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VARIATIONAL PRINCIPLE, CONJUGATE CONVEX FUNCTIONS

AND "THE EQUIVALENCE OF ENSEMBLES"

Marc PIRLOT

Sumnary

In classical statisti6al mechanics on a lattice, we use the theory of

conjugate convex functions to prove a (conjugate) variational principle
for the entropy and to give a quite general explanation of the

"equivalence of ensembles".

1. Introduction and notations

In this paper we show how the abstract theory of conju-
gate convex functions (generalizing the Legendre transforma-
tion) can be used to formulate and analyse completely the

problem of "equi val ence of ensembles" in Statistical Mecha-

nics on a lattice.

We show that the results obtained by Lanford [ 6] are not subordinated

to the possibility of constructing a thermodynamic potential (e.g. Helmholtz’
free energy) as a. thermodynamic limit of local quantities but that they are
of a very general nature. Our approach is close to the physicists’one.

Moreover, the results established here for compact spins on Z" extend
without difficulty to any model for which a vari ati onal principle is avai-

1 able.

The notion of conjugate convex functions was already used or mentioned
in [ 7] , [ 9] and by Yightman in the preface of [ 5] but results like our theo-

rems 2 and 3 were not derived there.

In § 2, we remark that the usual vari ati onal principle ex-
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are conjugate convex functions. From that, follows immedia-

tely the "conjugate" variational principle for the entropy
(Ruelle and Israel gave much more complicated proofs : see

[5]).

The third paragraph provides a key. for understanding the

equivalence of the ensembles. It is proven under a mild con-

dition, that the states giving a fixed mean energy to some po-

tentials and the value of the free energy (or more general
thermodynamic potentials) corresponding to that mean energy,

are equilibrium states (’i.e. tangent to the pressure). Mathe-

matically, one shows that a "parti al " conjugate of the pres-
sure on a subspace of the interactions space is related to the

entropy in the expected way.

Finally, we only consider partial conjugates of the pres-

sure on a finite dimensional subspace on which the pressure

is strictly convex. We investigate the mild condition men-

tioned above, draw some physically relevant consequences about

the. shape of the. thermodynamic potentials, give a precise for-

mulation of the equivalence of the ensembles and mention a

version of Gibbs Phase rule.

We consider the general model of compact spins on Z".
Let 00 be a compact metric the borelian a-algebra

o 0

on Qo and Ào a probability on (Q0, F0).

The space of configurations = with the product
topol ogy, i s compact and metrisable ; the a-algebra (Ç is the

product of the a-algebras (F on each copy .

For A a finite part of Zv, s2(A) : _ (S~ ) , is the pro-

duct a-algebra on Q(A) and ÀA the product meas.ure on

(n(A), We denote by the restriction of a configu-
ration w G Q to A.
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An interaction potential is a family of continuous
functions w~ : Q(X) - R, indexed by the finite parts of Z".

§£is the Banach space of transl ati on. invariant potentials
with the norm

Another space of interest is I, the space of invariant

potentials normed by 
I

One defines the usual thermodynamic functions as follows,
the limits being taken along sequences of finite boxes A ten-

ding to infinity in the sense of Van Hove (see [5] for proofs).
For 11 E ë,I, the set of translation invariant probabilities on

(Q, 6’), one defines entropy s(p) by :

s(p) =1 if this expression makes sense

- oo othe rwi se

Entropy is an affine u.s.c. functi on ; - ~  s(p)  0.

If p and p E B, the mean energy e(p, the af-

fine continuous function on (b defined by :

The pressure P is a continuous (Lipschitzian) convex

function defined for any w in 8 by :
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THEOREM 1. (Variational principle, [ 5] ~. For 

The supremum --all equilibrium states 

2. Con j ugate variational principle

Let 6 be a Banach space (in fact a locally convex linear

topological space is enough) and 6£* its dual. Let 6E* be en-

dowed the weak-topology and d’with the weak topology. . Wi th

those topologies, B and B* are weak duals of each other (see
e.g. theor. 1, p. 112 ~ . There i s a one to one corres-

pondence between the set r(~) of weakly closed ~.1. s. c. ~ , pro-
per (not i denti cal ly equal to + ~), convex functions on I and

of weakly closed~ proper, convex functions on

0. Let f belong one defines a function f~ on 0152&#x3E; ~
by :

f* is called the conjugate of f. As is well-known ([3], [8]),
f~’ belongs to T($*) and

Reci procal ly, starting with g we define
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and due to t,he weak duality between B and B*, it is possible
to prove, in the same way as for f * , that g~ belongs to 

and .

Let us define the weak * lower semi continuous, proper,
convex function t (a) on 6*, as

if there is

othe rwi se

The . def i ni ti on is unambiguous as two different p cannot yield
the same a. By the direct variational principle (theor. 1) : :

As P is the conjugate of t, P is in F-(8) and

One sees that t (a) is finite iff a is P-bounded, i.e. if

there exists a constant c in R such that for any ~ in 6 :

c

The following three properties are all immediate conse-

quences of what precedes. Corollary 2.1 is theorem I I .3.4

i n [ 51 and corollary 2.2 implies theorem 11.1.2 in [ 5] .

THEOREM 2 : The conjugate of P i s the functi on t : :

othe rwi se
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For any 6 the conjugate + . is t a - a(e).

COROLLARY 2.1 (Conjugate variat-ional principle) For every

p in ~~ : 
’ ’

COROLLARY 2.2 q e B* is P-bounded iff there exists u in COROLLARY 2.2 cc is P-bounded iff there _in EI
such that = - e(p, «.0) for and s(p) is finite

iff t (a) is finite.

3. Partial conjugates of the pressure

Let b’ be a linear subspace of 19 For instance (Z’ is

finite dimensional and generated by the independent components
= (¡PI’ ..., &#x26;~), ~i in 8. physically relevant situations

in the model where 0 0 = {0,1} are the :

a) canonical description : n = 1, ¡PI = i if Ixi = 1

and wX = 1
~0 otherwise

bLmicrocanonical description : n = 2, ~. is the same as

in the canonical description and ¡P2 describes the interactions

between the particles.

The partial conjugate of P on 6 + with e in 01, is

the convex, 1 s.c. -function F(e, a’), a’ ’G defined by :

The supremum defining F is not always attained (see theor. 4

below, for the case dim 6’ is finite).
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THEOREM 3. a’) inf [ t a - a 8 ; I =all
and the i nfimum i s reached for ever a’ I i n ’

Proof . It i s clear ( by theor. 1 ) that F(0, a’ )  t (a) - a(0)
for any a agreeing with a’ on ~I. Suppose first that a’

is P(o + .)-bounded on 6’ , i.e. there exists c E R such that

P(6 + p) &#x3E; a’(p) - c for every p in B’ . This impl ies F(0, a’ )
is finite for any in t’ :

The second member i s convex, conti nuous in f so that by Hahn-
Banach’s theorem, there is a E B* agreeing with a’ on ’ and

satisfying the same inequality as a’ but for any w in 6. So,
a is P-bounded with constant F( e , a’) + a(e) and :

This proves the theorem when a’ is pee + .)-bounded on 6)’.

If it is not, F(e, a’) is infinite and no a E-= 0 agreeing with
a’ I on 6’ is P-bounded so that t (a) is also infinite for those

a (theor. 2 and cor. 2.2).

COROLLARY 3 .1 I f the re i s cp E 6~’ s uch th at F(8, a’ 

- P 8 + ~p , then there exists at least one probability 

sati sfyi ng - = a’ s~ for all w in g’ and such that

Any such probability p is an equilibrium state for the oten-

tial e + ~p.
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From the physical point of view, it is a nuisance that

the supremum defining F(e, a’) is in general attained for

several potentials p of ~’ . It is due to the fact that P is

not strictly convex on (P.) (nor on 65’).
From the results stated in [10], one infers that P wi ll be

strictly convex on a linear subspace D of B (or on e +2,
0 G I) if i contains at most one potential of each class of

physically equivalent potentials (for a definition, see [ 10] ~,
For instance in the case where n = ~0,1} , P is strictly con-
vex on the space of lattice gas potentials ([ 4] ~ .

4. Consequences

a) In the sequel , we consider a subspace 2 on which P is

strictly convex and which is generated by a (~1’
1... 9 *n) of n independent potentials of 9. A linear form a

n , 
_ n _ _

given by a vector u of !R" such that u = - a(y). By
theorem 3, we have :

- - n E EI eI o0Denote by the set y) e Rn; 11 E 
This is precisely the set of points u of Rn on which F ( e, u)
is finite (by cor. 2.2) for all e in ~. As P is strictly
convex on 0 +I , by [ 8] , theor. 26.3, F(6, . ) is essentially
smooth, that is :

1) int K(*) is not empty ;

2) F( 6, . ) is differentiable throughout int K(~)

3) the norm of grad F(e, u) tends to infinity as u tends

to the boundary of 
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The gradient of F(e, "U-) is the vector v of Rn such that
r 

/

THEOREM 4. The supremum defining F e, u is exactly attained
on the interior of the convex bounded set K(y).

Proof. In view of the remarks made before, it only remains to

prove that if u belongs to the boundary of K{1P), the supremum

may not be attained. Suppose on the contrary that the supre-
mum is reached for some v E Rn. There exists y E Rn such that
Y. u = mi n [y.z ; K(&#x26;)] ; defines a subgradient of the
function P(k): = P(o + v.~, + k F.§),k 9 R, in k = 0. As P(k)
is strictly convex and finite for all k in ~, its left and

right derivatives P’ (k) and P+ (k) are increasing functions.

So, there is a point k where - Fl§  P’ (k)  Po (k).
But P~ (k) = - for a certain z in K(V) , because equilibrium
states are invariant probabilities with finite entropy. This

is in contradiction with the hypothesis on y.

COROLLARY 4.1. If p is s a translation invariant Gibbs state,

then i s an i nterior oint of 

Proof. Let p be an invariant Gibbs state associated to 

then defines a subgradient to P in 6 + ~.$ for e = ~p - ~.$
and the supremum defining F(6, e(p, ~)) is attained.

Remark. In the case where P 0 is a finite set and À the nor-
2013201320132013 o 

_ 

- 0 II .
malized counting measure, the set K(y) is compact 

compact and s(p) is a bounded function.

b) 

According to theorem 3, a function like F(0, u) may be

interpreted as a thermodynamic potential (see [ 1] ). For sim-

licity suppose n = 1 so that v = (y ) . If there is a phase
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transition in 0 and an order parameter for that tran-

sition, then the graph of F(e, ul) presents a flat (horizon-
tal) part. To compare with the physical usual formalism, see

for instance [ 2] : the extreme values of, u on the flat part
of F( 6, ul) coincide with the two minima of the function used

by the physicists.

. In fact, this provides a better description than the

usual one, as can be seen with the v i-u1 diagrams (e.g. p-V
diagrams, ...) relating two conjugate parameters (intensive

vi, extensive ul) : Maxwell’s equal area rule has not to be

invoked as the flat part is naturally obtained. The 

diagram is the representation in’(uI’ v ) -axi s of the set of
d F 

1 i
couples (Ui , - which are the couples minimizing1 

1

F(e, ul) + v. u1 or, by conjugation, P(o + v- *i) + v ul-

c) Equivalence of ensembles

A possible interpretation of the "ensembles" and their

"equi valence" is the following. Consider that the fundamen-

tal problem of statistical mechanics is to determine the cou-

p les (.p, ll), .p E ~ , C- associated to a given situation.
An extreme case is the grand canonical description where p is

completely known (up to temperature, chemical potential, ... :

all intensive relevant parameters are known) and p totally un-

known ; the set j(w) of associated probabilities is the set of

Gibbs states for w (here we only consider the set of

invariant Gibbs States). A gene ral i zati on of the canonical or

mi crocanoni cal setting is the case where one only knows that
the right potential is a linear combination of some potentials

(generating D) with unknown coefficients (intensive
parameters) ; but on the other hand, one knows the values of

the extensive parameters conjugated to the unknown intensive

parameters, i.e. one knows the mean IF of the observables asso-
ciated to 1jJ = (tP1" ... , ~, n ) ; the +2 , u) of . (inva-
riant) states associated to the probl em is composed of the
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probabilities p E satisfying e(p, ~) = u and e(p, 6) -s(p)
= inf [e(v, 0) - s(v) ; V E 2~, e(v, = ul The other ex-

treme case ("absolute microcanomcaT") would be a complete
knowledge of p and a total ignorance about p; it is what lies

under the conjugate variational principle (cor. 2.1).

torollary 3.1 and theorem 4 allow to analyse the connec-

tions between G0(0 + v.w) 

1. If u is an interior point of K(T), we have in genral

0 +tD , ’u) g 10( 6+ for v conjugated to G; Both des-

criptions are equivalent iff + ~~)) = 1 or, in the pre-

sence of phase transition, if all probabilities of 4,(6+ 
give the same value to e(., ~), i.e. if there is no order pa-

rameter for the. transition.

2. If 5 is not in int no "grand canonical" descrip-
tion can be given butt ( 0+.8,-u) is non-void when u belongs
to the boundary of 

d) 
One can prove without change but in our much more gene-

ral setting, the main esult of 71 , theorem 1 : it says es-

sentially that if fi = vect n } contains a represen-

tative set of order parameters for a phase transition in 6

(i.e. two invariant equilibrium states for 0 that don’t differ

are equal), then the number of pure phases (ergodic equi-
librium states) for 6 is less than or equal to n+1.
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