Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Probabilités et applications

F. COMETS

Un modèle de champ moyen, nucléation et bifurcation

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 85, série Probabilités et applications, n° 3 (1985), p. 87-90

http://www.numdam.org/item?id=ASCFPA 1985 85 3 87 0>

© Université de Clermont-Ferrand 2, 1985, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

UN MODELE DE CHAMP MOYEN, NUCLEATION ET BIFURCATION

F. COMETS

On considère un modèle d'Ising de champ moyen local sur le tore, qui présente deux états d'équilibre, dans l'asymptotique d'un nombre infini d'aimants, et à température suffisamment basse. A l'aide de techniques de grandes déviations, on décrit le comportement du système lors des transitions dynamiques d'un de ces équilibres à l'autre : il dépend crucialement de la température (phénomène de bifurcation), et de la structure fine des interactions.

Sur le tore $\mathbb T$ à d dimensions -identifié à $[0,1]^d$ - on considère pour chaque entier n le processus de spin-flip dont l'ensemble (fini) des sites est le réseau cubique, noté S_n , d'arête $\frac{1}{n}$, et de générateur L_n :

si f:
$$\{-1,+1\}^{S_n} \rightarrow \mathbb{R} \text{ et } \sigma \in \{-1,+1\}^{S_n}$$

$$\mathbf{L}_{\mathbf{n}} \mathbf{f}(\sigma) = \sum_{\mathbf{x} \in \mathbf{S}_{\mathbf{n}}} [\mathbf{f}(\tau_{\mathbf{x}} \sigma) - \mathbf{f}(\sigma)] \exp - \frac{\beta}{2} [\mathbf{H}_{\mathbf{n}}(\tau_{\mathbf{x}} \sigma) - \mathbf{H}_{\mathbf{n}}(\sigma)]$$

où : $\tau_{\mathbf{x}}^{\ \sigma}$ est la configuration obtenue en basculant le spin situé en $\ \mathbf{x}$ dans $\ \sigma$,

β est l'inverse d'une température

 H_{n} est le potentiel ferromagnétique de champ moyen :

$$H_{\mathbf{n}}(\sigma) = -\sum_{\mathbf{x} \in \mathbf{S}_{\mathbf{n}}} \sigma(\mathbf{x}) \ h(\mathbf{x}) - \frac{1}{2\mathbf{n}^{\mathbf{d}}} \sum_{\mathbf{x}, \mathbf{y} \in \mathbf{S}_{\mathbf{n}}} \sigma(\mathbf{x}) \ \sigma(\mathbf{y}) \ J(\mathbf{x} - \mathbf{y})$$

(h et J sont continues sur $\mathbb T$ à valeurs réelles, indépendantes de n ; J est supposée positive et paire).

La mesure de Gibbs G_n -la probabilité sur $\{-1,+1\}^{S_n}$ telle que $G_n(\sigma)$ soit proportionnel à $\exp\{-\beta H_n(\sigma)\}$ - est invariante pour le processus σ_t ainsi défini.

Dorénavant, nous identifierons la configuration σ_t et la mesure de magnétisation : $\frac{1}{n^d} \sum_{\mathbf{x} \in S_n} \sigma(\mathbf{x}) \delta_{\mathbf{x}}$, où $\delta_{\mathbf{x}}$ désigne la masse de Dirac au point \mathbf{x} ; de même, on identifiera les éléments \mathbf{u} de la boule unité fermée \mathbf{B} de $\mathbf{L}^\infty(\lambda)$ -où λ est la mesure de Haar sur \mathbf{T} , normalisée par $\lambda(\mathbf{T}) = 1$ - et la mesure \mathbf{u} λ .

On notera $\mathrm{M}_1(\mathrm{T})$ l'ensemble des mesures de Radon sur T , de variation totale inférieure ou égale à 1, muni de la topologie faible.

Le comportement asymptotique de G_n est étudié dans [1] par des techniques de grandes déviations. Les inégalités "à la Cramèr-Chernoff" sont complètement établies dans [2] :

PROPOSITION. Si E est un ouvert faible de M_1 (T) et F un fermé faible,

$$\begin{array}{lll} & \frac{1}{n\to\infty} \frac{1}{n^d} \log G_n(E) \geq -\inf\{V(u) \; ; \; u \in B \cap E\} + \inf\{V(u) \; ; \; u \in B\} \\ & \overline{\lim} \quad \frac{1}{n^d} \log G_n(F) \leq -\inf\{V(u) \; ; \; u \in B \cap F\} + \inf\{V(u) \; ; \; u \in B\} \\ & \text{où } V(u) = -\beta < h + \frac{1}{2} \; J * u, \; u > + < \phi(u), 1 > \\ & < , > \; \text{\'etant le produit scalaire dans } \mathbb{L}^2 \; (\lambda) \\ & \text{et } \; \varphi \; \; \text{la transform\'ee de Cramer de la loi de Bernoulli } \; \frac{1}{2} (\delta_1 + \delta_{-1}) \; . \end{array}$$

Notons P_n la loi du processus $\{\sigma_t \; ; \; t \in \mathbb{R}^+\}$, partant de la magnétisation déterministe σ_0 ; supposons que σ_0 converge faiblement vers $u_0 \in B$, lorsque n tend vers l'infini, on établit alors la loi des grands nombres :

THEOREME. P_n converge étroitement (si n $\to \infty$) sur $\mathscr{D}(\mathbb{R}^+$, M₁(T)) vers δ_u , où u est la solution de l'équation différentielle (ordinaire, sur $\mathbb{L}^\infty(\lambda)$): $\begin{cases} \frac{d}{dt} \ u_t = -2 \sqrt{1-u_t^2} \ \text{sh}\{\nabla V(u_t)\} \end{cases} \qquad (*) \\ \text{condition initiale } u_0 \\ \text{où } \nabla V(u) = -\beta \, (\text{h+J}*u) + \text{Arg th u est le gradient de } V \text{ en u.} \end{cases}$

Dans le cas h=0 et $\beta>\beta_C=[\hat{\mathbb{J}}(0)]^{-1}$ -on note $\hat{\mathbb{J}}(m)$, $m\in\mathbb{Z}^d$, le $m^{\text{ème}}$ coefficient de Fourier de \mathbb{J} -, \mathbb{V} présente deux minima globaux sur \mathbb{B} , les constantes \pm u^+ , et la mesure invariante \mathbb{G}_n converge étroitement vers $\frac{1}{2}$ $(\delta_{u^+}+\delta_{-u^+})$ sur $\mathbb{M}_1(\mathbb{T})$. Les événements décrits en introduction (le processus passe d'un voisinage de u^+ à un voisinage de u^+ relèvent des grandes déviations à la loi des grands nombres énoncée au théorème précédent.

THEOREME. Supposons u_0 continue, et $\|u_0\|_{\infty} < 1$; pour tout voisinage faible U de 0, T > 0 et $\varphi \in \mathscr{C}([0,T], B)$ vérifiant $\varphi_{O} = u_{O}$, $\underline{\lim_{n \to \infty}} \ \frac{1}{n^d} \ \log \ P_n(U_{\phi,T}) \ \geq \ - \ I_{0,T}(\phi) \ , \ \text{où} \quad I_{0,T}(\phi) \quad \text{est l'intégrale d'action du chemin } \phi,$ $\mathbf{U}_{\phi,T}$ le tube d'axe ϕ de diamètre \mathbf{U} sur l'intervalle [0,T].

Les techniques utilisées sont celles de [3] ; les hypothèses standard de régularité ne sont pas vérifiées, et l'approximation des trajectoires est délicate. Le résultat complémentaire suivant n'est pas encore totalement démontré :

$$\forall \ \underline{I_o} \geq 0,$$

$$\overline{\lim} \ \frac{1}{n^d} \log P_n(\bigcap_{\phi; I_0, \underline{T}(\phi) \leq I_0} \underline{U_{\phi, T}^c}) \leq -I_o.$$

L'intégrale d'action est explicite, mais compliquée. Cependant, si $u \in B$ est attiré par u (au sens de (*)), on a :

$$\inf \{ I_{0,T}(\phi) \ ; \ \phi \in \mathscr{C}([0,T],B) \ , \ \phi_0 = u^+, \ \phi_T = u, \ T \in \mathbb{R}^+ \ \} = V(u) \ - \ V(u^+) \ .$$

Comme dans [4], on en déduit que, lors des transitions étudiées, le processus de magnétisation passe au voisinage d'un des points col de la fonctionnelle V avec probabilité tendant vers l, si n tend vers l'infini.

[2] et [5], figurent des résultats d'existence et des expressions de points stationnaires pour V, dans le cas h = 0. Pour certaines valeurs de β se produisent des phénomènes de bifurcation ("apparition ou disparition" de branches de points stationnaires), qui sont liés à des transferts de stabilité (comme à la valeur critique β_{c}). La nature des points cols change elle aussi en fonction de β :

PROPOSITION. Supposons que $p \in \mathbb{Z}^{\hat{d}}$ vérifie : $\hat{J}(p) > 0$, $\hat{J}(p) > \max_{m \neq 0} \hat{J}(m)$, $\hat{J}(r) = 0$ pour tout $r \in \mathbb{Z}_p$. Alors :

0 est point col si et seulement si $\beta \in]\beta_{\mathbb{C}}, \hat{\mathbb{J}}(p)^{-1}]$ $\exists \overline{\beta} > \hat{\mathbb{J}}(p)^{-1} / \forall \beta \in]\hat{\mathbb{J}}(p)^{-1}, \overline{\beta}], \exists a > 0 \text{ (dépendant de } \beta)$

tel que les translatés de $th{a cos 2\pi px}$ soient des points cols.

Dans ce dernier cas, la transition consiste en l'apparitiion de "noyaux", en

nombre p si d = 1, dans lesquels la proportion de spins -1 est supérieure à celle dans l'équilibre u^+ , et qui grossissent tout en se chargeant négativement.

Les démonstrations des résultats figurent dans [2], ainsi qu'une étude de fluctuations et une simulation.

Références

- [1] EISELE-ELLIS. 'Symmetry breaking and random waves for magnetic systems on a circle." Z. Wahr. th. verw. Geb. 63, p. 297 (1983).
- [2] COMETS. Thèse de 3ème Cycle. Orsay (1984).
- [3] VENTSEL.- "Rough limit theorems on large deviations for Markov stochastic processes". Th. of Proba. & App. vol. 21, n° II p. 227 (1976).
- [4] VENTSEL-FREIDLIN.- "On small random perturbations of dynamical systems".

 Russian Math. Surveys 25 n° 1 (1970).
- [5] COMETS-EISELE-SCHATZMAN.- "On secondary bifurcations for some non linear convolution equation". Prep. n° 266, Univ. Heidelberg (1984).

F. COMETS Laboratoire de Statistique Appliquée Batiment 425, Université Paris XI 91405 ORSAY Cédex