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ABSOLUTELY SUMMING OPERATORS AND MEASURE AMARTS

IN FRECHET SPACES (*)

D. QUANG LUU

R ésumé. Dans cet article on démontre quelques théorèmes de caractéri-

sation pour les opérateurs absolument sommants et on donne diverses

applications à la convergence des martingales asymptotiques vectorielles

dans les espaces de Fréchet.

Summar . In the paper, we prove some characterization theorems for

the absolutely summing operators and we give various applications to

convergence of vector-valued asymptotic martingales in Fréchet spaces.

(%r) This paper was partly written during the author’s stay at the

University of Sciences and Technics in Montpellier 1984.
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§ 0. INTRODUCTION.

The Radon-Nikodym property and convergence of vector-valued

asymptotic martingales (amarts) in Fréchet spaces have been extensively

studied in recent years by many authors, see, r 6,7,17,3,]2,]3,8,9] 1 and etc.

The purpose of the paper is to continue these above investigations.

Namely, after stating some needed notations and definitions in Section 1,

we shall prove in Section 2 some representation theorems for the absolu-

tely summi.ng operators in Fréchet spaces which are different from those,

given in r 161. And finally, in Section 3 we shall give some applications

of the results in Section 2 to convergence and boundedness problems of

vector-valued amarts in Fréchet spaces.

§ 1. NOTATIONS AND DEFINITIONS.

In the paper we shall use the notations and definitions, given

in [9] and introduce some other one’s concerning measures in Fréchet

spaces. Namely, let E be a Fréchet space, U(E) a fundamental countable

family of closed absolutely convex sets which form a 0-neighborhood

base for E , E’ the topological dual of E and a probability

space. Given U E U(E) the polar U° and the continuous seminorm pU , ,

associated with U are given by

For a o-addifive measure 03BC : A &#x3E; E and 1 r U(E) we define the
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semivariation (or the total variation, resp.) seminorm Su(11)
(or V U (~) , resp.) as follows

where fi(A) denotes the set of all finite measurable partitions of

AEA.

By S(E) = (or V(E) = we mean

the space of all S-equivalence (or V-equivalence, resp.) classes of

S-bounded (or V-bounded, resp.) a-additive measures u : A -~ E . Then

by using the same argument-given in [ 16 ] for the spaces Z (E) and

one can establish easily the following property.1

Property l.l . Both (S(E),S-topology) and (V(E) , V-topology)

are Fréchet spaces.

Now, for definition of strong measurability and Bochner

integrability of vector-valued functions f: ~ + E , we refer to

[ 6, 7] and let Ll (E) - denote the space of all V-

equivalence classes of Bochner integrable functions f : Q-&#x3E; E ,

where (U E U (E) . Then accordi,ng to (6 J ,

one can regard (Lj(E),V-topology) as a closed subspace of V(E) with

the following identification : 7 E V(E) : u f(A) = f 
A 

f dP (A£A).
A
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Note that with the above identification, becomes a

(not necessarily closed) subspace of S(E) . Finally, as in the Banach

space case (see, e.g. 141) , the following property remains true.

Pro erty 1.2 . C S(E) , p C V(E) , U C U(E) and

f E B,P,E) for some sub Then

§ 2. ABSOLUTELY SUMMING OPERATORS AND MEASURES AMARTS.

Let E and F be Fréchet spaces, ll (E) (or ll{E}, resp.)
N N

the space of all summable (or absolutely summable, resp.) sequences (xn)n
in E . Thus the E-topology and the n-topology for

N

are defined as in [16] . A linear continuous operator T : E -~-F

write T E L(E,F), is sait to be absolutely summing if it maps N

into llN{F}. °

Theorem ~.1 . Let E,F be Fréchet spacesand T E £(E,F) . Then the

following conditions are equivalent :

(1) T is absolutely summing.
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(2) For every probability space (~2,A,P) , the operator T° : S(E) ~ V(E) ,

defined by

is linear continuous.

(3) For every probability space (~2,À,P) , the operator TI : : (L1(E) ,
S-topology) -+- (L1(F) &#x3E; V-topology) , defined by

is linear continuous.

(4) For only special probability space (N,p(N),y) , where N is the

set of all positive integers, p(N) the class of all subsets of N

and (n E N) , Tl 1 is linear continuous.

Proof (1 + 2) . Let E , F be Fréchet spaces and T E £(E,F) an

absolutely summing operator. We shall show that for each C E U(F)

there are some U C (1(E) and &#x3E; 0 such that for all finite

sequences  x. &#x3E;. k Je E, &#x3E; we have
J J=1 1

Indeed, first of all applying (( !6), ?.1 .3) to T , we infer that

the operator T : z 1([,,) + given byN N 
*’ 

N’
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is linear continuous. Therefore, by Theorem 1 in ([ !9], 1.6) for

each C E U(F) there is some U E U(E) and ~(C,U) &#x3E; 0 such that

Equivalently,

Further, since for every finite sequence x. &#x3E; k C E , the sequence
J 3=1

k 1
« x. &#x3E;k ,0,0,... &#x3E; E ll(E), then the last inequality implies (2.1) .

J J = -’"N

Now let li E S (E) , C E U(F) and A. &#x3E; k E . Applying
J J=

(2.1) to the finite sequence  u(Aj)&#x3E; k 1 C E , we get
J i

Hence,

Finally, again applying Theorem 1 in ([19~, 1.6) to the operator

T° : S(E) -j- V(F) , it is clear that £(S(E) ,V(F)) . This proves

(2) , taking into account that the linearity of T° is naturally satisfied.
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(4 -~ 1) . Suppose that T fails to be absolutely summing. Then by

def ini tion, there is some x &#x3E; E ,Q, 1 (E) such that  Tx 
n N n N

i.e. there i s some C E U(F) such that

For convinience, we can always suppose that 0 (n E N) . Now,L. n

choose a strictly increasing subsequence  nk &#x3E; of N such that

anddefine fk : : N~E (k E N) , by

where 1A is the characteristic function of A E A .

It is cl.ear that by ([ 16 ], 1.3.6) the sequence  fk&#x3E; in L1 (E)
is S-convergent to 0 . On the other hand, as

the sequence in L 1(F) fails to be V-convergent. It

contradicts (4) . . Finally since the implications (2-~3-~ 4) are

trivial, thc proof of the theorem is completed.rNow, by Theorem é.2..5

in 1 16|, the Fréchet space E is nuclear if and only if identifi-

cation operator is absolutely summing so that thé following corollary

is an conséquence of the above theorem.
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Corollary 2.2 . For a Fréchet space E , the following conditions

are equivalent :

(1) E is nuclear.

(2) On V(E) , the S-topology is equivalent to the V-topology.

(3) On L 1(E) the S-topology (the Pettis topology) is equivalent

to the V-t2po (the Bochner topology).

Remark . (1) Theorem 2.1 was first partly proved by Ghoussoub in

[ 14 J for Banach spaces and later completed by Bru-Heinich in [4] , ,

using directly Proposition 2.2.1 in [16] which can be applied to

only normed spaces.

(2) Egghe [12] ] has applied however Proposition 4.1.5 in t 161 ] to

obtain the equivalence ( 1 ë+ 3) in the corollary.

In order to give some probability characterizations of abso-

lutely summing operators in Fréchet spaces we give now some additional

notations and definitions. Indeed, hereafter we shall fix an increasing

sequence  A &#x3E; os suba-fields of A such that A = a(W A ) . Let
n N n

and T the set of all bounded stopping times, Given 
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It is known (cf. [ 15]) that AT ; T G T&#x3E; is increasing family

of sub6-fields of À ; v T E and

f 
1 
E L 11 (E) = .. Moreover, if  1-1 n &#x3E; E V( A n &#x3E; ,E) then

ï 1 1 T n n ’

U 1 E 

Définition 2.1 . . Call u &#x3E; E S(A &#x3E; , E) to be a martingale if
- n n

u = 03BC| =P (m&#x3E;n £ N). m,n 
* m A n 

n

Note that if 03BCn &#x3E; E S(An &#x3E; ,E) is a martingale then

1-1 a,1 = 1-1 a 1 A T = 1.1 T (J &#x3E; T E T) . does not depend upon

the choice of T E T . Thus 1.1 &#x3E; E S (  A &#x3E; ,E) is said to be an
- n n 2013201320132013201320132013201320132013201320132013

amart if the net T&#x3E; is convergent in E .

We note that as for the amarts in Banach spaces (see, f5] , ,

[ 10 ] , [ 18 ] , r 4 J ), , the following basis lemma is obtained.

Lemma 2. 3 . Let 1-1 &#x3E; £S(A &#x3E; , E) . Then the following condi-n n 2013201320132013201320132013201320132013201320132013s2013201320132013

tions are équivalent :

(1)  1-1 &#x3E; is an amart.
n 201320132013201320132013

(2) w has a Ries z decomposition : 03BC = a + 13 N) ,
n 2013201320132013201320132013201320132013201320132013201320132013201320132013" n n n

where S (A &#x3E;, E) is a martingale and R&#x3E; is a potential,
n n 2013201320132013201320132013201320132013201320132013"-’ 

n --------

i. e.
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lim STU(BT) = 0 (U E U(E)) ,
TOT 
T 

where S~(.) is defined as SU with respect to the probability space

(Q,A ,P) .
T

(3) There is a finitely additive measure u : U An -~ E such that
n 20132013201320132013201320132013

We shall call the limit measure associated with 11 n &#x3E; .

Definition 2.2 . Call  u &#x3E; E V( A ~ ,E) to be a uniform amart
20132013201320132013201320132013 201320132013 n n 20132013201320132013201320132013201320132013201320132013201320132013

if the following condition is satisfied

where VT is defined as V with respect to Il Ù - - - " 

-- T

It is clear that by Lemma 2.3 and Property 1.2, every

uniform amart is an amart. Moreover, as for the uniform amarts in

Banach spaces (cf. ( 2 ], [4]) we get the following.

Lemma 2.4 . Let  03BC &#x3E; E V( A &#x3E; E) Then the fol lowing condi-
- - n n

tions are equivalent :

( I )  u &#x3E; is a uniform amart.
n 201320132013201320132013201320132013201320132013201320132013

(2) £ 1&#x3E; &#x3E; has a Riesz décomposition : u = a + 6 (n £ N) , where
n -20132013201320132013_2013201320132013201320132013r20132013201320132013 n nn -

a &#x3E; is a martingale in V( A &#x3E; ,E) and  S &#x3E; a uniform
n 

2013201320132013201320132013201320132013201320132013 

n 
-- 

n 
2013201320132013201320132013

potential, i.e.
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(3) There is a finitely additive measure p :~A ~E such that
~ 

N n
each 03BC 

n 
c- vn(E) and

- 20132013

Note that Property 1 . 1 is needed in the proofs of Lemmas 2.3 and 2.4 .

Finally, we say that a sequence fn &#x3E; in L 1 ( A n &#x3E; ,E)

has a property (*) if so has the sequence  11n = 11£ &#x3E; , associated
’ 

~ 
n

wi th  f &#x3E; .
- n

Theorem 2.5 . Let E,F be Fréchet spaces and T e £(E,F) . Then

the following conditions are equivalent :

(1) T is absolutely summing

(2) T° maps amarts in S (  An &#x3E; ,E) into uniform amarts in &#x3E;,F) .

(3) For each S-bounded amart  f &#x3E; in and C E U(F) ,
n .2013 j n _r

thé séquence is a uniform amart of nonnegative real-rr n - -. 
- - 

. 
- -; -- .-, -.- - 

- -- -

valued functions.

(4) TI maps every V-convergent amart  f &#x3E; in 
20132013201320132013201320132013201320132013 - n - j n

into a sequence of class (B) , i.e.

Proof. hp Frechet t space and T £ £ (E , F) . Suppose first t
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(a ) is a martingale in S (  A &#x3E; , E) . I t is c lear that  T°a &#x3E;
n n n

is also a martingale in S (  A n &#x3E;, F) . Now if T is absolutely

summing and (S ) is a potential in S; A &#x3E; ,E) , by (2.2) in
- 

n n

the proof of Theorem 2.1 it follows that the sequence  TO B &#x3E; is
n

a uniform potential in V( An&#x3E; ,F) and T°an&#x3E; E V( An&#x3E; ,F) ,
noting - that if y =T°6 n (n E N) then 

i 
(T E T) . .. There-

fore, by Lemmas 2.3 and 2.4 we get ( 1 + 2 ) .

( 1 -~ 3) . .. To prove ( 1 ~ 3) , we suppose first that  Y &#x3E; is a
n

uniform amart in V( An &#x3E; ,F) , y the limit measure associated with

 y 
n 

&#x3E; and C E U(F) . .. Then by Lemma 2.4 , it follows that

This with properties of seminorms in VT(E) implies

Further, if  yn&#x3E; is V-bounded, it is easily checked that

and is the set of al 1 finite E-measurable partitions -

Conséquently, by (2.3) we get
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Now we suppose that T is absolutely summing, fn &#x3E; a S-bounded

amart in L 1( An&#x3E;,E)  un&#x3E; the measure amart associated with  fn &#x3E;
and n the limit measure associated with u &#x3E; . IT is clear that

a n

if we define

then by (1 -~ 2) , yn&#x3E; is a uniform amart in and

by (2. 2) in the proof of Theorem 2.1 , , is V-bounded.

Therefore, for any but fixed C E. U(F) , the uniform amart y n &#x3E;
must satisfy (2.4) . Moreover, if we define

th en

This with (2.4) proves that the sequence is a uniform

amart (of nonnegative real-valued functions) , taking into account that

in (2.4) , VEC(yoo) is a finite number. It completes the proof of (1 + 3).

(2- 4) Suppose that f n&#x3E; is a V-convergent amart in 

Then given C " U(F) , the sequence must be V-bounded.

Thus as in the proof of (1 -+ 3) , the V-boundedness of 

with (2) shows that must be a uniform amart. Thereforp
, C n

thp V-boundedness of is équivalent to

is of class (B) . . This proves (4) . .
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Because (3 + 4) is similarly established, it remains to prove (4 ~ 1) . -

For this purpose, suppose that T is not absolutely summing. Returning

to the sequence  x n &#x3E; in the example, given in the proof of

Theorem 2.1 we take (~,A,p) = (N,P(N),y) and define

Then

Consequently, by Theorem 1.3.6 in [ 16 J , the sequence  f . J &#x3E;
defined above is a potential (hence an amart). Further, since

the sequence f.&#x3E; is V-convergent to 0 . On the other hand, if
J

we put

for a11 1 k &#x3E; N , then
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Therefore, the V-convergent (to 0) amart f~ &#x3E; cannot be of

class (B) which contradicts (4) and completes the proof of the

theorem.

Note that since the sequence is V-convergentC J

(hence V-bounded) and is not of class (B) , cannot
- C n

neither be an amart. Further, since a Fréchet space E is nuclear if

and only if the identical operator is absolutely summing, the following

corollary is an easy consequence of the theorem.

Corollary 2.6 . For a Fréchet space, E , the following conditions

are e,quiyalent

(1) E is nuclear.

(2) Every amart in S(A n &#x3E;,E) is uniform.

(3) For every S-bounded amart  fn&#x3E; in L 1(  An&#x3E; E)2013201320132013201320132013201320132013 20132013201320132013201320132013201320132013201320132013 YY - n

and U E U(E) , the sequence &#x3E; is a uniform amart in

L1 (An&#x3E;, IR).
(4) For every V-convergent amart  fn &#x3E; in L1 (An &#x3E; ,E)

and U(E) , the sequence p (f ) &#x3E; is an amart in L1 A &#x3E; , F)20132013 201320132013201320132013201320132013 U n 20132013201320132013201320132013201320132013 j n

Remark. Since every LJ-bounded real-valued uniform amart must be

of class (B) , Theorem 2 in [ 13 1 is hence easily established from

Corollary 2.6. Note that for the proof of Theorem 2 in 1 131 ,

Egghe has needed the Radon-Nikodym property of nuclear Fréchet spaces.

So that his proof cannot be 2.5 .
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§ 3. CONVERGENCE AND BOUNDEDNESS OF AMARTS.

In this section, we shall apply the results in Section 2 to

convergence and boundedness problems of amarts in Fréchet spaces. We

begin with

Theorem 3.1 . Let E,F be Fréchet spaces and T C £(E,F) . Then

the following properties are equivalent :

(1) T is absolutely summing.

(2) T maps potentials in L 1 (  Àn&#x3E; ,E) into F-valued

sequences, strongly convergent to 0 , almost everywhere (a.e.) .

(3) T maps potentials in ,E) into F-valued

sequences, weakly convergent, to 0 , a.e.

(4) T maps V-converg-ent potentials in &#x3E; ,E) into

F-valu ed sequences, strongly bounded, a.e.

Proof . ( 1 -~ 2) Suppose that is ab,solutely summing.

By Theorem 2.5 T maps potentials in into uniform

potentials in L 1 (A n &#x3E;,F) . .. Thus to prove (2) it is sufficient

to show that every uniform potential  g n &#x3E; in S(  A n &#x3E; ,F) is

strongly convergent, a.e. Indeed,  g n &#x3E; is a uniform potential,

by definition we get

Hence, also by définition, the séquence &#x3E; is a nniform

potential of real-valued functions. Hence it musr be cnnv&#x3E;rgent te’ U , ,
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a.e. (cf. ( 2 ], [ 4 )) . We note that since U(F) is countable, g n &#x3E;

must converge itself strongly a.e. to 0 . This proves (2) . Here,

it is worth to note that in (13] , Egghe has hardly proved that

every uniform potential in nuclear Fréchet spaces converges strongly,

a.e. to 0 . But as we have just shown, this fact is clear even for

uniform potentials in general Fréchet spaces F .

Returning to the proof of the theorem we see that the

implications (2 -+ 3 -+ 4) are easy. Thus we have to prove only

(4 -~ 1 ) Suppose that T fails to be absolutely summing. And let

x n &#x3E; and C be as in the example given in the proof of Theorem 2.1 . .

By (~,A,P) we mean the Lebesgue probability space on [0,1) . Since

we can choose a subsequence n  n~  ... ~ nk  .. °

of N such that

Next, for each k ~ N , find with

and define
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Finally, given k,j E N we put

/

and for each T E T , we define

Therefore, with the above notations, one get

But no te . -1 -1 1 and (T -&#x3E; oo)
"

implies (k ( T) + oo) . Consequently, by Theorem 1.3.6 in [ 16 ] ,
~ 

1
the summability of  xn &#x3E; implies that the net / 0 f T 
converges to 0 . It means that

(a)  f &#x3E; is a potential in L  An&#x3E; E)
Next, since

1

j 

(b) f &#x3E; is V-convergenL to 0 .

’ 

Finallv, f or pach ’.’ ’"- ) C), 1 ) , k ’ ‘ N , one can choose some jk such
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that nk+1  jk · nk+l . This yields

Therefore,

Consequently, the sequence f.&#x3E; with the properties (a-b-c)
J

contradicts (4) which completes the proof of (4 -&#x3E; 1) and the theorem.

Now suppose that E is nuclear and fn &#x3E; a S-bounded

amart in Then by [6] , , E has the Radon-Nikodym

property,  L1(E) V-topology&#x3E; is a Fréchet space and by Corollary 2.6

f &#x3E; is a V-bounded uniform amart. Hence,  fn &#x3E; has a more precise
n n

Riesz decomposition : f n = g n + hn (n E N) , where  gn &#x3E; is a

V-bounded martingale in and hn &#x3E; a uniform potential.

Thus the proof of Theorem 3.1 shows that  h n &#x3E; converges strongly

a.e. to 0 . Further, since every nuclear Fréchet space is a projective

limit of a sequence of Hilbert spaces, the martingale limit theorem in

Hilbert spaces shows that  g n &#x3E; must converge strongly a.e. There-

fore, the following corollary is an easy consequence of the theorem.

Corollary 3.2 . For a Fréchet space, the following properties are

equivalent :

(1) E is nuclear.

(2) Every S-bounded amart in ils convergent strongly, aY,e.
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(3) Every S-bounded amart in L (A &#x3E;,E) is convergent weakly, a.e.

(4) Every V-convergent potential in is strongly2013201320132013201320132013201320132013201320132013201320132013201320132013 j n 201320132013201320132013201320132013

bounded, a.e.

Remark. The equivalence (1,~-42) was first proved by Bellow [ 1] 1 for

Banach spaces. This result has been recently extended to Fréchet spaces

by Egghe in [13] . Also (1 H 3) has been proved by Edgar-Sucheston

in [ 11 ] for Banach spaces.

We say that a sequence  fn &#x3E; in is

S-uniformly integrable, if  fn &#x3E; is S-bounded and for every U E U(F) ,

It is clear that if E is a nuclear Fréchet space then every S-uniformly

integrable sequence  fn&#x3E; in is V-uniformly integrable,

i.e. for each U E U(E) , the sequence pU(fn)&#x3E; is uniformly

integrable. Conversely, if E fails to be nuclear then as in the

proof of Theorem 2.1 , one can construct a potential  fk &#x3E; in
such that  fk &#x3E; fails to be V-bounded. Therefore, the

following corollary can be deduced easily from Corollary 3.2 .

Corollary 3.3 . For a Fréchet space E , the following conditions

are equivalent :

(1) E is nuclear.

(2) Every S-uniformly integrable amart in &#x3E; ,E) is 
n -- ----------

(3) Eve_-ry potential in L1 (An&#x3E; , E) is V-bounded.
n 
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Remark. The équivalence (i~2) was first proved by Egghe in ( 12 ) , ,

where he gave a very complecated example in order to prove (2 - 1) .

The implication (3 ~ 1) in the corollary seems to be new even for

Banach spaces.
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