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UNIFORM RATES OF CONVERGENCE

IN EXTREME-VALUE THEORY - NORMAL AND GAMMA MODELS

L. CANTO E CASTRO

Abstract: A class of distribution functions F(x), in the domain

of attraction for maxima of Gumbel law xER,

is considered in this paper, particular and relevant elements of

this class being the normal and gamma distributions.

Applying a technique similar in spirit to the one used by Hall

(1979), we develop uniform upper and lower bounds for 
’

for suitable choice of attraction arfd
n n

The bounds obtained in a normal context compare favoura-n n&#x3E;

bly with the ones obtained in Hall’s paper. A few unsolved points
related to gamma distribution with shape parameter smaller than

one are emphasized.

1 - Introduction

Let a sequence of independent, identically distributed

(i.i.d.) random vari.ables (r.v.) with common parent distribution

function (d. f . ) , F (x) . Then the r.v. 

known d.f. given by (x) =Fn (x) .

Limit behaviour of suitably normalizeð, is well expressedn 
- .

in the following result due to Gnedenko ( 19 43 ) : if there are attrac

tion coefficients a n&#x3E;0, b eR and a non degenerated d.f. G, such that

then G is of one of the three possible forms:
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Type I (Gumbel) : G(x)=A(x) = exp (-exp (-x) ) , xER

Type II (Fr6chet) :

Type III (Weibull):

We will say, then, that the d.f. F belongs to the domain of

attraction (for maxima) of G, and denote such fact by 

A general description of limit laws and domains of attraction

concerning maxima of i.i.d. r.v.’s may be found in Galambos ( 19 7 8 ) .

Each domain of attraction may be caractherized by necessary and

suficient conditions on the tail behaviour of the d.f. F. We will

present here the von Mises’s suficient condition concerning Type I

(Gumbel) domain of attraction:

If
(1) F is absolutely continuous with density function f

then 

Our interest in this paper, is the rate of convergence, more

precisely, the uniform rate of convergence, of pn(x), 
towards the limit law A.Related results on this subject, may be

seen in Fisher and Tippet (1928), Uzg6ren (1954), Anderson (1971,

1976) , Galambos (198) , Gomes (1978,198~~) , Hall (1979) and Cohen

(1982a,1932.’.o) .

We refer a result of great interest to us ( Anderson (1971)):

Let F be a absolutely continuous d.f., with right endpoint
and such that
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where

Let a. and bn be defined by

Furthermore,suppose that k’ (x) has constant signal for large x

and that

then

where

uniformly for x in finite intervals.

2 - Distribution functions in a class L

We shall work here with d. f .’s in the following class:

Definition ( Gomes (1984) )

L is the class of d, f . ’s of the form

where y is the greatest real solution of the equation A(yx+6)P
and A chosen so that the solution does

exist. Also 6,pcR, and liM e(x)=0.
X-+oo

For FEC, (p, q),;6 (0 , 1) and some limit conditions on 

and c " (x) may be proved that x-&#x3E;oo lim d dx (1 k(x)=0, where k(x) is given

by (1.3) , and as we have d dx (1 k(x) = - f’(x) 
+ 1 + logF (x)

F is, by (1.1), in the domain of attraction of Gumbel law.
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..Moreover, it can be seen that

and that conditions presented in Anderson’s result hold for F E ~,
assuring uniform convergence on finite intervals.

The Normal and Gamma d.f.’s are obviously members of the class C,
and will be considered in the sequel.

Indeed, be the Normal d.f. and ~(x) its derivative.

It is well known that

and we can even write

Computational results for and for k’(~)

are presented in the following tables:

Table of k (x) - normal parent Table of k’ (x) - normal parent
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The corresponding figures are:

Fig 1 - Graphic representation of k(x)
- normal parent.

Fig 2 - Graphic representation of k’ (x)
- normal parent.

Some properties of k (x) and k’ (x) , suggested to us by the~e

figures, and needed later in section 3, are stated here without

proof (for an analytical proof see L. Canto e Castro ( l9 35 ); .

Proposition 2.1

For a normal parent d.f.

k(x) is strictly increasing
= +00 (2.3) &#x3E;

X-&#x3E;+oo

k(x) &#x3E; x
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Proposition 2.2

For a normal parent d.f.

k’ (x) is strictly increasing

Let denote a gamma r.v. , with density function

Its d.f. has the following expansion

where

It can be shown that the asymptotic expansions of k(x) and

k’ ( x ) are , here

and

so that their behaviour for large x is quite different from normal

case, depending on having a&#x3E;l or al , as it is illustrated in the

next graphic representations:
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Fig 3 - k(x) for a G (~.5,1) r.v. Fig 4 - k(x) for a G(5,1) r.v.

Fig 5- l~’ (x) for a G(0.5,1) r.v. Fig 6- k’ (x) for a G(5,1,) r.v.

For a&#x3E;l we have:

Lemma 2.1

If F is the d.f. of the r.v. and f its density function,

then

for p-l ap , and p integer.



32 -

Lemma 2,2

Let F be the d.f of with a&#x3E;l. Then we have

where

can be easily calculated for every value of a.

Proof:

Remarking that f’(x)=f(x)=f(x) it follows that( x )

Besides, it can be proved that, in a general case,

so that

The result is a consequence of Lema 2.1 since we may write

We may thus state the following results:

Proposition 2.3

For a Gamma(a,l) parent d.f.

- k(x) is strictly increasing after some when a&#x3E;I.
o
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Proposition 2.4

For a parent d.f.

- k’ (x) &#x3E;0 , after some xo when 

3 - Uniform rate of convergence, for Normal and Gamma parents,

as members of the 

It is our interest now, to prove that convergence in (1.6) is

uniform whenever F is a Normal or Gamma d.f..

Considering that A (x) = Fn (a x+b ) - A(x) may be writen in
n n n

the form

between 0 and dn (x) , ( 3 .1 )

d n (x) given by

8n (x) between 0 and x , (3.2)

we h ave

Theorem 3.1

Let $ be the Normal d.f., an and bn given by (1. 4) , then

for some constant c1 *

To prove this theorem we will need the following results:

Lemma 3 .1

For d . f . ’ s in the class L we have

( Proof in Gomes ( 19 7 8 ) ).
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Lemma 3.Z

For bn given by (1.4) and for we have

and

Proof:

From

follows that

After some calculations, we get

and as, for n&#x3E;7 , (3.4) follows immediately.

On the other hand, we will have

giving, for n:;,n0

what completes the demonstration.

We also need some numerical results concerning special functions.

They are stated here without proof:
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Proof of Theorem 3.1

The lower bound in (3.3) is obvious from (1.6) , (1.7) and

Lemma 3.1, since we conclude that is O(l/logn),
n n

as n -&#x3E; 00, so that its supreme will certainly be greater than

C/1°gn for some c1*

To show that the upper bound holds, let us consider,separately,
the intervals and cn,0 with cn=logogb2n

We note that, as 3/logn&#x3E;1 for n21 , we will always consider

n&#x3E;21 .

From ( 3 .1) , ( 3 . 2 ) , and considering the properties of k’ ( x) in

proposition 2.2, we have

with W n (x) between 0 and dn ( x ) .
Then,

and as ( we will have, together
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with (3.5)

Suppose, now, that . We get

After studying functions as e-x x2 / 2a A(x + x~/2a) for differ-

ent values of a&#x3E;0, we conclude that they are all strictly decreasing
in [ -1. 0 6 , OJ and have only one local maximum on the right of the

only local minimum, for x in I-CO , -1.06L .

Hence, for cn 1. 0 6 we have

Using (3.8), and because (loglogx)2logx for x&#x3E; 1. 6 5 .

Now

so that, using ~3.9~,

for xe[-cn,0] and c n 41.06 ." n n

When cn&#x3E; 1. 0 6 , we can use the fact that k(x)x to get

so that c n &#x3E;1.06 implies k (bn) &#x3E;4 .
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The study made on the functions mentioned above, shows that,for

a~16 its local maximum point will be in the 

Hence

Therefore, for any c , we can conclude that, for xe[-cn n

Finally, for x-cn, the upper bound of 6 (x) follows almost

immediately if we remember that on(a x+b) is greater than A (x)n n

and that both of them are positive and strictly increasing.
We get

Summarizing,

and

what completes the proof.
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Remark 1 - The upper bounds shown before may be significantly

reduced for large values of n, and for n&#x3E;106, we will have for
instance

Remark 2 - The methodology used in the last proof has been inspired
on a similar result due to Hall ( 1979 ), where he has also obtain-

ed a uniform rate of convergence of order 1/logn, considering the

attraction coefficients an and Sn such that and an=
Except for x in the interval ]-oo, -cn [, where the upper boundsn n

are the same, our upper bounds are smaller than the ones obtained in

Hall’s paper.

A uniform rate of convergence result for G (a,1) , a&#x3E;l, is now

stated:

Theorem 3.2

Let F be the d.f. of r.v. , an and bn given by
~ 1. 4 ) , then

for some c 1 and c2 positive constants.

Proof:

The lower bound follows from Lemma 3.1 since q=l.

Using a similar technique as before, the proof will be differ-

ent for the I-C n o and :’0,+00;_.
Now c 

n 
and we consider n&#x3E;n , where n 

0 
is such

n n n o o

that log &#x3E; 0 .

For x&#x3E;-c , we have, using (3.2) , Lemma 2.2, and noting that
n

k’(x)&#x3E;0 implies 
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between 0 and x

for some A&#x3E;0 .

So, for x&#x3E;0, it follows that

since

For have

Analagously to the Normal case, this last function is strictly

decreasing if cn1.06, and consequently
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Consequently, for x-cn , we have

we have shown that, for x in any of the three intervals,

the convergence is uniform of order so that c can be
taken as the maximum of the {A. } i=1 2 3 4 and ( logn 0)2 (note

i 
g 0

that all these constants depend essncialy on the value of a) .

When we tried to develop the upper bound in (3.10) for the

case a few problems were presented related f undamentally ,
to the fact of having k’ (x) less than zero, as suggests the gra-

phic representation in fig.5, (the analytical proof of the pro-

perties of k(x) and k’ (x) for al, has some unsolved points, as

well) .

It is our conviction,however, that the solution of these pro-

blems will be very important to establish a uniform rate of con-

vergence result, for a large family of d. f . ’ s in the clas .~ .
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