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AMARTS OF FINITE ORDER AND PETTIS CAUCHY SEQUENCES OF BOCHNER

INTEGRABLE FUNCTIONS IN LOCALLY CONVEX SPACES (*)

Dinh Quang LUU

R6sumg. Dans cet article, on introduit et examine la classe des amarts

d’ordre fini à valeurs dans les espaces de Hausdorff localement convexes

quasicomplets. On donne une condition nécessaire et suffisante aux termes

des amarts d’ordre fini pour qu’une suite adaptee des fonctions fortement

integrables soit de Cauchy pour la topologie de Pettis.

Summary. In the paper we introduce and examine the class of amarts

of finite ordre, taking values in Hausdorff locally convex quasi-complete

spaces. We give in terms of amarts of finite order a necessary and

sufficient condition under which an adapted sequence of Bochner inte-

grable functions is Cauchy in the Pettis topology.

(*) 
The paper was written during the author’s visit at the University
of Sciences and Technics of Languedoc 1984. e
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§ 1 INTRODUCTION.

The extension of Bochner integrals in Banach spaces to locally

convex spaces (l.c.s’s) are well-known (see, e.g. [ 1,5,7] ) , Let E

be a l.c.s. and Ll(A,E) the l.c.s. of all E-valued Bochner inte-

grable functions (see [5]) , defined on some probability space

(Q,A,P) . Suppose that A&#x3E; is an increasing sequence of subo-

fields of A and  fn&#x3E; a sequence in L1 (A, E) , adapted to A n &#x3E; .
Call f n &#x3E; an amaxt of finite order, if for each d E N == {1,2,...,} ,

the net f 
1" C- Td converges in E , where T d denotes the

set of all bounded stopping times each of which takes essentially at

most d values. In particular, if the net is convergent for d = °°

with U T d then f &#x3E; is called, as usual an amart.. Obviously,
N 

n 
y

every amart is that of finite order. A simple remark shows that there

. i,s a real-valued amart of finite order which fails to be an amart.

The main purpose of the paper is to give some characterizations of

amarts of finite order in Hausdorff quasi-complete l.c.s’s and to

find in terms of amarts of finite order, a necessary and sufficient

condition under which an adapted sequence in is Cauchy in

the Pettis topology. The most important result used in the paper is

Theorem 9 [81 which can be applied just to Hausdorff quasi-complete

l.c.s’s.

§ 2 PREMIMINARIES.

In the sequel, let be a probability space, E a

Hausdorff quasi-complete l.c.s. with the 0-neighborhood base U(E) .
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Given U E U(E) , let U° and p U denote the polar and the continuous

seminorm, associated with U , resp. For every vector measure p :

A -~ E and U e U(E) , let define

where denotes the collection of all finite A-measurable par-

titions of Q ,

Let V(A,E) or S(A,E) , resp. denote the space of (all

V-equivalence or S-equivalence classes, resp. of) E-valued V-bounded

or S-bounded measures p A -~ E , resp. Thus the V-topology or

the S-topology of V(A,E) or of S(A,E) , resp. is generated by the

family of seminorms I U E UtE)) or (SU I U E U(E~) , resp.

In what follows we shall need the following result whose proof is similar

to those, given in [12 , 1.2.4 and 1.3.4J for the spaces

e-topology) and 1 II-topology).N E-topology) and 
N II-topology).

Lemma 2.1 . Let E be a Hausdorff quasi-complete l.c.s. Then so

are spaces fV(~,E) , V-topology) and (S(~,E) , S-topology).

Let be the l.c.s. of all (equivalence classes of)

E-valued Bochner integrable functions f : ~ .~ E (see, [5 D ,

topologized by the family of seminorms 
’
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Call the topology to be the Bochner topology of 

It is known that every f E is Pettis integrable. Therefore,

one can regard B-topology) as a linear subspace of V(A,E)

using the following identification

Furthermore, with the Pettis topology, defined by the following

family of seminorms

is a linear subspace of S(A,E) 4 Other properties of are

not known. But using the arguments, analogous to those, given in [ 21

for Banach spaces we can establish easily the following result :

Lemma 2.2 . Let u E S(A,E) , U E U(E) and f E L i (B, E) for some

suba-f ield B of A . Then

§ 3 AMARTS OF FINITE ORDER AND PETTIS CAUCHY SEQUENCES IN 1.

Hereafter, let  An &#x3E; be an increasing sequence of suba-

fields of A 
n and A = a(E) and Too the set of all

N 
n

bounded stopping times . A sequence  1-1 n &#x3E; in or  f n &#x3E; in
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resp. is said to be adapted to if each p n E S(A?E)
or fn E LI(AnE) , resp. We shall consider only such sequences.

be given and Define

It is known that  An&#x3E; is an increasing family of subo-fields

In the sequel, a sequence f&#x3E; in L I(A,E) is said to

have a property (*) , if so has the sequence pT,&#x3E; of measures,

associated with f n&#x3E;, given by

Clearly,

Definition 3.1 . A sequence p n &#x3E; is said to be a martingale

Definition 3.2 . A sequence p &#x3E; is said to be an amart of finite

order, if for each d E N , the net converges in E ,

where T is the set of all bounded stopping times each of which
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takes essentially at most d values . Further, if the net converges

for , then as usual, p &#x3E; is called an amart (see, [41, [2])
n 20132013201320132013201320132013201320132013201320132013

Obviously, ever amart is that of f ini te order . The simple remark given

at the end shows that the reverse is false even for the case, where

E=R = (-oo, oo)

Lemma 3.3 . Let  p &#x3E; be a sequence in S(A,E) . . Then the follo-

wing conditions are equivalent :

(1) un&#x3E; is an amart of finite order.

(3) can be written in a form

where a &#x3E; is a martingale and 0 ri&#x3E; a Pettis potential, i.e.

(4) There is a finitely additive measure E , call 1100 the

limit measure associated with 11 &#x3E; , such that each
’2013"201320132013201320132013201320132013201320132013201320132013201320132013201320132013 n 20132013201320132013201320132013201320132013

Proof. (1 -~ 2) Suppose that  1.1 &#x3E; is an amart of finite order.
2013201320132013 

n

Then in particular, the net  uT(Q) &#x3E; T E T2 converges in E . Let

U E U(E) and e &#x3E; 0 be given. * Then there is some T2 such that
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if then

Let m,n E N with m &#x3E; n &#x3E; T e&#x3E; and A « A n . Let define ’cr = m 1Q
and T = n I A + m 10 BA 9 where 1B denotes the characteristic

function of B E A . Obviouly, o, t, E TZ with T &#x3E; T(e) . Hence

by (3.1) , it follows that

Consequently, by Lemma 2 ~ 2 , we get

This proves (2) .

(2 -~ 3) Suppose that &#x3E; satisfies (2) . It is easily checked

that for any but fixed n E N , the sequence  p &#x3E; 00 is Cauchy
m,n m=n

in the Sn-topology of S(A n E) . Then by virtue of Lemma 2.1

must be convergent to some an 
E S ( n,E) . It is not

m,n m=n n n

’"hard to prove that   a n &#x3E; is just a martingale. Moreover, if we

put (n E N) , then the convergence of 
n n n 

’ " 

m,n m=n

to an and (2) imply

This proves (3) .
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~3 ~ 4) Suppose that satisfies (3) . Let define

Obviously, uoo satisfies (4) .

(4 + 1) Suppose that 11 n &#x3E; satisfies (4) .  Let d G N be given.

For each U E U(E) and s &#x3E; 0, by (4) there is some N

such that

Let T E T with T &#x3E; neE) . The last inequality with Lemrna 2.2 yields

This implies that the Td converges in E (just to

1-t 00 (Q) . Since d G N was arbitrarily taken, by definition,  p n &#x3E;
must be an amart of finite order. This completes the proof.

Remark. The inspection of the proof shows that u n &#x3E; is an amart

of finite order if and only if for some d &#x3E; 2 , the net  ~,T &#x3E; TE Td
converges in E .

Suppose now that E has the Radon-Nikodym property and  fn &#x3E;

a Bochner uniformly integrable amart of finite order in Ll(A,E) .
Clearly, there is some f E such that
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where uoo is the limite measure, associated with  f n &#x3E; . Moreover,

the martingale a &#x3E; , associated with  f ~ which exists in
, 

n n

Lemma 3.3 has a form 
°

A
where E n(.) is the A -conditional expectation operator on Lj(A,E)~ 

. 

A
(see, [5J) . This implies that the margingale E n(f) &#x3E; is

regular, i.e.

° 

But we note that as Proposition 2.1 in [10] is easily extended to

regular martingales in Hausdorff quasi-complete l_c.sts, the

. An .

regular martingale  E (f)&#x3E; must be convergent to f in the

(Bochner) Pettis topology. This with Lemmas 3.3 and 2.2 proves

the following theorem ;

Theorem 3 . 4 . Le t E be a Haus dorf f quasi-complete 1, c . s . wi th

the Radon-Nikodym property (see, [ 51) and  fn&#x3E; a Bochner uniformly

integrable amart of finite order in Then  fn&#x3E; converges

to some f ~ in the Pettis topology.

Now let P f(E) denote the space of all closed bounded

nonempty subsets of E . For U(E) and A,B E f ’
we define



100

Then as in [ 31 , , the Hausdorff topology of P~(E) is defined by the

family , hu I U C- U (E) &#x3E; of semi.-distances. Next, a subset F of E
U

is said to be totally bounded if for each U E U(E) , there is a finite

in F such that
jj=

Thus using the same proof of Theorem 11.4 in [31, we can establish

easily the following result. 
’

Lemma 3.5 . Let P cb (E) be the space of all closed totally bounded

non empty subsets of E . Then with the Hausdorf f topology, Pcb (E)
is a closed subspace of Pf(E) .

In connection with Theorem 2.4 , we note that even for

Banach spaces E , (LI(A,E) , Pettis topology) is complete if and

only if dim E  ~ . Therefore it is useful to look for necessary and

sufficient conditions under which a sequence in is Cauchy

in the Pettis topology. This is the aim of the following main result

which extends Theorem 2 [ 13] to any directions.
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Theorem 3.6 . A sequence  fn &#x3E; in is Cauchy in the
20132013201320132013201320132013 mr

Pettis topology if and only if  fn &#x3E; is an amart of finite order

and the limit measure associated with it has a relatively compact range.

Proof (-~) Let  f n &#x3E; be a sequence in Ll (A,E) . Suppose

f irs t that  fn &#x3E; is Cauchy in the Pettis topology and p n&#x3E; the

sequence of measures associated with fn &#x3E; , i.e.

Then for every U E U(E) and £ ~ 0 , one can choose some n(E) E N

such that for all m,n E N with m ~ n &#x3E; n(E) , one has

This with Lemma 2.2 yields

Therefore, by Lemma 3.3 , fn~ must be an amart of finite order.

Now, let 1..1 be the limit measure associated with  11 &#x3E; . Define

and

where "cl" is the closure operator in E .
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Then by Lemma 1.1 [51 , every En (n E N) is a compact subset

in E . We shall show that E 
n 

&#x3E; is convergent to E 
m 

in the

Hausdorff topology of Indeed, let U E U (E) and e &#x3E; 0

be given. Since  f n &#x3E; is Cauchy in the Pettis topology, one can

choose some N such that for all m &#x3E; n ~ n(e) we. have

Consequently,

Thus one get

by letting m too.

Therefore,
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It means that the sequence  En&#x3E; in Pcb (E) converges to

E E pf(E) in the Hausdorff topology. Thus by Lemma 3.5 , it follows

that Pcb (E) - On the other hand, as E is a Hausdorff quasi-
oo cb

complete l.c.s., each F E is compact. Then so is E 
co 

.

Equivalently, p has a relatively compact range. This completes
oo

the proof of the necessity conditions,

(~) . Suppose now that ~ fn&#x3E; is an amart of finite order and

the limit measure associated with it has a relatively compact range.

Then using Theorem 9 [ 8 J , the same arguments, given by Uhl in

the proof of Theorem 2 in [131 and Lemmas 2.2 and 3.3 one

can prove easily the sufficiency condition, noting that  f &#x3E; isn -

Cauch in the Pettis topology if and only if for each U(E)

Thus the proof is completed,

the theorem wi th Lemma 1.1 [ 5 we ge t the

following corollary :

Corollary 3.7 . A sequence  fn&#x3E; in is convergent to

some f E in the Pettis topology i,f and only if fn&#x3E; is

an amart of finite order and the limit measure associated with it has

a Radon-Nikodym derivative in 

Remarks. A sequence  f n &#x3E; in is said to be a L1-potential,
if  fn &#x3E; converges to 0 in the Bochner topology. Thus by Corollary 3.7
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and Lemma 2.2 , every L1 -potential is an amart of finite order.

Further, a sequence  fn&#x3E; in L1 (A,E) is called an approximate

martingale if net / f is bounded. It is known (see [61)

that every real-valued amart is an approximate martingale. Thus by [ 9 J_,

there is a nonnegative real-valued amart of finite order which fails

to be an amart. Further, a sequence  fn &#x3E; in is said to

have a Riesz decomposition if f &#x3E; can be written in a form
20132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013 n 20132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013

where  g &#x3E; is a martingale in and h&#x3E; a L1-potential.
n 1 - n

Thus Lemma 2.3 shows that a sequence  fn &#x3E; in is
n 2013 i -

an amart of finite order if and only if it has a Riesz decomposition,

noting that on the Pettis topology is equivalent to the

Bochner topology. This seems to be a new characterization of sequences

in having a Riesz decomposition..
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