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MALLIAVIN CALCULUS FOR TWO-PARAMETER PROCESSES

D. NUALART and M. SANZ

Abstract. In this paper we apply the Malliavin Calculus

to derive the existence of a density for the law of the

solution of a stochastic differential equation with res-

pect to a multidimensional two-parameter Wiener process.

AMS 1980 Subject Classification: 60H20, 60G30.

0. Introduction. In this paper we prove the existence of a density

for the probability law on RID induced by the solution of the stochas-

tic integral equations.

2 1 
z E R2 , where W = (W 1,....Wd). is a d-dimensional two-parameter+ z z z

Wiener process, x = (x1 ,...,xm)~ R7, and assuming some conditions
on the coefficients Al and Bi. If these coefficients are smooth, it

j

is known (cf. Cairoli [2] , Hajek [4 ]) that (0.1) has a unique

continuous solution, which has a particular Markov property. There

exists a transition semigroup corresponding to these Markov processes,

but it acts on continuous functions over sets of the form {(x,t), x~ s}

U { (s,y) , y~ t } and we cannot expect that the probability law of

Xi satisfy a second order partial differential equation.z
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In the case of an ordinary stochastic differential equation with

respect to the Brownian motion, Malliavin has developped in [6 ]proba-

bilistic techniques to show the existence and smoothness of density for

the solution of these equations under Hormander’s conditions. Alterna-

tive approaches to Malliavin’s theory were given by Shigekawa 18 ], Bis-

mut [1 ] and Stroock [9 ]. It is not difficult to extend the Malliavin

calculus to two-parameter Wiener functionals. However when we apply this

calculus to the solutions of (0.1) some technical difficulties appear,

in relation with the following facts:

i k
(a) The inner products (in the notation of Stroock) are

z z 
(

not solutions of a similar system of equations, because the stochastic

differentiation rules with respect to the two-parameter Wiener process

involve the presence of double integrals over the set {(z,z’)~E R2 x R2p g ’ + +,

(b) The system (0.1) do not provide a flow of transformations of

Rm. Moreover if we consider a linear system of equations, the solution

is not invertible, in general.

Here we have followed Shigekawa’s presentation of Malliavin Calcu-

lus, and using this theory we have proved the existence of a density for

the two-parameter Wiener functional X z assuming that the vector space

spanned by the vector fields A1, ... ,A , Ai vAi, 1  i, j  d, 
ijij k. 

1  i,j,k  d,..., at the point x (where denotes the covariant
i. j

derivative of A, in the direction of A. ), is Rm . This property is
j i.

strictly weaker than the restricted Hormander’s conditions, as we show

in an example. Actually we have proved (see [7 ]) that it also implies

the smoothness of the density. 
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1. Some results on Malliavin Calculus. The set of parameters will be

T = [ 0,1 ] 2 , with the partial ordering and only

means that and

will denote the rectangle {z E T,

The Lebesgue measure of a Borel

set B C R2+ is denoted by lB l .

Our probability space is the canonical space associated

to the d-dimensional two-parameter Wiener process. We also consider

the filtration .{Fz , z E T} , where F is generated by the func-

tions c Q , s  z} and the null sets of F. The family

{ Fz ,z E T} satisfies the usual conditions of [3 ]. &#x3E;

The following subset of Q plays an important role:

H = there i = 1,...,d, &#x3E; such that

dr , for any z E T and for any i } .

H is a Hilbert space with the inner product

A measurable function defined on is called a Wiener func-

tional. A Wiener functional F: 0 --~ R is smooth if there exists

some n &#x3E; 1 and a C2-function f on Rn such that

(i) f and its derivatives up to the second order have at most po-

lynomial growth order,
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Every smooth functional is Frechet-differentiable, and we have

We also need the operator L defined on smooth functionals as fo-

llows :

where

For any p &#x3E; 1, Lp will denote the space of Wiener functionalsH

F: Q ~ H such that E( 11 P)  If we fix w and a smooth
H

functional F , DF(w) : H 20132013&#x3E; R is a continuous linear map, and, so,

it may be considered as an element of H . In this sense we have DF E Lp,H
for any p &#x3E; 1 .

Let 1, be the space of real valued

Wiener functionals F such that there exists a sequence of smooth func-

tionals {F~, k &#x3E; 1} satisfying:

in Lp1

p2
is a Cauchy sequence in LH’ and

. P3
is a Cauchy sequence in L .

For a Wiener functional F E we def ine DF = lim DFk
k

and LF = lim LFk . * is a Banach space with the norm
k 

i ~ J

we will say that a sequence of smooth functionals 1} is an

approximating sequence for F if lim ( ifF - F k 11p+ IIDF - DF k 11p+
k 

K. P ~ P
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continuously differentiable function such that u and its first and

second derivatives have at most polynomial growth order. If we set F =

then and the following differentiation rules

hold:

The next result is the main theorem in Shigekawa’s paper [8 ] adap-

ted to the Wiener process with two parameters, and with a slight diffe-

rence consisting in the use of the space H(1,2;1). The proof given by

Shigekawa can be extended to these new conditions without any change.

Theorem 1.1. Let F = be an R -valued two-parame-

ter Wiener functional. We assume that F satisfies the following con-

ditions :

Then, the probability law of F is absolutely continuous with respect to

the Lebesgue measure.

In the next section we will employ this result to show the existen-

ce of a density for the law induced by the solution of a stochastic diffe-

rential system.

2. Application to stochastic differential equations. Consider mappings

A: Rm x Rn -----~ R. -n I2I Rd an d B: P,7 x R n 20132013~ f s u ch that
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(i) All their components have bounded and continuous first order

derivatives.

(ii) x - A(x, Q) and x -----~ B (x, 0) are slowly increasing
a S

functions, that is k(l + x, ) and + I xl )

for some positive integers a and S and positive constant k .

Lemma 2.1.. Let a = 2 z E T} be a continuous and adapted n-di-

mensional stochastic process such that for each p_&#x3E; 2, E {sup oJ 
z E: T

Consider a continuous and adapted m-dimensional process 
z

such that E {sup j X PI 00 for every p &#x3E; 2 , and fix v E T .

z ET 
~ ’

Then, there is a unique continuous and adapted n-dimensional process

Y = satisfying the stochastic differential system

and the following property holds:

The solution of ~?.1) (with an arbitrary initial point v) can be

approximated by polygonal paths, as it is stated in the next lemma.

k 2013k -k
For any k -&#x3E;- 1 we consider the set k of points (i2 ,j2 ) I

, or u=vuz with

k k k
v E k or with v C- S k or u=z . Define ~k (z) = sup u E k
uz and (z) - inf uE 

k 
u&#x3E;z .and yk(z) = inf { 

Lemma 2.2. Let a = T} and ak = I ak(z) , z E T } , ,
k &#x3E; 1 be continuous and adapted n-dimensional processes satisfying

for each p &#x3E; 2, and let X be as in the preceding lemma. Consider the
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process defined by (2.1). Consider also the

process given by

where is a sequence of continuous and

adapted m-dimensional stochastic processes such that for each p &#x3E; 2,

This result is a generalization to the two-parameter case of

lemma V . 2 .1 from [5] . ..

Lemma 2.3. Let X = (x1, ..., Xm) z E T be the process which sa-z z 
’ 

z

tisfies

where A: Rm and B: Rm &#x3E;R7 have bounded and continuous deriva-

tives up to the second order. Then for i=l,... m , ,, i ’ ’ ’

Proof. For any n &#x3E; I consider the process X2013 = de-
-------- y n&#x3E;1 p 

z 
(X 

z 
’ ’ 

z

fined by the recursive system

The random variables z E T are smooth functionals. We are going
z

to prove that , n &#x3E; 1} is an approximating sequence for Xi .
z 

g 
z
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First, by lemma 2.2 we have

and u - sup ~

Fix an element w E Q . Differentiating term by term we obtain

where E i du , and ei is the
. 11

From now on we will omit the depen-

dence on w .

Denote by the derivative of DX n,i in the sense
z ~ z

Then, and for r E R we have
z

For a fixed r let us consider the processes so-

lution of
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Applying lemma 2.2 to the processes

In consequence, is a Cauchy sequence in for any

p &#x3E; 1, and the derivative satisfies

for any h E H .

It remains to prove that is a Cauchy sequence in

Applying the differentiation rules we

have

where,

Consider now the stochastic differential system

with

It can be checked that
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any p ~ 1, and therefore, that n &#x3E; 1 } is a Cauchy sequence
z

in L , by lemma 2.2 applied to the processes

Theorem 2.4. Let X = (X’,...,km) be the solution of the stochas-
201320132013201320132013201320132013 z z z 

tic differential system (0.1), where Ai and B i have bounded and conti-
j

nuous derivatives of any order. Assume further that the following proper-

ty holds:

(P) The vector space spanned by the vector fields A ,...,A , " 31

at the point x has full

rank.

Then for any point (s, t) with st 1 0, the law of the random vec-

tor Xst admits a density function.

Proof . We have to check conditions (i) , (ii) and (iii) of theorem 1.1.

The first condition follows from lemma 2.3. Let Uz (r) be the process

introduced in the proof of lemma 2.3, which satisfies (2.2) , and call

S’.. ::;  DXI , &#x3E;H ° Then, f rom (2.3) we have
ij z z H 

*

where , for any r, the process { c 1(r, z) , z &#x3E; r} is defined as the so-

lution of the stochastic differential system

By Burkholder and Holder inequalities and Gronwall’s lemma it is ea-

sy to obtain the following estimate: 
-/,I

Therefore, by means of Kolmogorov’s continuity criterium, a version of

{ Et’r,z), r  z } can be choosen with almost surely continuous paths.

For each n&#x3E; I let be the process defined recursivelyFor each n&#x3E; 1 let J be the process defined recursively
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by the equation

The random variables ( n -&#x3E;- 11 are smooth functionals
J

and by a slight modification of lemma 2.3 one can see that they form an

approximating sequence for and that this approximation is uni-
j

form in r. The same conclusion is true for the random variables

{Ai (X ), n &#x3E;1 } and A (X).
r j r 

1

Therefore, after having noticed that

aw 
-- -

is a sequence of smooth

functionals we deduce that n &#x3E; 1 } is an approximating sequence
i.j

for S.. and so, condition (ii) of theorem 1.1 holds.
ij .

Set C = and C. 
* 

o kj
A ~ Cj-ll . By property (P) there exists a positive integer j 

0 
such

j-1 
Jo

that the linear span of U C. at the point x has dimension m.
j=o J

For each Q denote by K a (w) the linear span of

(A.(X .((w) ), Xl 0 , k=l,...,d} , and K +(w) = n K a(w) . . We
K x t 

k&#x3E; &#x3E; , x ’ *0, k=i , ... , d i , and 
0 

W&#x3E; &#x3E; 

s 
u 

°&#x3E; . ve

point out the following facts: (a) Kq(W) increases with 0. (b) By

the Blumenthal zero-one law, K +(w) does’nt depend on w a.s. (c) Let

p = inf {J , dim K 
c; 

&#x3E; dim K 0 +} . . p is a strictly positive stopping ti-
o 0+

me with respect to the filtration 0  Si , and p (w)

= 

K0+(w) ..
Assume that condition (iii) of theorem 1.1 is not satisfied, that

means P{ W , inf XTS(W)X = 01 &#x3E; 0 , where S = (S , and
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consequently

Then, using (2.4) we have

By (b) and (c) this implies that there exists X, IXI = 1 such that

P{ X ortogonal to K (LO) *cr  &#x3E; 0 ,

in consequence = 0 for all k=l,...,d.

Applying Itô’s formula in the first coordinate ( see [10] ), we

have ..have . 

A1 -

For any t) , os} is a continuous semimar-

tingale, which is equal to zero on a set of positive probability, in con-

sequence on this set

In particular,

Repeating the same argument as before to the continuous semimar-

tingale

for all A E C ; and recursively,2

which is contradictory with the hypothesis ~P). 0

In the one parameter case, the existence of a density for the so-

lution of a stochastic differential equation can be proved under Horman-



85

der’s conditions. Suppose that the vector fields B, Al,...,Ad have

bounded derivatives of any order greater than or equal to one. Then

the following assumption suffices for the existence of a density:

(H) The vector space spanned by 2 1  i, j1 d i j

w d, [A., [A., A]], 1 i,j, kd ..., at the point x is RID.
i 

Actually,a more general condition, using the Lie brackets

formed with the vector field B as generators would be suf f icient.

Cond i t ion ~P~ is weaker than (H) and, in f ac t , theor em 2 . 4 can b e

applied to a family of situations that did not appear in the one para-

meter case. Consider, for instance, the following example. Assume

1 2 1
that m=2, d=l 1 A2 1 = xl and x = (0.0). Then condition (H) does

not hold s and the one parameter solution t t t 
0 

s s

1 1 2 _ 2 1 2 _ 
t t t 

0 
s s

2 t ] satisfies 2X2 = (x1)2- t. However in the two-pa-2 t t t 
rameter case, theorem 2.4 can be used, and, for st 1 0, the joint dis-

tribution of the random variables X1 = w1 , fR Wi dWI has a
st st st Rst z z 

.

density on R2. Remark that here the stochastic differentiation rules

(cf. claim that

- st] , and ~2 is not a function of X1 .
st - - - st ~ f
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