Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Probabilités et applications

M. Doisy

Files d'attente à rejet différé

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 88, série Probabilités et applications, n° 5 (1986), p. 73-89

http://www.numdam.org/item?id=ASCFPA 1986 88 5 73 0>

© Université de Clermont-Ferrand 2, 1986, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

FILES D'ATTENTE A REJET DIFFERE

M. DOISY

<u>RESUME</u>: Nous étudions dans cet article les files d'attente stationnaires à rejet différé. Ces files admettent la discipline suivante : le client qui trouve le serveur occupé revient avec le client suivant ; ils sont servis tous deux si le serveur est libre, sinon ils sont à nouveau rejetés ; le nombre de rejets est limité à k (k entier $\geqslant 1$).

Dans un premier temps on construit une solution stationnaire dans une extension de l'espace sous-jacent Ω (par une méthode analogue à celle de Neveu [1]).

On étudie ensuite quelques constantes du système, liées au temps moyen des inter-arrivées et des demandes de service.

<u>ABSTRACT</u>: This article deals with postponed stationary queues. These allow of the following procedure: the customer who finds the attendant busy comes back with the next customer; both are waited on if the attendant is available; if not they are rejected again; the rejections may not number more than k (integer $k \ge 1$).

A stationary solution is first elaborated within an extension of the underlying space $\,\Omega_{\,\cdot\,}$

Various constants of the system are then studied in connexion with the average of the inter-arrival and service-times.

I - LE MODELE.

Le modèle étudié est le suivant.

Etant donné un espace de probabilité (Ω, \mathcal{Q}, P) muni d'un automorphisme ergodique θ et deux variables aléatoires réelles intégrables strictement positives réelles intégrables strictement positives σ et τ , considérons un flot de clients arrivant à des instants successifs T_n $(n \in \mathbb{Z})$ avec $T_0 = 0$ et $T_{n+1} - T_n = \tau_0 \theta^n$ $(n \in \mathbb{Z})$ qui réclament des services $\sigma_n = \sigma_0 \theta^n$ $(n \in \mathbb{Z})$ à un unique serveur.

Le client d'indice n est servi si le serveur est libre à l'instant T_n ; sinon il est rejeté. Dans ce cas il se représente au serveur à l'instant T_{n+1} ; il est alors servi avec le client d'indice n+1 si le serveur est libre ; sinon il est rejeté à nouveau, comme le client d'indice n+1, et ils reviennent tous deux avec le client suivant. Les clients n'acceptent pas plus de k rejets $(k \text{ entier } \ge 1)$.

Si à l'instant T_n le serveur est libre, il se charge d'un bloc de clients, de taille au plus k+1; le client d'indice m sera dans ce bloc si m=n ou s'il a été rejeté précédemment avec m vérifiant la relation : $0 < n-m \le k$.

Si $M(\omega)$ désigne l'ensemble des indices n pour lesquels le serveur est libre en T_n -O, la connaissance de $M(\omega)$ détermine le système au sens où il fournit les indices de tous les clients servis ; en effet les distances entre les indices consécutifs de $M(\omega)$ donnent les longueurs des blocs de clients servis.

Nous chercherons donc à construire un sous-ensemble aléatoire $M(\omega)$ de $\mathbb Z$ satisfaisant aux conditions suivantes :

1) la condition de stationnarité :

$$M(\theta\omega) = M(\omega) - 1 \quad \forall \omega \in \Omega$$

2) si 0 est dans $M(\omega)$ et si j est le nombre de clients dans le bloc correspondant $(1 \le j \le k+1)$ en posant :

$$V_{j}(\omega) = \inf\{n \ge 1 \quad \mathsf{tq} \quad \tau + \tau_0\theta + \ldots + \tau_0\theta^{n-1} > \sigma + \sigma_0\theta^{-1} + \ldots + \sigma_0\theta^{-j+1}\}$$

qui représente l'indice suivant de liberté, alors $V_j(\omega)$ doit être le premier entier à droite de 0 dans $M(\omega)$.

En fait, dans la construction que nous proposons, le sous-ensemble aléatoire M ne sera pas défini sur Ω lui-même, mais sur une extension de Ω .

Remarquons tout d'abord qu'à l'instant $T_{V_j}(\omega)$, le bloc sera de longueur : Inf $(V_j(\omega),k+1)$ qu'on notera :

$$V_{i}(\omega) \wedge k+1.$$

Si O est dans $M(\omega)$ avec j clients à servir, on obtient facilement, par récurrence, les indices à droite de O dans $M(\omega)$; plus délicat est de "remonter dans le passé" c'est-à-dire, de déterminer le prédécesseur de O. Pour celà on ne suppose plus O dans $M(\omega)$, et on s'intéresse au dernier client servi avant (au sens large) le client d'indice O.

Si l'indice de celui-ci est &, on doit avoir :

$$V_{i}(\theta^{-\ell}\omega) > \ell$$
.

On est aussi amené à considérer l'ensemble :

$$\overline{\Omega} = \{(\omega,j,\ell) \in \Omega \times [1,k+1] \times \mathbb{N} \quad \text{tq} \quad V_{j}(\theta^{-\ell}\omega) > \ell\}$$

que l'on munira de la trace de la mesure produit, soit :

$$d\bar{\Gamma} = 1_{\overline{\Omega}} dP \otimes d\lambda_1 \otimes d\lambda_2$$
 où $d\lambda_1$ (resp. $d\lambda_2$) est la mesure de comptage.

On définit une transformation $\overline{\theta}$ sur $\overline{\Omega}$, à partir de θ , en observant quels indices conviennent en $\theta \omega$, donc en étudiant :

$$V_{\mathbf{j}}[\theta^{-(\ell+1)}(\theta\omega)] = V_{\mathbf{j}}(\theta^{-\ell}\omega).$$

Si $V_j(\theta^{-\ell}\omega) > \ell+1$, on prend le point $(\theta\omega,j,\ell+1)$ de $\overline{\Omega}$.

Si $V_j(\theta^{-\ell}\omega) = \ell+1$, pour $\theta\omega$, le dernier client servi est celui d'indice 0avec un bloc de longueur $V_{j}(\theta^{-k}\omega) \wedge k+1.$

On prend donc le point $(\theta \omega, V_{j}(\theta^{-l}\omega) \wedge k+1,0)$ de $\overline{\Omega}$. En résumé, pour (ω, j, l) dans $\overline{\Omega}$ on définit la transformation $\overline{\Theta}$ par :

$$\overline{\Theta}(\omega,j,\ell) = (\theta\omega,j,\ell+1) \text{ si } V_j(\theta^{-\ell}\omega) > \ell+1$$

$$\overline{\Theta}(\omega,j,\ell) = (\theta\omega,V_{j}(\theta^{-\ell}\omega) \wedge k+1,0) \text{ si } V_{j}(\theta^{-\ell}\omega) = \ell+1.$$

Considérons la section de $\overline{\Omega}$ en ω , notée $\overline{\Omega}(\omega)$.

On a: Card
$$\overline{\Omega}(\omega) = \begin{matrix} k+1 \\ \Sigma & \Sigma & 1 \\ j=1 & \ell \in \mathbb{N} \end{matrix} \{ V_j(\theta^{-\ell}\omega) > \ell \}$$

Les applications $V_{\mathbf{j}}$ étant croissantes en \mathbf{j} , on a :

$$\begin{array}{lll} \text{Card } \overline{\Omega}(\omega) & \leq & (k+1) & - & \sum & 1 & \\ & & \ell \in \mathbb{I}\!N & \{V_{k+1}(\theta^{-\ell}\omega) > \ell \} \end{array}$$

 Σ 1 $\{V_{k+1}(\theta^{-\ell}\omega) > \ell\}$ finie presque sûrement, suffit à et la condition :

assurer que Card $\overline{\Omega}(\omega)$ est aussi fini presque sûrement. Nous ferons cette hypothèse pour la suite.

Remarquons que cette condition est vérifiée si $\mathrm{E}(\mathrm{V}_{k+1})$ est finie. En effet

$$E(V_{k+1}) = \sum_{g \in \mathbb{N}} P(V_{k+1} > g)$$

ce qui s'écrit encore :

$$[V_{k+1}] = \int_{\Omega} \sum_{\ell \in \mathbb{N}} 1_{\{V_{k+1} \circ \theta^{-\ell} > \ell\}} dP.$$

En posant : $\overline{\Omega}_n = \overline{\Theta}^n(\overline{\Omega})$, on obtient une suite décroissante d'ensembles et on s'intéresse à :

$$\overline{\Omega}_{\infty} = \lim_{n} + \overline{\Omega}_{n}.$$

Pour tout n, $\overline{\Omega}_n(\omega)$ est non vide car :

$$\overline{\theta}^n(\theta^{-n}\omega,x,x)$$
 est de la forme (ω,x,x) .

Un argument classique de compacité prouve alors que $\overline{\Omega}_{\infty}(\omega)=\bigcap_n \overline{\Omega}_n(\omega)$ est non vide, pour tout ω .

Tout point de $\overline{\Omega}_n$ de la forme $(\theta\omega,x,x)$ est l'image par $\overline{\theta}$ d'au moins un point de $\overline{\Omega}_{n-1}$, de première composante ω .

En effet si $(\theta \omega, j, \ell)$ appartient à $\overline{\Omega}_n$, on a : $(\theta \omega, j, \ell) = \overline{\Theta}^n(\omega', j', \ell')$ avec (ω', j', ℓ') dans $\overline{\Omega}$ et donc

$$(\theta\omega,j,\ell) = \overline{\Theta}[\overline{\Theta}^{n-1}(\omega',j',\ell')]$$
$$= \overline{\Theta}[(\theta^{n-1}(\omega'),j'',\ell'')].$$

Alors $\theta^{n-1}(\omega') = \omega$ et (ω, j'', ℓ'') appartient à $\overline{\Omega}_{n-1}$.

Finalement on a : Card $\overline{\Omega}_n(\theta\omega) \leq Card \overline{\Omega}_{n-1}(\omega)$. Par passage à la limite décroissante, on a :

$$0 \leq \operatorname{Card} \overline{\Omega}_{\infty}(\theta \omega) \leq \operatorname{Card} \overline{\Omega}_{\infty}(\omega)$$
.

Grâce à l'ergodicité de l'application θ , on en déduit que $\operatorname{Card} \overline{\Omega}_{\infty}(\omega)$ est presque sûrement une constante finie et non nulle.

Posons alors : Card $\overline{\Omega}_{\infty}(\omega) = c$ p.s. $[1 \le c \le \infty)$.

Appelons N l'ensemble négligeable des ω pour lesquels cette égalité n'est pas vérifiée et remplaçons Ω par l'ensemble équivalent :

$$\Omega \setminus \bigcup_{j \in \mathbb{Z}} \theta^{j}(N)$$

qu'on notera encore Ω .

On a alors, pour tout ω et pour tout entier j de $\mathbb Z$

Card
$$\overline{\Omega}_{\omega}(\omega) = \text{Card } \overline{\Omega}_{\omega}(\theta^{j}\omega) = c$$
.

Notons encore que l'égalité : Card $\overline{\Omega}_{\infty}(\cdot)$ = c implique : $\overline{P}(\overline{\Omega}_{\infty})$ = c.

L'application $\overline{\Theta}$ envoie surjectivement $\overline{\Omega}_{\infty}(\omega)$ dans $\overline{\Omega}_{\infty}(\theta\omega)$. En effet, si à partir du point $(\theta\omega,j,\ell)$ de $\overline{\Omega}_{\infty}$ on peut "remonter" n+1 fois par $\overline{\Theta}$ (i.e. $(\theta\omega,j,\ell)$ $\in \overline{\Theta}^{n+1}(\overline{\Omega})$), il existe au moins un point de :

$$\overline{\Theta}^{-1}(\{(\theta\omega,j,\ell)\})$$

à partir duquel on peut "remonter" n fois par $\overline{\Theta}$. Ceci étant vrai, pour tout entier n, l'un des points de $\overline{\Theta}^{-1}(\{\theta\omega,j,\ell\})$

est dans $\overline{\Omega}_{m}(\omega)$.

,

Les ensembles $\overline{\Omega}_{\infty}(\omega)$ et $\overline{\Omega}_{\infty}(\theta\omega)$ ayant le même cardinal fini, l'application $\overline{\Theta}$ transforme bijectivement $\overline{\Omega}_{\infty}(\omega)$ en $\overline{\Omega}_{\infty}(\theta\omega)$. De plus la première composante de $\overline{\Theta}$ étant θ , l'application $\overline{\Theta}$ est une bijection de $\overline{\Omega}_{\infty}$.

Vérifions enfin que dans $\overline{\Omega}_{\infty}$, l'application $\overline{\Theta}$ préserve \overline{P} .

Soit f une application mesurable positive sur $\overline{\Omega}_{\infty}$ et posons :

$$\overline{\Theta}(\omega,j,\ell) = (\theta\omega,\alpha(\omega,j,\ell),\beta(\omega,j,\ell)).$$

Alors

$$\int_{\overline{\Omega}_{\infty}} \mathbf{f} \circ \overline{\Theta} \ d\overline{P} = \sum_{\mathbf{j}=1}^{\mathbf{k}+1} \sum_{\ell \in \mathbb{N}} \int_{\Omega} \mathbf{f}(\theta \omega, \alpha(\omega, \mathbf{j}, \ell), \beta(\omega, \mathbf{j}, \ell)) \mathbf{1}_{\overline{\Omega}_{\infty}} (\omega, \mathbf{j}, \ell) dP(\omega).$$

L'invariance de P par θ, permet d'écrire cette égalité :

$$= \sum_{j=1}^{k+1} \sum_{\ell \in \mathbb{N}} \int_{\Omega} f(\omega, \alpha(\theta^{-1}\omega, j, \ell), \beta(\theta^{-1}\omega, j, \ell)) 1_{\overline{\Omega}_{\infty}} (\theta^{-1}\omega, j, \ell) dP(\omega)$$

Comme $\overline{0}$ transforme bijectivement les sections, les indices j et ℓ vérifiant $(\theta^{-1}\omega,j,\ell)$ dans $\overline{\Omega}_{\infty}$, se transforment par α et β en les indices j' et ℓ' vérifiant (ω,j',ℓ) dans $\overline{\Omega}_{\infty}$ et donc :

$$\begin{array}{ll} & k+1 \\ = & \sum & \sum & f(\omega,j',\ell') 1_{\overline{\Omega}}(\omega,j',\ell') \\ j'=1 & \ell' \in \mathbb{N} \end{array}$$

D'où finalement :

$$\int_{\overline{\Omega}_{\infty}} f \circ \overline{\Theta} d\overline{P} = \int_{\overline{\Omega}_{\infty}} f d\overline{P}.$$

Dans l'ensemble $\overline{\Omega}_{m}$, considérons l'ensemble aléatoire :

$$M(\overline{\omega}) = \{ n \in \mathbb{Z} \quad \text{tq} \quad \overline{\theta}^{n}(\overline{\omega}) \in \Omega \times [1, k+1] \times \{0\} \}.$$

On a immédiatement : $M(\overline{\Theta} \ \overline{\omega}) = M(\overline{\omega}) - 1$. Si O est dans $M(\overline{\omega})$, alors le point $\overline{\omega}$ est de la forme $(\omega,j,0)$ et on a :

$$Inf\{n \ge 1 \qquad tq \quad \overline{\Theta}^{n}(\omega,j,0) \in \Omega \times [1,k+1] \times \{0\}\} = V_{j}(\omega).$$

Ainsi le successeur de 0 dans $M(\overline{\omega})$ est $V_{\dot{1}}(\omega)$.

sûrement, on a obtenu une extension de Ω , soit $\overline{\Omega}_{\infty}$, de mesure $\overline{P}(\overline{\Omega}_{\infty}) = c$, munie de l'automorphisme (non nécessairement ergodique) $\overline{\Theta}$ qui préserve la la mesure et de plus transforme bijectivement les sections. L'ensemble aléatoire : $M(\overline{\omega}) = \{n \in \mathbb{Z} \quad tq \quad \overline{\Theta}^{n}(\overline{\omega}) \in \Omega \times [1,k+1] \times \{0\}\}$ est une solution stationnaire au problème associé à $\overline{\Omega}_{\infty}$, $\overline{\Theta}$ et à l'application V définie sur la base par : $V(\omega,j,0) = V_{j}(\omega)$.

Un point (ω,j,ℓ) de $\overline{\Omega}_{\infty}$ s'interprète de la façon suivante ; l'instant $T_{-\ell}(\omega)$ est un instant de liberté du serveur ; le client d'indice $-\ell$ sera servi avec j-1 clients précédemment rejetés, et il est prédécesseur de 0. Pour presque tout ω , il y a c solutions stationnaires.

III - TRADUCTION DANS L'ESPACE DES TOURS.

On transcrit, dans ce paragraphe, les résultats obtenus, dans l'espace des tours, ce qui fournit une meilleure représentation.

Considérons l'ensemble :

$$T = \{(\omega, j, \ell) \in \Omega \times [1, k+1] \times \mathbb{N} \quad \text{tq} \quad 0 \le \ell < V_{j}(\omega)\}$$

que l'on notera symboliquement :

$$T = \Omega \times [1,k+1] \times [0,V_{j}[$$

et l'"ascenseur" t dans T défini par :

$$\begin{split} t(\omega,j,n) &= (\omega,j,n+1) \quad \text{si} \quad V_j(\omega) > n+1 \\ t(\omega,j,n) &= \theta^{j}(\omega), V_j(\omega) \wedge k+1, 0) \quad \text{si} \quad V_j(\omega) = n+1. \end{split}$$

La mesure Q sur T est toujours la trace de la mesure produit.

On met en bijection $\overline{\Omega}$ et T par l'application :

$$\phi(\omega,j,\ell) = (\theta^{-\ell}\omega,j,\ell)$$
 pour (ω,j,ℓ) dans $\overline{\Omega}$.

On vérifie sans peine que : $\phi \circ \overline{\Theta} = t \circ \phi$.

De plus, l'application ϕ envoie la mesure \overline{P} sur Q. Soit, en effet, A un ensemble mesurable de T :

$$\int_{\Omega} \mathbf{1}_{\mathsf{A}} \circ \phi(\overline{\omega}) \, \mathrm{d}\overline{\mathsf{P}}(\overline{\omega}) \, = \, \sum_{\mathsf{j} = 1}^{\mathsf{k} + 1} \sum_{\ell \in \mathbb{I}^{\mathsf{N}}} \int_{\Omega} \mathbf{1}_{\mathsf{A}} (\boldsymbol{\theta}^{-\ell} \boldsymbol{\omega}, \boldsymbol{\mathsf{j}}, \ell) \, \, \mathbf{1}_{\overline{\Omega}} (\boldsymbol{\omega}, \boldsymbol{\mathsf{j}}, \ell) \, \mathrm{d}\mathsf{P}(\boldsymbol{\omega})$$

$$= \sum_{j=1}^{k+1} \sum_{\ell \in \mathbb{N}} \int_{\Omega} 1_{A}(\omega,j,\ell) 1_{\underline{\Omega}}(\theta^{-\ell}\omega,j,\ell) dP(\omega).$$

Mais on a les équivalences suivantes :

$$(\theta^{\ell}\omega,j,\ell) \in \overline{\Omega} \Longleftrightarrow V_{j}(\omega), <\ell \Longleftrightarrow (\omega,j,\ell) \in T.$$

L'expression précédente devient :

$$= \sum_{j=1}^{k+1} \sum_{\ell \in \mathbb{N}} \int_{\Omega} 1_{A}(\omega, j, \ell) 1_{T}(\omega, j, \ell) dP(\omega) = Q(A).$$

Si maintenant nous posons : $T_n = t^n(T)$ on a :

$$T_{\infty} = \lim_{n} + t^{n}(T) - \phi(\overline{\Omega}_{\infty}).$$

En particulier : $Q(T_{\infty}) = \overline{P}(\overline{\Omega}_{\infty}) = c$.

Si π_1 désigne la projection de T_∞ sur Ω , on en déduit que $\pi_1(T_\infty)$ n'est pas négligeable. On enlève à T_∞ , l'image par ϕ des négligeables que l'on a ôté à $\overline{\Omega}_\infty$, et on identifie cet ensemble à T_∞ .

Dans $\overline{\Omega}_{\infty}$, l'application $\overline{\Theta}$ préservant \overline{P} , après transport par $_{\varphi}$, l'application t préserve Q dans T_{∞} .

Comme t vaut $\phi \circ \overline{\theta} \circ \phi^{-1}$ et que $\overline{\theta}$ est une bijection dans $\overline{\Omega}_{\infty}$, t est aussi une bijection sur T_{∞} . L'ensemble T_{∞} , stable par l'ascenseur t, a une structure de tours ; il est donc parfaitement déterminé par sa base sur $\Omega \times [1,k+1[$, que l'on notera T_{0} , et par les V_{j} . On écrira symboliquement :

$$T_{\infty} = T_{0} \times [0,V_{i}]$$

Intéressons-nous à cette base T_0 , munie de la mesure trace notée Q_0 . Dire que (ω,j) est dans T_0 , c'est-à-dire que pour ω , O est un instant de liberté du serveur avec un bloc de j clients à servir.

On construit à partir de $\,$ t, l'application $\,$ t $_{0}$ de $\,$ T $_{0}$ dans lui-même, en posant :

$$t_{o}(\omega,j) = (\theta^{j}(\omega),V_{j}(\omega) \wedge k+1)$$
 pour (ω,j) dans T_{o} .

Alors t_0 est une bijection de T_0 ; en effet l'image réciproque d'un point de T_0 , s'obtient en prenant tout d'abord son image réciproque par t, puis en redescendant jusqu'à la base.

L'application t_0 préserve Q_0 sur T_0 , et c'est même équivalent au fait que t préserve Q sur T_∞ ; pour s'en convaincre il suffit de songer à la forme d'ascenseur de t.

Finalement, l'application t_0 donne l'évolution du système, tant future que passée (grâce à t_0^{-1}) pour les solutions stationnaires pour lesquelles 0 est instant de liberté du serveur.

Enfin, dans T_{∞} on a une solution stationnaire en considérant, comme précédemment l'ensemble aléatoire :

$$M({\overset{\circ}{\omega}}) \ = \ \{ n \in \mathbb{Z} \qquad tq \qquad t^n({\overset{\circ}{\omega}}) \in T_0 \} \qquad \text{pour } {\overset{\circ}{\omega}} \ \text{dans } T_{\underset{\infty}{\omega}}.$$

IV - QUELQUES CONSTANTES DU SYSTEME.

Rappelons que Q_0 est la mesure trace sur la base T_0 des tours, donc :

$$Q_{o} = 1_{T_{o}}(\omega, j)dP(\omega) \otimes d\lambda^{1}(j).$$

On a vu déjà que : $Q(T_{\infty}) = c$.

Grâce à la structure de tours de T_{∞} , on a :

$$Q(T_{\infty}) = \int_{T_{0}} V_{j}(\omega) dQ_{0}(\omega, j) = c$$

ce que l'on écrira :

$$\int_{T_0} V_j \frac{dQ_0}{c} = 1$$

Les points intermédiaires (ω,j,ℓ) avec $0<\ell< V_j(\omega)$ au-dessus de (ω,j) de T_o , seront des clients servis ou non, selon la position de ℓ par rapport à $V_j(\omega)$.

Plus précisément :

si $V_{\underline{1}}(\omega) \le k+1$: tous les clients de la tour seront servis

si $V_{j}(\omega) > k+1$: seuls les points intermédiaires d'indice ℓ , vérifiant :

 $\ell \ge V_{i}(\omega)$ - k seront servis.

Il y a aura toujours : V_j \wedge k+1 clients servis sur une tour. Ainsi le nombre moyen de clients servis, soit N_s vaut :

$$N_{s} = \int_{T_{o}} V_{j} \wedge (k+1) \cdot \frac{dQ_{o}}{c}$$

Les clients servis immédiatement, correspondent aux points de la base $\rm T_{\rm o}$: leur nombre moyen $\rm N_{\rm S}^{\rm t}$ vaut donc :

$$N'_{S} = \int_{T_{O}} \cdot \frac{dQ_{O}}{c}$$

Dans l'espace des tours T , le temps de retour à T_{0} est donné, pour (ω,j) dans T_{0} , par $V_{j}(\omega)$.

Posons $T_{V_0}(\omega,j) = \sum_{0 \le i < V_j(\omega)} \tau \circ \theta^i(\omega)$ pour (ω,j) dans T_0 qui représen-

te le premier instant d'arrivée et de liberté après 0.

On a:
$$T_{V_{O}}(\omega,j) = \sum_{i=0}^{+\infty} \tau \circ \theta^{i}(\omega) 1_{\{i < V_{j}(\omega)\}}.$$

Alors:
$$\int_{T_{i}} T_{V_{0}} \frac{dQ_{0}}{c} = \frac{1}{c} \sum_{j=1}^{k+1} \int_{\Omega} \sum_{i=0}^{+\infty} \tau \circ \theta^{i}(\omega) \, 1_{\{i < V_{j}(\omega)\}} \, 1_{T_{0}}(\omega, j) dP(\omega)$$

ce qui s'écrit encore :

$$= \frac{1}{c} \int_{\Omega} \tau \left\{ \begin{array}{ll} k+1 & +\infty \\ \Sigma & \Sigma & 1 \\ i=1 & i=0 \end{array} \right. \left\{ i < V_{j}(\theta^{-i}\omega) \quad \text{et} \quad (\theta^{-i}\omega,j) \in T_{o} \right\} dP(\omega) \right\}$$

Les conditions : " $(\theta^{-i}\omega,j) \in T_0$ et $i < V_j(\theta^{-i}\omega)$ " traduisent exactement que le client d'indice -i est un prédécesseur (toujours au sens large) de 0 Comme pour presque tout ω , il y a c solutions stationnaires donc c prédécesseurs de 0, cette double somme vaut c, presque sûrement.

On a donc :
$$\int_{T_0} T_{V_0} \frac{dQ_0}{c} = E(\tau).$$

Le temps de service associé à un point (ω,j) de T_{0} vaut :

$$\sigma + \sigma \circ \theta^{-1} + \ldots + \sigma \circ \theta^{-j+1}$$
.

Soit S le temps moyen de service :

$$S = \int_{T_{O}} (\sigma + \ldots + \sigma \circ \theta^{-j+1}) \frac{dQ_{O}}{c} = \frac{1}{c} \int_{\Omega} \sum_{j=1}^{k+1} (\sigma + \ldots + \sigma \circ \theta^{-j+1}) 1_{T_{O}}(\omega, j) dP(\omega).$$

En réordonnant les termes de cette somme, et en utilisant toujours l'invariance de P par θ , on obtient :

$$S = \frac{1}{c} \int_{\Omega} \sigma(\omega) f(\omega) dP(\omega)$$

où
$$f(\omega) = \sum_{\substack{0 \le i < j \le k+1}} 1_{T_0}(\theta^{+i}\omega, j) / \omega \in \Omega.$$

Les conditions : " $(\theta^{+i}\omega,j)\in T_0$ avec i< j" traduisent que le client d'indice 0 est dans un bloc de clients servis.

Ainsi $f(\omega)$ compte le nombre de solutions servant le client d'indice 0.

On a alors :
$$S = E(\sigma \cdot \frac{f}{c})$$
.

Remarquons que ce calcul reste valable en remplaçant σ par la constante 1. On obtient donc :

$$\int_{T_0} j \cdot \frac{dQ_0}{c} = E(\frac{f}{c})$$

La définition des applications V_{j} , implique que :

$$\sigma + \dots + \sigma \circ \theta^{-j+1} < T_{V_0}$$

Ainsi

$$E(\sigma \cdot \frac{f}{c}) \leq E(\tau).$$

Utilisons la seconde inégalité de définition des V_{i} , soit :

$$\begin{array}{ll} V_{j}-2 \\ \Sigma & \tau \circ \theta^{i} \leq \sigma + \sigma \circ \theta^{-1} + \dots + \sigma \circ \theta^{-j+1}. \\ i=0 \end{array}$$

Le premier membre diffère de T_{V_o} , pour le seul terme : $\tau \circ \theta$ j que l'on intègre :

$$\int_{T_{0}} \tau \circ \theta^{V_{j}-1} \frac{dQ_{0}}{c} = \frac{1}{c} \int_{\Omega} \sum_{j=1}^{k+1} \tau \circ \theta^{V_{j}-1}(\omega) 1_{T_{0}}(\omega,j) dP(\omega)$$

$$=\frac{1}{c}\int_{\Omega}^{k+1}\sum_{j=1}^{\Sigma}\sum_{n\geq 1}^{\tau}\circ\theta^{n-1}(\omega)1_{\{V_{j}(\omega)=n\text{ et }(\omega,j)\in T_{0}\}}dP(\omega)$$

ou encore :

$$=\frac{1}{c}\int_{\Omega}\tau\circ\theta^{-1}(\omega)\left\{\begin{matrix}k+1\\\Sigma&\Sigma\\j=1&n\geq1\end{matrix}\right. \left\{\begin{matrix}V_{j}\circ\theta^{-n}(\omega)=n\end{matrix}\right\}\text{ et }(\theta^{-n}\omega,j)\in T_{\mathbf{o}}^{}\right\}$$

On pose $g(\omega)$ cette double somme.

Si le point $(\theta^{-n}\omega,j)$ est dans T_0 , avec : $V_j \circ \theta^{-n}(\omega) = n$, le client d'indice 0 est servi sans attente.

Ainsi la quantité $g(\omega)$ compte le nombre de solutions servant le client d'indice O sans attente. \frown

On peut écrire plus simplement : $g(\omega) = \sum_{j=1}^{k+1} 1_{T_0}(\omega, j)$.

Alors

$$\int_{T_0}^{\tau} \circ \theta^{V_j-1} \frac{dQ_0}{c} = E(\tau \circ \theta^{-1} \cdot \frac{g}{c})$$

Remarquons que l'on a toujours $0 \le g(\omega) \le f(\omega)$.

Les inégalités de définition des applications $\,V_{j}\,$ donnent ainsi par intégration, la double inégalité :

$$E(\tau) - E(\tau \circ \theta^{-1} \cdot \frac{g}{c}) \leq E(\sigma \cdot \frac{f}{c}) \leq E(\tau).$$

Si l'on suppose les suites : $(\sigma \circ \theta^n)_{n \in \mathbb{Z}}$ et $(\tau \circ \theta^n)_{n \in \mathbb{Z}}$ indépendantes,

le fait que le client d'indice $\,$ 0 soit servi ou non, ne dépend pas du service qu'il demande ainsi les variables aléatoires $\,$ $_{\sigma}$ et f sont indépendantes. La deuxième inégalité devient :

$$E(\frac{f}{c}) \leq \frac{E(\tau)}{E(\sigma)}$$

En particulier si les délais de service sont grands devant les délais d'interarrivée, peu de solution en moyenne serviront le client d'indice 0 (ou un client d'indice 1)

BIBLIOGRAPHIE:

A.A. BOROVKOV

: Stochastic processes in queuing theory.
Springer 1976.

J.W. COHEN

: The simple server queue.

North Holland. Amsterdam 1969.

M.R. JAÏBI

: Evolution d'une file d'attente avec priorité. Annales de 1'I.H.P., Section B, Vol. XVI n° 3.

R. LOYNES

: The stability of a queue with non-independent inter-arrival and service-times.

Proc. Cambridge Philo-Soci. 58 (1962).

J. NEVEU

- [1] : Cours de Zurich. (Février 83). Théorie Ergodique et Processus Ponctuels Stationnaires. Application aux files d'attente.
- [2] : Introduction aux processus aléatoires. Cours de 3^{ème} Cycle. Université Paris VI.
- [3]: Processus Ponctuels.Ecole d'Eté de Probabilités de St-Flour VI(1976. Lecture Notes. Springer Verlag (1977).

Michel DOISY B.P. 4060 FANANARIVE (Madagascar)

Reçu en Mars 1986