathbb{P}_k , $x_1 \dots x_k$ la probabilité induite sur \mathbb{C}^k par $(X_t^{n}(x_1) \dots X_t^{n}(x_k))$.

Alors \mathbb{P}_k^n , \mathbb{P}_k^n ,

Démonstration.

Afin de démontrer ce lemme, nous allons prouver que la famille $(P_k^{'n}, x_1 \dots x_k)_{n \in \mathbb{N}}^* \quad \text{est} \quad C^k\text{-tendue}.$

Il nous suffira de montrer que pour tout $1 \le i \le k$ la famille de probabilités sur $\mathfrak C$ induite par $({x_i'}^n(x_i))_{n \in \mathbb N}^*$ est $\mathfrak C$ -tendue. Ensuite par l'unicité en loi de la solution du problème de martingale nous montrerons que la famille $(\mathbb P_k^n, x_1 \dots x_k)_{n \in \mathbb N}^*$ admet une seule valeur d'adhérence qui sera égale à $\mathbb P_k$, $x_1 \dots x_k$.

Nous utilisons les critères de tension énoncés dans [1].

Par homogeneité nous considérons x = 0, et il suffira de montrer que :

(2-2)
$$\forall N \in \mathbb{N}^{+} \quad \forall \epsilon > 0 \quad \exists \delta > 0 \text{ et } n_{o} \in \mathbb{N}^{+} \text{ tels que}$$

$$\mathbb{E}(\sup_{0 \leq u-t < \delta} |X_{u}^{n} - X_{t}^{n}| \leq \frac{1}{N}) \geq 1 - \frac{\epsilon}{2^{N}} \quad n \geq n_{o}$$

Nous allons montrer (2-2). Pour cela soit $n \ge 1$, $u, t \in [0,1]$ et posons $t = \frac{m}{n}$, alors $X_{\underline{m}}^{n}(0) = X_{\underline{m}}^{n}$

$$\left| \begin{array}{c} x_{\underline{m}}^{n} - x_{\underline{u}}^{n} \right| \leq 3 \quad \max_{0 \leq i \leq [nu]+1} \left| x_{\underline{m}}^{n} - x_{\underline{i}}^{n} \right|$$

Soit $\delta > 0$ et $(t_i)_{0 \le i \le \ell}$ une partition de [0,1] tels que

$$\ell = \left[\frac{n}{\lfloor n\delta \rfloor}\right] + 1 \qquad \sup_{i} |t_{i} - t_{i+1}| \le \delta \qquad t_{i} = \frac{i \lfloor n\delta \rfloor}{n}$$

ceci nous donne que pour t, $u \in [0,1]$ $0 \le u-t \le \delta$

(2-4)
$$\mathbb{E}\left(\sup_{0 \leq u-t \leq \delta} |X_{u}^{n} - X_{t}^{n}| \geq \frac{1}{N}\right) \leq (\ell + 1) \quad \mathbb{E}\left(\sup_{0 \leq u-t_{i} < 2\delta} |X_{u}^{n} - X_{t_{i}}^{n}| \geq \frac{1}{2N}\right)$$

Par suite il faut choisir δ tel que

(2.5)
$$\lim_{n \to \infty} ((\ell + 1) \mathbb{E}(\max_{0 \le i \le \lfloor n\delta \rfloor + 1} |x_i^n| \ge \frac{1}{2N})) < \frac{\varepsilon}{2^N}$$

Le lemme suivant nous permettra de faire un bon choix de δ ce qui terminera la démonstration.

(2-6) Lemme.

Soit λ un réel strictement positif, il existe δ_0 tel que pour $\delta < \delta_0$

$$\lim_{n \to \infty} \mathbb{E}(\sup_{k \le [n\delta]} |x_k^n| \ge \lambda) \le c \cdot \frac{\delta^2}{\lambda^4}$$

où c est une constante positive.

Démonstration.

Posons
$$\Lambda_i^n = \{\max_{j < i} |x_j^n| < \lambda \le |x_i^n| \}$$
.

$$\mathbb{E}(\max_{k \leq \lfloor n\delta \rfloor} |x_k^n| \geq \lambda) \leq \mathbb{E}(|x_{\lfloor n\delta \rfloor}^n| \geq \frac{1}{2} \lambda)$$

$$+ \sum_{i=1}^{\lfloor n\delta \rfloor - 1} \mathbf{E}(A_i \cap \{ | x_{\lfloor n\delta \rfloor}^n | \leq \frac{1}{2} \lambda \})$$

 $(x_i^n)_{i \in \mathbb{N}}$ est une marche aléatoire, d'où l'indépendance des évènements et de plus les A_i^n sont disjoints, contenus dans $\{\max_{1 \le [n\delta]} |x_i^n| \ge \lambda\}$.

Par la construction de la chaîne $(x_i^n)_{i \in N}$; on a :

$$x_{\lfloor n\delta \rfloor}^{n} - x_{i}^{n} = \sum_{i=1}^{\lfloor n\delta \rfloor - i} (x_{\lfloor n\delta \rfloor - k+1}^{n} - x_{\lfloor n\delta \rfloor - k}^{n}) = \sum_{i=1}^{\lfloor n\delta \rfloor - i} \Delta_{k}$$

pour $1 \le k \le \lfloor n\delta \rfloor - i$, $\mathbb{E}(\Delta_k) = 0$. Par construction il existe c > 0 majorant la fonction μ tel que $|\Delta_k| \le \frac{c}{\sqrt{n}}$ et les Δ_k sont indépendants.

D'après l'inégalité de Markov on a :

$$\mathbb{E}(|\mathbf{x}_{\lceil \mathbf{n}\delta \rceil}^{\mathbf{n}} - \mathbf{x}_{\mathbf{i}}^{\mathbf{n}}| \geq \frac{1}{2} \lambda) \leq \frac{16}{\lambda^{4}} \mathbb{E}(|\mathbf{x}_{\lceil \mathbf{n}\delta \rceil}^{\mathbf{n}} - \mathbf{x}_{\mathbf{i}}^{\mathbf{n}}|^{4})$$

Par suite
$$\mathbb{E}(|\mathbf{x}_{[n\delta]}^n - \mathbf{x}_{i}^n|^4) = \mathbb{E}[(\Delta_1 + \Delta_2 + \dots + \Delta_{[n\delta]-i})^4]$$

Nous avons alors :

$$\mathbb{E}(|\mathbf{x}_{[n\delta]}^{n} - \mathbf{x}_{i}^{n}|^{4}) = ([n\delta] - \mathbf{i}) \mathbb{E}(\Delta_{1}^{4}) + 6 \times \frac{1}{2} ([n\delta] - \mathbf{i})^{2} (\mathbb{E}(\Delta_{1}^{2}))^{2}$$

$$\leq ([n\delta] - \mathbf{i}) \frac{c^{4}}{n^{2}} + ([n\delta] - \mathbf{i})^{2} \cdot \frac{3 \cdot c^{4}}{n^{2}}$$

Il existe c > 0 et $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$

$$\mathbb{E}(|\mathbf{x}_{\lceil n\delta \rceil}^{n} - \mathbf{x}_{i}^{n}|^{4}) \leq c \cdot \delta^{2}$$

Ce qui nous donne que $\mathbb{E}(|\mathbf{x}_{[n\delta]}^n - \mathbf{x}_i^n| \ge \frac{1}{2} \lambda) \le c \cdot \frac{\delta^2}{\lambda^4}$.

Par suite
$$\mathbb{E}(\max_{k \leq \lfloor n\delta \rfloor} |x_k^n| \geq \lambda) \leq \frac{c \cdot \frac{\delta^2}{\lambda^4}}{1 - \frac{c \cdot \delta^2}{\lambda^4}}$$

On peut prendre $\delta_0 = \frac{\lambda^2}{2\sqrt{c}}$ alors pour $\delta < \delta_0$

$$\mathbb{E}(\max_{k \leq \lceil n \delta \rceil} |\mathbf{x}_k^n| \geq \lambda) \leq 2c \cdot \frac{\delta^2}{\lambda^4}.$$

Ainsi nous avons montré que la famille $(\mathbb{P}_k^{\, n}, x_1 \dots x_k^{\, n \in \mathbb{N}^k})$ est \mathbb{C}^k -tendue. Par suite $(\mathbb{P}_k^{\, n}, x_1 \dots x_k^{\, n \in \mathbb{N}^k})$ est \mathbb{D}^k -tendue et toute valeur d'adhérence est concentrée sur \mathbb{C}^k .

Nous nous proposons maintenant de montrer l'unicité du point d'adhérence de la famille $\{P_k^n, x_1 \dots x_k^n\}$ et de plus qu'il coıncide avec $P_k^n, x_1 \dots x_k^n$

Soient $n \in \mathbb{N}^*$; $k \in \mathbb{N}^*$ et $(x_1 \dots x_k) \in S^k$. Nous allons noter $(x_j^n)_{i \in \mathbb{N}}$ la marche partant de x_j .

$$Y_{i}^{n} = (x_{1,i}^{n}, x_{2,i}^{n}, \dots, x_{k,i}^{n})$$
 et $Y_{i} = (x_{1}, \dots, x_{k})$.

 $(Y_i^n)_{i \in \mathbb{N}}$ est une chaîne de Markov. Soit Q sa fonction de transition. Nous pouvons écrire pour toute fonction $\phi \in C_b^3(S_l^k)$.

$$\mathbb{E}^{n}(\phi(Y_{i+1}^{n}) / Y_{i}^{n}) = Q \phi(Y_{i}^{n})$$

ou bien que

$$M_{t}^{n} = \phi(Y_{[nt]}^{n}) - \phi(Y_{0}) - \sum_{\substack{[ns]\\0 < s < t}} 0 \phi(Y_{[ns]}^{n}) - \phi(Y_{[ns]}^{n})$$

est une \mathbb{P}_{k}^{n} , \mathbb{P}_{k}^{n} -martingale adaptée à la filtration canonique.

Soit A_k le générateur infinitésimal associé à $(X_t(x_1)...X_t(x_k))_{t \in \mathbb{R}^+}$, on sait que P_k , $x_1...x_k$ est l'unique solution du problème de martingale

associé à A_k partant de $(x_1 \dots x_k)$.

On a :

$$M_{t} = \phi(X_{t}(x_{l})...X_{t}(x_{k})) - \phi(x_{l}...x_{k}) - \int_{0}^{t} A_{k} \phi(X_{s}(x_{l})...X_{s}(x_{k})) ds$$

or nous savons que $\,^{\text{M}}_{t}\,$ est une $\,^{\text{P}}_{k}\,$, $x_{1}^{}\dots x_{k}^{}$ tion canonique.

Si on suppose $P_k^{n_1}$ une sous-suite qui converge étroitement vers \widetilde{P}_k , $x_1 \dots x_k$ il nous reste à montrer que M_t est une \widetilde{P}_k , $x_1 \dots x_k$ - martingale adaptée à F_k^k .

Par l'unicité en loi de la solution du problème de martingale associé à la diffusion A_k partant de $(x_1 \dots x_k)$ nous concluons que

$$\tilde{\mathbb{P}}_{k,x_1...x_k} = \mathbb{P}_{k,x_1...x_k}$$

Pour cela nous allons établir que :

$$M_t^n(\omega) \xrightarrow[n \to \infty]{} M_t(\omega)$$
 pour tout $\omega \in \mathbb{C}$

On a :

(2-7)
$$\lim_{n\to\infty} n(Q \phi(Y_0^n) - \phi(Y_0)) = A_{\kappa} \phi(x_1...x_{\kappa})$$

en effet :
$$n(Q \phi(Y_0^n) - \phi(Y_0)) = n \cdot (\mathbb{E}^n(\phi(Y_1^n) / Y_0) - \phi(Y_0))$$

Or on a : $n \cdot (\mathbb{E}^{n}(\phi(Y_{l}^{n})/Y_{o}) - \phi(Y_{o}))$

$$= n \cdot \{\frac{1}{2\pi} \cdot \frac{1}{2} \int_{-\pi}^{\pi} [\phi(F_1^{\alpha}/\sqrt{n}(x_1)...F_1^{\alpha}/\sqrt{n}(x_k)) - \phi(x_1...x_k)] d\alpha$$

+
$$\frac{1}{2\pi} \cdot \frac{1}{2} \int_{-\pi}^{\pi} \left[\phi(G_{1/\sqrt{n}}^{\alpha}(x_{1}) \dots G_{1/\sqrt{n}}^{\alpha}(x_{k})) - \phi(x_{1} \dots x_{k}) \right] d\alpha \}$$

Pour terminer les calculs nous aurons à appliquer la formule de Taylor à la fonction ϕ , ensuite on utilise le développement limité suivant :

(2-8)
$$F_{\eta}^{\alpha}(x) = x + \eta \mu^{\alpha}(x) + \eta^{2} c_{1} \theta_{1}(x,\alpha)$$

$$G_{\eta}^{\alpha}(x) = x - \eta \mu^{\alpha}(x) + \eta^{2} c_{2} \theta_{2}(x,\alpha)$$

c; une constante positive

 θ_{i} fonction de x et α vérifiant $|\theta_{i}| < 1$.

On a le résultat (2-7) uniformément en $(x_1...x_k)$. De plus si on applique la propriété de Markov à ce résultat on a alors :

(2-9)
$$\lim_{n\to\infty} n(Q \phi(Y_{[sn]}^n) - \phi(Y_{[ns]}^n)) = A_k \phi(X_s(x_1)...X_s(x_k)).$$

Ainsi par cette convergence uniforme on peut passer à la limite sur n dans M_t^n . Nous avons alors que $M_t^n(\omega) \xrightarrow[n \to \infty]{} M_t(\omega)$ pour tout $\omega \in C$, par suite on peut voir que M_t est une $\widetilde{\mathbb{P}}_k$, $x_1 \cdots x_k$ - martingale.

3 - TENSION.

Dans ce paragraphe nous terminons la démonstration du théorème (1-5) et ceci en montrant un lemme de tension.

(3-1) Lemme.

Pour t fixé, soit Q_t^n la distribution de X_t^n considéré comme point aléatoire de $C(S_1,S_1)$; la famille $\{Q_t^n,n\geq 1\}$ est C-tendue uniformément sur les compacts en t.

Pour la démonstration de ce lemme nous allons établir un autre lemme trivial

(3-2) Lemme.

Soit ρ_0 la distance entre deux points et ρ_t^n la distance entre leurs images par X_t^n alors il existe une constante c positive telle que

$$\mathbb{E}^{n}((\rho_{t}^{n})^{2}) \leq \rho_{0}^{2} \cdot e^{ct}.$$

Démonstration du lemme (3-1) :

D'après les critères tensions énoncés dans [1] on sait qu'il suffit de montrer que

 $\forall \ \epsilon > 0$, $\forall \ \delta$, $0 < \delta < 1$; $\exists \ h > 0$ tels que pour $t \in [.0, 1]$

$$Q_t^n\{\xi \in C ; W(h, \xi) > \epsilon\} < \delta$$

où
$$W(h,\xi) = \sup_{|x-x'| < h} |\xi(x) - \xi(x')|$$
.

En utilisant le lemme (3-2) et l'inégalité de Markov :

$$Q_t^n\{\left|\,\xi(x)-\xi(x')\,\right|\,>\,\varepsilon\}\,\leq\,\frac{1}{\varepsilon^2}\,\,e^{c\,t}\left|\,x-x'\,\right|^{\,2}\,\leq\,\frac{1}{\varepsilon^2}\,\,e^{\,c}\left|\,x-x'\,\right|^{\,2}$$

Choisissons une suite $\left(\mathbf{\epsilon}_{k} \right)_{k \; \in \; \mathbb{N}^{\star}}$ réelle telle que

(i)
$$\sum_{k \geq 1} \varepsilon_k < \infty$$

(ii)
$$\sum_{k \ge 1} \frac{1}{\epsilon_k^2 2^{2k}} < \infty$$

n applique le lemme (3-2) ainsi que le lemme de Borel-Cantelli.

$$\exists$$
 N \forall c, \forall $\varepsilon > 0$, \forall δ

$$Q_t^n(\xi \mid |\xi(x) - \xi(x')| \le \varepsilon$$
; $|x - x'| < 2^{-N}\} \ge 1 - \delta$
 $x, x' \text{ dyadiques}$

Par la continuité des fonctions ξ on a le résultat.

BIBLIOGRAPHIE

- (1) Billingsley, P.: Convergence of Probability Measures. Wiley, New-York. (1968).
- (2) Harris: Coalescing and Noncoalescing stochastic Flows in R₁. (1984), Elsevier Science Publis hers B.V North-Holland.
- (3) Harris: Brownian motions on the homeomorphisms of the Plane.
 The Annals of Prob. (1981), Vol. 9, n°2.
- (4) N. Ikeda and S. Watanabe: Stochastic Differential Equations and Diffusion Processus, North-Holland, Amsterdam, Oxford, New-York (1981).
- (5) Jacod : Théorèmes limites pour les processus. Ecole d'Eté de Saint-Flour, (1983).
- (6) Le Jan: Flot de diffusion dans R^d. C.R. Acad. Sc. Paris t.294 (4 juin 82).
- (7) Le Jan : Equilibre statistique pour les produits de difféomorphismes aléatoires indépendants. A paraître. Ann. I.H.P.
- (8) P. Priouret : Processus de Diffusion. Ecole d'Eté St-Flour III. (1973).
- (9) Strook, D. and Varadhan, S.: Multidimensional diffusion Processus.

 Springer, Berlin, New-York (1979).

F. CHAABANE

Université de PARIS VII U.E.R. de Mathématiques et Informatique Tour 45-55 - 5ème étage 2, Place Jussieu 75005 PARIS (FRANCE)