Annales scientifiques DE L'Université de Clermont-Ferrand 2 Série Probabilités et applications

IDRIS ASSANI RADKO MESIAR

Sur la convergence ponctuelle de $\frac{T^n f}{n^{\alpha}}$, dans L^P

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 85, série Probabilités et applications, n° 3 (1985), p. 21-29

http://www.numdam.org/item?id=ASCFPA_1985__85_3_21_0

© Université de Clermont-Ferrand 2, 1985, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

SUR LA CONVERGENCE PONCTUELLE DE $\frac{\mathtt{T}^{\mathtt{n}}\mathtt{f}}{\mathtt{n}^{\alpha}}$, dans L^p

Idris ASSANI et Radko MESIAR

Résumé:

Soit T un opérateur positif à puissances bornées dans L_p $(\Omega, \mathcal{C}_l, \mu)$ $1 . On étudie pour <math>\alpha$ réel la convergence presque sûre de $\frac{T^n f}{n^\alpha} \quad \text{pour } f \quad \text{appartenant à } L_p \ .$

Summary:

Let T be a positive power-bounded operator in L_p $(\Omega, CL, \, \mu)$ $1 \leqslant p \leqslant + \infty \ .$ We study for real α the almost sure convergence of $\frac{T^n f}{n^{\alpha}} \quad \text{for} \quad f \in L_p \ .$

Soit (Ω, \mathcal{A}, P) un espace mesuré $(\mu \sigma\text{-finie})$ et T un opérateur de $L^p(\Omega, \mathcal{A}, P)$ dans $L^p(\Omega, \mathcal{A}, P)$ $(1 \le p \le +\infty)$.

Nous noterons $\|T\|_{D}$ la norme dans L^{p} d'un opérateur T.

T sera dit positif si $f \ge 0 \Longrightarrow Tf \ge 0$ p.s. Dans tout cet article nous considérons des opérateurs T positifs à puissances bornées dans L^p c'est à dire tels que $\sup_{i\ge 1} \|T^i\|_p \le M < +\infty$. L'opérateur adjoint d'un opérateur T est noté T^* .

Pour toute valeur de α strictement positive on obtient sans difficulté la convergence forte de $\frac{T^nf}{n^\alpha}$. Nous nous proposons d'étudier la convergence ponctuelle.

Proposition I.

Soit (Ω, \mathcal{A}, P) un espace mesuré et T un opérateur positif sur $L^p(\Omega, \mathcal{A}, P)$, $p \ge 1$.

- (i) Si $\|T^i\|_p \xrightarrow{i \to +\infty} 0$ alors pour tout α réel et toute fonction f dans L^p on a $\frac{T^i f}{i^{\alpha}} \xrightarrow{i} 0$ p.s.
- (ii) Si $T = T^*$ (T opérateur auto adjoint) contraction de L^p (p > 1) alors $\forall \alpha > 0 \quad \forall f \in L^p \quad \frac{T^i f}{i^{\alpha}} \xrightarrow{i} > 0$ p.s.
- (iii) Si $\alpha p > 1$ et $\sup_{n} \|T^{n}\|_{p} \le M < +\infty$ $(1

 alors <math>\forall f \in L^{p} \|\sup_{n \ge 1} \frac{T^{n}f}{n^{\alpha}}\|_{p} \le (\frac{p\alpha}{p\alpha 1})^{\alpha} M \|f\|_{p}$ et $\frac{T^{n}f}{n^{\alpha}} \longrightarrow 0$ p.s.
- (iv) Si $\sup_{n} \|T^{n}\|_{\infty} \le M$ alors $\forall f \in L^{\infty}$ et $\forall \alpha > 0$ $\frac{T^{n}f}{n^{\alpha}} \longrightarrow 0 \text{ p.s. et } \|\sup_{n \ge 1} \frac{T^{n}f}{n}\|_{\infty} \le M \|f\|_{\infty}.$

Démonstration.

(i) découle du fait que $\left\|\frac{T^n}{n^{\alpha}}\right\|_p \longrightarrow 0 \quad \forall \alpha \in \mathbb{R} \text{ et qu'alors l'opéra-}$

teur $U = \sum_{i=1}^{\infty} \frac{T^i}{i^{\alpha}}$ existe. Ceci se vérifie sans difficulté pour $\alpha \ge 0$.

Pour $\alpha < 0$ il suffit de considérer l'indice $i_0 > 1$ tel que $\|T^{i_0}\|_p \le \frac{1}{2}$ alors pour $n = i_0 \times m + k$ $0 \le k \le i_0 - 1$ on a $\frac{\|T^n\|}{n^{\alpha}} p \le K \cdot \frac{1}{e^m} i_0^{-\alpha} (m+1)^{-\alpha} \xrightarrow{m} 0$ où $K = \sup_{1 \le i \le i_0} \frac{\|T^{i_0}\|}{i_0^{\alpha}} p$. Alors $\|\sum_{n=1}^{\infty} \frac{T^n}{n^{\alpha}}\|_p \le \sum_{m=1}^{\infty} i_0 K \times \frac{1}{2^m} i_0^{-\alpha} (m+1)^{-\alpha} < +\infty$.

(ii) est une conséquence de [1]. On a $\sup_{n} T^{n} f \in L^{p}$ et donc $\frac{T^{n} f}{n^{\alpha}} \longrightarrow 0$ p.s. pour tout $\alpha > 0$.

(iii) découle des inégalités

$$\sum_{n=1}^{\infty} \int \frac{(T^n f)^p}{n^{\alpha p}} dP \leq (\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha p}}) M^p \int f^p dP \leq (\frac{p\alpha}{p\alpha - 1})^{p\alpha} M^p \int f^p dP$$

qui avaient été remarquées par M.A. Ackoglu [2] (pour M=1 et $\alpha=1$).

(iv) est immédiat.

Remarque II.

- 1) pour $\alpha=1$ et p=1 en reprenant le [3] on peut voir qu'il existe une isométrie positive de L^l pour laquelle $\frac{T^nf}{n}$ ne converge pas ponctuellement pour toute fonction f de L^l .
- 2) le théorème suivant montre qu'il existe T tel que pour tout $p \ge 1$ et $\alpha p < 1$, $\alpha > 0$ il existe $f \in L^p$ tel que $\frac{T^n f}{p^{\alpha}} \xrightarrow{\hspace*{1cm}} 0$.

Théorème III.

Il existe un espace probabilisé $((\Omega, \mathcal{A}, P) = (]0,1]^{\mathbb{N}}, \mathcal{B}^{\mathbb{N}}(]0,1]), \otimes \mu^{\mathbb{N}}),$ μ mesure de Lebesgue sur]0,1]) et une transformation T préservant la mesure telle que $\forall p \geq 1, \forall \alpha > 0$, $\alpha p < 1$ il existe une fonction $f_{\alpha} \in L^{p}(\Omega, \mathcal{A}, P)$

vérifiant
$$\limsup_{n} \frac{T^{n} f_{\alpha}}{r^{\alpha}} \ge 1$$
 p.s.

Démonstration.

Soit β un nombre positif $0<\beta<1$. Considérons $\Omega=]0,1]^{\mathbb{N}}$ et ϕ le shift sur Ω (c'est à dire si $\omega=(\omega_i)$ $(\phi\omega)_i=\omega_{i+1}$) et $\mathrm{Tf}=f\circ\phi$ et la fonction ne dépendant que de la première coordonnée définie par $f(\omega)=\frac{1}{\omega_1\beta}$. Alors $f\in L^1(\Omega,\mathcal{Q},P)$. Remarquons que les évènements $A_n=\{\omega;\ f\circ\phi^n(\omega)\geq n^\beta\}$, $n\geq 1$ sont indépendants. On a

$$\sum_{n=1}^{\infty} P\{\omega ; f \circ \phi^{n}(\omega) \geq n^{\beta}\} = \sum_{n=1}^{\infty} P\{\omega ; \omega_{n} \leq \frac{1}{n}\} = \sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

Il résulte alors du théorème de Borel-Cantelli que $\limsup \frac{f \circ \phi^n}{n^{\beta}} \ge 1$ p.s. Soit maintenant p > 1 et α tel que $\alpha p < 1$. Posons $\beta = \alpha p$ et $f_{\alpha} = f$. On a alors $f_{\alpha} \in L^p$ et

$$\limsup_{n} \frac{f_{\alpha}^{p} \circ T^{n}}{n^{\alpha p}} \ge 1 \text{ p.s. donc } \limsup_{n} \frac{f_{\alpha} \circ T^{n}}{n^{\alpha}} \ge 1 \text{ p.s.}$$

Il nous reste donc à étudier le cas $\alpha = \frac{1}{p}$ pour p fixé p > 1.

Remarque IV.

Le théorème III. répond à une question de H. BERLIOCCHI.

Théorème V.

Il existe un espace probabilisé (Ω, \mathcal{A}, P) , une transformation T qui préserve la mesure sur (Ω, \mathcal{A}, P) tels que

$$\forall p > 1$$
 $\exists f \in L^p$ telle que $\sup_{n} \frac{T^n f}{1/p} \notin L^p$

Démonstration.

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, α, P) positive telle que $E(X \log^+ X) = +\infty$ et X_n une suite de variables

aléatoires indépendantes de même distribution que X. D'après [4] on a

$$\mathbb{E} \left(\sup_{n} \frac{X_{n}}{n} \right) = +\infty.$$

Considérons alors le shift ϕ sur un produit infini de Ω . T défini par Tf = f $\circ \phi$ préserve la mesure et on a E ($\sup_n \frac{X \circ \phi^n}{n}$) = + ∞ .

Prenons
$$f = X^{1/p}$$
 alors $\int (\sup_{n} \frac{X^{1/p} \circ \phi^{n}}{n^{1/p}})^{p} dP = +\infty$ et donc $\sup_{n} \frac{f \circ \phi^{n}}{n^{1/p}} \notin L^{p}$.

Remarque VI.

La transformation T construite dans le théorème III préservant la mesure est une contraction de L l et L $^\infty$ et d'après le théorème de Birkoff on a

$$\frac{T^ng}{n} \longrightarrow 0$$
 p.s. $\forall g \in L^1$. Par suite

 $\forall \ f \in L^p \qquad \frac{T^n(f)}{n^{1/p}} \longrightarrow 0 \quad \text{p.s. puisque} \quad f^p \in L^1. \ \text{On a donc la convergence presque}$ sûre et le théorème ergodique dominé pour $\frac{T^n}{n^{1/p}}$ est faux dans tous les L^p $\infty > p \ge 1$.

On obtient aussi la convergence presque sûre pour une classe plus grande que les transformations préservant la mesure. Ceci est l'objet du théorème suivant. Nous utiliserons pour cela un lemme dû à LIN (dans le cas contraction de L^{∞}) et dont une démonstration complète figure dans [5].

Lemme VII.

Soit T un opérateur positif de $L^1 \rightarrow L^1$ et $f \in L^p$, $g \in L^q$

on a
$$|T(f,g)| \le [T(|f|^p)]^{1/p} \times [T(|g|^q)]^{1/q}$$
 p.s.

Indications pour la démonstration : on peut supposer $f,g \ge 0$.

On part de l'inégalité de Holder ab $\leq \frac{a^p}{p} + \frac{b^q}{q}$ Alors \forall c,d >0 on obtient

$$\frac{f \cdot g}{cd} \le \frac{f^p}{c^p \times p} + \frac{g^q}{d^q \times q}$$
 et par suite

(*)
$$\frac{T(f.g)}{cd} \leq \frac{T(f^p)}{c^p \times p} + \frac{T(g^q)}{d^q \times q} \qquad p.s$$

On élimine un négligeable N en dehors duquel (*) demeure vrai \forall c,d > 0 puis on applique (*) pour $c(\omega) = (T(f^p)(\omega))$ et $d(\omega) = (T(g^q)(\omega))$ pour $\omega \in \mathbb{N}^c$.

Pour les cas $c(\omega) = 0$ ou $d(\omega) = 0$ on utilise (*) en faisant tendre c ou d vers l'infini.

Théorème VIII.

Soit (Ω, \mathcal{O}, P) un espace mesuré fini.

- 1) Si T est une contraction positive sur $L^{1}(\Omega, \mathcal{A}, P)$ à puissances bornées dans L^{∞} . Alors $\forall p > 1 \quad \forall f \in L^{p}$ on a $\frac{T^{n}(f^{p})}{n^{1/p}} \longrightarrow 0$ p.s.
- 2) Si T est induit par une transformation ponctuelle non singulière # (i.e. Tf = f $\circ \phi$ avec $\phi^{-1}(\mathcal{L}) \subset \mathcal{Q}$ et $P(\phi^{-1}(A)) = 0$ si P(A) = 0) et T est à puissances bornées dans un des espaces L^r , $1 \le r < +\infty$

alors
$$\forall p > 1$$
, $\forall f \in L^p$
$$\frac{T^n(f)}{n^{1/p}} \longrightarrow 0 \qquad p.s.$$

Démonstration.

l) T étant une contraction de L^1 à puissances bornées par M dans L^{∞} , T est à puissances bornées dans tous les L^p pour p>1. En utilisant [6]

en déduit que \forall $f \in L^1$ $\frac{f + Tf + T^2f + \dots + T^{n-1}f}{n}$ converge presque partout.

(Ce résultat a déjà été signalé dans [7] sous des hypothèses plus faibles,)

Par suite $\forall f \in L^1$ on a $\frac{T^n f}{n} \longrightarrow 0$ p.s.

Prenons $f \in L^p$, alors d'après le lemme VII

$$|T^{n}(f)| \leq (T^{n}(|f|^{p}))^{1/p} \times [T^{n}(1)]^{1/q} \leq M^{1/q} (T^{n}(|f|^{p}))^{1/p}$$

donc
$$\frac{|T^n(f)|^p}{n} \le M^{p/q} \frac{T^n(|f|^p)}{n}$$
, p.s.

Puisque $|f|^p \in L^1$ on a donc $\frac{|T^n(f)|^p}{n} \longrightarrow 0$ p.s. et donc $|T^n(f)|$

 $\frac{\left|T^{n}(f)\right|}{n^{1/p}} \longrightarrow 0 \quad p.s.$

2) Si T est à puissances bornées dans L^r , $1 \le r < +\infty$

alors $\forall A \in \mathcal{Q}$ $\forall n \in \mathbb{N}$ $\int (T^n(1_A))^r dP \leq K^r \int 1_A^r dP$ i.e. $\mu(\phi^{-n}(A)) \leq K^r \mu(A) \quad \text{et donc}$

$$\frac{1}{n} \sum_{j=0}^{n-1} \mu(\phi^{-j}(A)) \leq K^r \mu(A)$$

Il résulte alors de [8] que \forall $f \in L^1$ $\frac{I+T+T^2+\ldots+T^{n-1}}{n}$ (f) converge presque sûrement et donc $\frac{T^nf}{n}$ \longrightarrow 0 p.s.

Considérons maintenant p>l et $f\in L^p$ puisque dans ce cas $T^n(f^p)=(T^n(f))^p$ on en déduit sans difficulté que

$$\frac{T^{n}(f)}{n^{1/p}} \longrightarrow 0 \qquad p.s.$$

Remarque IX.

La condition $\|T\|_p \le 1$ (p fixé) n'assure pas en général la conver-

gence ponctuelle de $\frac{T^n f}{n^{1/p}}$ (pour f dans L^p) comme le montre l'exemple construit dans [9, Satz 3.1, p.37] qui est une modification de l'exemple donné dans [3].

REFERENCES.

- [1] E.M. STEIN: On the maximal ergodic theorem, Proc. Nat. Acad. Sci. 47, (1961) p.1894-1897.
- [2] A. IONESCU-TULCEA: Ergodic properties of isometries in L^p spaces, 1 . Bull. Amer. Math. Soc. 70, n°3, 366-371 (1964).
- [3] R.V. CHACON: A class of linear transformations. Proc. AMS 15, p.560-564. (1964).
- [4] D.L. BURKHOLDER: Successive conditional expectations of an integrable function, Ann. of Math. Stat. 33, 1962, p.887-893.
- [5] U. KRENGEL: Monograph en préparation.
- [6] Y. ITO: Uniform integrability and the pointwise ergodic theorem. Proc. Amer. Math. Soc. 16 (1965) p.222-227.
- [7] I.ASSANI : Quelques résultats sur les opérateurs positifs à moyennes bornées dans $L_{\rm p}$ (à paraître).
- [8] N. DUNFORD et J.T. SCHWARTZ: Linear operators part I, Interscience, New-York 1958.
- [9] R. IRMISCH: Punktweise Ergodensätze für (c,α) -Verfahren, $0 < \alpha < 1$ (Dissertation) Fachbereich. Mathematik der Technischen Hochschule Damstadt 77. (1980).

Idris ASSANI Université Pierre et Marie (PARIS VI) Laboratoire de Probabilités 4, Place Jussieu Tour 56, couloir 56/46, 3ème étage 75230 PARIS Cedex 05 Radko MESIAR Stavebna fakulta SVST Katedra matematiky Radlinského 11 81 368 BRATISLAVA