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GENERALIZED CANONICAL STATES

Marc PIRLOT

1. INTRODUCTION

In recent years, much attention has been devoted to the

study of canonical Gibbs states or more general "conditional

Gibbs states". One can distinguish several conceptions of ca-
nonical states : among them, the one developed by Lanford [’9] ,
Marti n-Lof r 10] and another one, by Georgii [ 6] , Thompson [14],
Aizenman, Goldstein, Lebowitz [1],’ Preston [ 12] and others.

The difference of point of view is essentially the folloq,ing :
the first group of authors considers only one energy level on

each finite box, while the second one does not initially single
out any energy level but deals with all of them. Here we adopt
the second point of view.

We introduce a generalization of the canonical specifica-
tions studi ed by Georgii [ 6] i n a way that integrates also the

more general concept considered by Thompson [ 14] . The set of all

energy levels on a finite box is viewed as a partition of the
set of all possible configurations on the box without reference

to any "conditioning" potential.

In this general setting we prove a conditional variational

principle to be satisfied by every translation invariant cano-
nical state (§ 4) : those canonical states maximize a thermody-
namic quantity which may be interpreted as the free energy of

an ir energy level". A formulation in term of information gain is

also given (§ 5).
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In § 7, we study the notion of irreductible family of potentials
introduced by Thompson and show it is in some sense the biggest family
that determines a given system of partitions.

In the sequel, we consider only systems of partitions defined by
a family of potentials as used by thompson, but the "main" potential
is allowed to have infinite range unlike in Thompson’s thesis where
all potentials have finite range. By means of the variational principle.
we generalize and prove in a much simpler way a theorem due to Thompson
that says all locally positive canonical states are Gibbs states for

some specified potential. This implies a kind of converse of the varia-
tional principle (§ 6).
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2. NOTATIONS AND DEFINITIONS

a) 

We consider the lattice gas with configurations space
Zv ..o = {0, . The Q-al gebra on 92 is the product of the dis-

crete a-algebras on {0, 1}. For any subset A of Z,
S2 (A) = 0 , cg.(A) is the product a-algebra on (A).

is the Q-al gPbra of measurable sets of configurations that

depend only on coordinates in A.

A greek letter like ci or a wi l l general ly denote a confi-

guration. The restriction of a configuration to a subset A of

zv is denoted by wA5 ... In the sequel A denotes a finite

subset of Zv and Ac = 

b) Potentials

We are given a potential ~, i.e. a real valued function

defined on the configurations of the finite subsets of Zv.

w belongs to the Banach space d3 of translation i nvari ant po-

tentials that are null on the non identically 1 configurations

and that are normed in the sense :

The ener potential V~ associated to ~ is

(the superscript p will be dropped when no confusion is possible.)

The interaction energy W~ associated to ~ is defined by : :



and

Remark : due to the fact that 1° is normed, one is allowed

to consider

c) Gibbs states

Let us first define the local Gibbs state with external

condition
A

with

A probability 03BC on (n,7) is said a Gibbs state associated

to P0tential w if for any finite A and any c~~ 0f il (A) :
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3. GENERALIZED CANONICAL FORMALISM

a) 

Me consider a system 7r = (A) ; A C Z", A finite} of

partitions of the spaces and we suppose that the parti-

tions are translation invariant, i.e. for every x in Z",
1T (A) = 7r (A + x).

Let us define a coherent system of partitions : let

r = A U A’ with A n A’ = w and E2 (r, i) be a class of partition

7T (r) ; 7r is said coherent if for any finite r and i, E2 (r, i)

is a reunion of cartesian products of the 

with E2 (A, j) (resp. a class of partition 

(resp. 7r(A’)).

Consider anon necessarily coherent system of partitions n.

^v
It is easy to associate to 7r a coherent system 7r. Denote

Q (A, CA), the class of 7T (A) containing configuration CA ;
it is defined as the class of all configurations wA of E2 (A)
such that for any finite A’ in containing A, and for any

configuration of Q (A’B A) 2 (Al I 

Remark rv = 7r i f 7r is coherent.

The canonical a-algebra A 7r) is the a-algebra generated

by the sets of the form : .

i) x A i) e 7r (A) and A e 7 (Ac

(when no confusion is possiblei we write §~yl) .



Properties of the canonical o-algebras CA (7r)
w w w w w r - - - - w - w w w - r w w - - - - - - - - - - - - - - - r r

1. For any system of partitions,

2. w is coherent if and only if for any finite A, A’ with

A C A’ , ~A (1r) D A- (1r)

A way of giving a system-of partitions is to define it by
means of a "vector" of potentials : #, = (¡JI1’ ~~ ...~ ~ ).
We suppose all ~. belong Let a "value" taken

by V (.) = (.)).; we denote 92 (A, m) the set of configu-
rations cj. of 1-2 (A) such that V (wA) = m. Further :

i s the set of all confi gurations of 92 (A) tha’t gi ve the same

value to V as w - 52 (A, is the "energy level ii of w~.
The system of parti ti ons 7r (y) i s gi ven by :

.

In general such a system is not coherent.

To get a coherent system, take y like above and define :

S2 (A, wn) is the set of configurations of &#x26;2 (A) that give the

same value t0 uy as wA whatever the external condition nAc cis.same value to U as co whatever the external condition 71 Ac is.

For the same set y of potentials, we have the relation :
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Examples

1. n = 0. There are no "conditioning potentials" so that

we are i n the "grand canonical" formalism.

I.f (vA = 1 and lAl = 1

otherwise

It is what.is usually called "’canonical formalism" ; it has been

studied e.g. by Georgi i [6]. In this case, n =7T.

3. V = (0i) and all Oi are finite range potentials. This

situation was studied by Thompson [14].

b) --~------------~----- 

- - tl) - I - -

with the canonical partition function :

YA is to be interpreted as the conditional probability
of finding wA in 92 (A), knowing that we are on the energy level

of 7? A and that the external condition 

Properties of the local canonical states

1. "fA (wAI.) is YA 
2. ’YA probability on 62 (A} carried by 

3. Relation to the local Gibbs states :
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c ) 

A probability meas u re A on -(E2, ’Y ) is a canonical state asso-

ciated to potential p and the system of parti titions 7r , if for

any A and any wA (A) : .

The set of canonical states associated and 7r is noted

7r) and when 7r is determined by a family 0 of potentials,
we write Vi, ^11 Iff )( 7T is used when the system
of partitions is defined in the coherent way). As the system
of partitions is not necessarily coherent, is not necessa-

rily a specification in the usual sense (see Preston [11]).

The following theorem solves the problem of existence of
canonical states.

The of Gibbs states associated to

4p is included in 7r). More generally, if 7r is finer than

then 9 (~p 7r’ C 9(,p t 7r) In particular, if ..., 

is a family of potentials, we have :

Proof : it is easi ly derived from the proof of Georgi i [6],

(1.10).

Let f 
o (Ip, 11") denote the set of translation invariant

states in C(p, 7r).

~ ~

The convex sets 11") and n have
an H-sufficient o-algebra in Dynkin’s sense ; in particular any
probability in these sets admits a unique integral representa-
tion in term of extreme points. Moreover, a state (~P. 7r)
is extremal if and only if it is ergodic, i.e. if .it is 0-1 on

the o-algebra T of transl ati on invariant sets of F.



A fine proof of this result for n) is to be found in

Dynkin [ 2] for instance. The corresponding result for fo (p, 7r
is easily derived from Dynkin [ 2] , § 3.5. and from the fact that

the a-algebra 7is almost surel .y contained in Goo (11"), the inter-
~ 

section of all canonical a-algebras JA (n), for any translation

invariant probability (see Georgii [ 4l ) . This fact implies also
the last assertion of the theorem.

4. A CONDITIONAL VARIATIONAL PRINCIPLE FOR CANONICAL STATES

In this section, we drop the superscripts in V~‘ , W , U~,
as we consider general systems of partitions ; 92 (A, n) is set

for Q (A, nA)’ In the sequel, "lim " means that we take the

z
limit along the "rectangular" boxes. The results would also

hold with limits in the sense o f Van Hove.

Theorem 4.1 - Let Q be,a potential belonging to B and 7r a

system of canonical partitions. For any translation invariant

probability measure Jl on ~5~, ~ ) and for any fixed confi gura-
tion n ,

Moreover, if A belongs to 1l(w, 7r) , then the limit of the above

expression actually exists and is zero.

Proof . 1 let ZA ((17)A’ 0) denote

1. Using Jensen’s inequality, we get
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2. If 03BC belongs to C(p, 7r),

We fix an element Q (A, i) of the partition 7r (A) and denote by

Z (i) the corresponding canonical partition function with 0

external condition. As - t In t is a concave function of t,

Let us work on the terms between brackets in the last expression :

According to the following lemma, expression ( 1) , divided by 
tends to zero as A tends to Zv.

Lemma 4.1 tends to zero, uniformly in w~

and nAc when A tends to Z.

Proof : see Georgii [5], p. 76.

If v is an invariant probability measure
on (i~,~),
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where the specific entropy s .

and the specific energy e (m, W) =

(those two limits are known to exist : see, for instance, Ruelle [13])..
Moreover if v belongs to 7r),

(0 (A, i ) ) (n (A, i)) is the entropy
of the parti ti oro ~(A).

Proof : just take the mean w.r.t. p of the expression in

theorem 4.1.

5. INFORMATION GAIN 
.

Let ~ and p be two probability measures on (92,5r) and n a

configuration..The local information gain of X on ~, s (A, ~;
X, ~u ~ is :

Proposition 5.1 - Suppose A and p are two invariant proba-

bility measures on (E2, A) and p , belon.gs to If A is

large enough, the absolute value of the difference between

s (A, 11 ; X, p) and

is less than e.

verifies the conditional variational prin-

ciple if and only if
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Proof of proposition 5.1 : asp belongs to 19(,P, 1r) ,

When A is sufficiently large, the argument of the second loga-
rithm in the last expression lies between exp (- E IAI) and

exp (+ E JAJ) (by lemma 4.1) ; so, the logarithm divided by -I A I
tends to zero when A tends to Zv and the proposition is proved.

6. INVARIANT LOCALLY POSITIVE CANONICAL STATES

In view of the usual vari ati onal principle for translation
invariant Gibbs states (see Lanford, Ruelle [8] and Fbllmer [3]),
it is natural to try to characterize the translation invariant

canonical states by means of a variational principle, i.e. to

prove some kind of converse of theorem 4.1.

We are not able to do it in general,. So, we restrict our-
’V

selves to the case where the- p artitions r are determined by a

vector of finite range potentials ~. -We prove that ergodic lo-

cally positive states satisfying the variational equality are
in fact Gibbs states for some p otential ~ + 

consequently, are canonical states of ~(~, z, 
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Let us first recall two wellknown results.

If p is an invariant probability measure
on (11, ~~ , for any p bel ongi ng. 

exists 03BC-almost surely in w, is 7-measurable and its expectation
value is e (03BC, p). Moreover, if: p is ergodic, the limit is p-

almost surely equal to e p).

Proof : see Georgii [5], Satz (7.7). 
-

If cp belongs to6l,

exi sts and defi nes the "press ure" P ~~p ~ . P (w) is a strictly
convex function on 03. If p and 0 belong tod3,

Proof : see Ruelle [131 and Griffiths, Ruelle [7].

Before stating two useful other results due to Thompson,
let us define the notion of irreducible potentials. In § 7,

we shall try to clarify this concept introduced by Thompson a

bit mysteriously. After analysis, an irreducible vector poten-
tial appears, in some sense, as the "biggest" determining a

given system of partitions.

Consider a vector = (~, .... ~ ) of independent finite

range potentials ; let = (~., ..., 0 k be a vector of cluster

potentials such that there is a linear surjective mapping
T : Rk Rn with T Y = gl. Q is irreducible, if there is no in-

teger 1 : n  1  k such that T = TIT2 with T1 : R~ - R",
T2 : R~ - R , two linear mlppings sucht that T2 is surjective
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andiis not injective on R 1 but is injective on the set T 2 z&#x3E; .

Suppose the system of partitions 7r (~) is

determined by an irreducible vector y = (y1, ..., yn) of finite

range, linearly independent potentials. Let Ak be a sequence of

boxes tending to ZV in the sense of Van Hove ; suppose n is a

configuration such that

exists ; denote this limit p and assume there exists v in Rn
such that

(with V . 1/1 the euclidean scal ar product in Rn ~ . has finite

range :

uniformly in the finite configuration

with

and
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Remark : the first term of (2) is a special case of the

second one for 0 ; moreover,

be as in proposition 6.3 and sup-
pose p has finite range. If a translation invariant probability
~ is local ly positive, i .e. gives a positive measure to any

cylinder set, then there exists v E Rn such that :

Proof : see Thompson [141, theorem 2.2 and 1 emmas 3. 7 ( p. 69)
and 2.4.

Proposition 6.3 can be extended to deal with the coherent
~ 2013

system of partitions 7r associated to a family of potentials y.

I f the hypothesis of proposition 6.3 holds
with 7r’(V) replaced by 7r(V) as only change, then

Proof : let L be the maximum range of the potentials 
denote by A k the subset of points of A, such that their distance
to Ac is strictly greater,than L ; according to Thompson’s defi-k 

- v
nition of Van Hove’s convergence ([14], p. 9), A k tends to Zv.

^v 

As Z%0 
k 

((n)Ak) is less than ZP 
k 

((n)Ak), proposition 6.3yieldsAk, ALI (’?)ALI
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On the other hand, if we denote

,by proposition 6.3 :

and proposition 6.5 follows. 

Theorem-6.1 - Suppose the following :

belongs to 6 ;

b) the system of partitions n (y) is given by an irreducible
vector = (Oil ... , of finite range, i ndependent potentials ;

c) A is ergodic, locally positive and for almost all confi-

guration n :

Then 03BC is a Gibbs state associated to potential p + v.y and,

consequently, 03BC belongs to C(p, y, n).

Remark : if partition 7rv-(V) is determined by a reducible

vector of potentials, we’ll see in § 7 there exists an irredu-

cible vector determining the same partition.

Proof :

1. Let us first suppose v has finite range. As 03BC is ergo-

die; converges to.e (p, ~) and

(proposition 6.1).
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2. For It-almost all n,

with v ~s in proposition 6.4. The functions

are uniformly bounded, equi-integrable and therefore, converge
1 

also in L - norm to P (w + v.0) + v. e (P, 

3. So we have :

The last inequality follows from the classical vari ati onal prin-
ciple for Gibbs states. From s (p) - e v.1/J) - P (cp + v.1/!) = 0,
we conclude that 03BC belongs to C(p + V.T) and as readily seen I

V, the way, observe that :

4. If ~ has infinite range, consider an increasing sequence
of boxes A k tending to Zv and define a sequence of potentials pk
with

if there is a translate of A included

in Ak

otherwise
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Let proposition 6.2 and
the fact that

As ~ is locally pos i ti ve, proposition 6.4 appl i es ; ’ 
°

such that

5. Tu-prove that v tends to v and f(vk) to f (v) as k

tends to infinity, observe that the equicontinuous sequence f k
n 

k
converges uniformly to f on all compact sets of R . Then use

some topological or geometrical arguments.

6. Reasoning as in Ruelle f 131 , for the ’pressure, we have

for any A, 17, k :

7. Using successively 5, proposition 6.5, 2, 6, 3, we get :

So, we may conclude as in 3.

As a by-product, we have :

Corollary 6.1 - Under the hypothesis of theorem 6.1, the
’"r"’ ’ 

~

specific entropy of the canonical partition n(y) is equal to

zero :
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Theorem 6.2 - Let (’Pi y, 7r) be the set of translation

invariant canonical states associated to a potential ~, with
_ 

~ 
-

partition 7r(V) determined by an irreducible vector V of finite
range independent potentials. The subset of translation inva-

riant locally positive probabilities in 9. ~, 7r) is exactly
the convex set

7. REDUCIBLE POTENTIALS

a) In this chapter we study completely the concepts of re--

ducible and irreducible potentials and relate them to the system
of partitions they induce. Let us first give some notation. 

·

Denote vect (~1’ ... ~ ) the real vector space generated by the

potentials ~i . Consider a finite range potenti al  as a linear
combination of cluster potentials, i .e. 8 is ~a cluster- potential
if there is a finite subset X of Zo such that

1· if A is a translate of X and 
0 

0 otherwise.

C (~1’ ..., ~n) denotes the set of cluster potentials On
are made of. In the sequel , we abbreviate "independent finite

range" potentials by i.f.r: potentials ; V(y) denotes the set

of values taken by V .

Just before proposition 6.3, we defined the concept of"ir-
reducible vector (y1, ..., yn) of i.f.r. potentials".
Thompson [14], p. 37, proves this definition independent of the
choice of vectors ; in fact we can take’ for 8 a vector made of

the cluster potentials ari-si ng i:n ~ , A vector V i s

reducible if not irreducible.

b) Let (~1’ On be a vector of i.f.r. potenti al s ;
the vector i§’ = ... , On’ of i . f . r. potenti al s is a strict

reducti on of ~ if there are linear mappings
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with (

. k 
t 

1 2013and T1 is one-to-one on T 2 Z , but not on Rl. We call 1/J a
reduction of ~ if ~’ is a strict reduction of # or if there is

a linear permutation P of R n such that y’ = P ~.

Remark 1 - If i5’ is a strict reduction of is reducible

and 1 &#x3E; n.

Remark-2 - The re 1 at i on "is a reduction of" is an order

relation.

Remark 3 - If V is reducible, it has an irreducible strict

reduction ~’ = (~., ..., ~.) with ..., 4ii) included in

vect (C ... On)).

c) Thom~son ([14], p. 35) proved that if ib’ is a reduction

of ~, then V = vv iff = vvi for-every

finite part X of Zv and every configurationsco, ~. This is because

T1 defines a bijection between and V(©). It means that y

and V’ determine the same systems of partitions : in this case

we’ll call y and 11’ n-equivalent. We can prove a kind of con-

verse of Thompson’s result.

Theorem-7.1 - Let V ° ° ° ’ ~), ° ° ° ’ ~) be

two n-equivalent vectors of i.f.r. potentials. If 1 &#x3E; is

reducible ; moreover either ~’ is irreducible and is a reduction

of i5, either V’ is reducible and ~’ admit a common irreducible

strict reduction. If 1 = n, either ib, are both irreducible

and there exists a linear permutation P of R nwi th = P ~,
either 1/J, ib’ are both reducible and have a common irreducible

strict reduction.
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Proof :

1. With a view to prove the reducibility of W, if 1 &#x3E; n,

we may suppose c vect (~~ ..., ~~) ; otherwise,
construct a family ...,.1/1 II} with = nj. for i = 1, ..., 1

1 m "

and the other potentials choosed ’among so that

.... ~) is included in vect and ..., 

is an independent family ; in that case, = 
..., 

are r-equivalent.

2. Let C (~., .... ~~) = {O .1k 1 0 k andta corresponding
vector. A linear mapping T 2 R~ - R is defined by T2 Õ = ~I.
Then define R n linear, such that, T vl = V ; T 1 is not

injective as 1 &#x3E; n. But T 1 is injective on the set 

because Ti v (.) = (.) and y, y’ are n-equivalent. The set

V(i$’ ) is included in T 2Z k as is included in Z k ’

3. From the study of we can infer that T 1 is injec-
tive on T 2 z . The set of values taken by ~’ contains a basis

of R (as the set of values of 0 does) ; Möbius’ inversion for-
mula implies that il’(i§’ ) also contains a basis ..., of

R~ . As all 1/Ii are finite range potentials, contains the

set K of all linear combinations with non negative integer coef-
ficients of v 1$ ... 9 Suppose there exists v in T~ Zk. wi th
v 0 0 = T 1 v ; it is always possible to find w in K such that

w + v is again in K ; then T 1 w = T, (w + v) which is impossible.
So, 0 is the only point of T 2 Zk in the kernel of T, ; this im-

plies T 1 is one-to-one on T 2 zk.

4. If {~i..... ~ } is included in vect (~., ..., v
is clearly a reduction Suppose ~’ is irreducible. If

1 = n, vect (41 is ..., 1/In) = vect (1/Ii’ 3, 41i ) and 1/1 is irredu-

cible ; when 1 &#x3E; n, the theorem is also proved. If V’ is redu-

cible, consider an, irreducible strict reduction of i$’ (remark
7.b.3) ; it is also an irreducible strict reduction of (remark,
7.b.2).

If {~i..... is not included in vect (~., .... ~.),
consider a vector V" as considered in part 1 of this proof ;
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is a common strict reduction of ~, i$’ and an irreducible strict

reduction of both can be found.

Remark : point 3 of the proof shows that the condition for

a vector of i.f.r, potentials to.be reducible may be weakened
without changing the content of the notion : it is sufficient

to impose T 1 to be one-to- o ne on ’I~(T2 B*).

1 f = (~ , ... , ~r ; is a vector of i . f. r.

potentials the set of all irreducible reductions of is the

set of all basis of some linear subspace of vect (C (~p .... ~n»;
the set of all vectors of i . f . r. potentials «-equivalent to ~
is included in that subspace.

Proof : there i s al ways an i rreduci bl e reducti on of , ~ in
vect (C ..., ~r ~~ ; consider another irreducible reduction
Tot of ~ ; ~’, ~" are 1r- equivalent ; by theorem 7.1, they are

reductions of each other and have the same number of components.
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