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THE RADON-NIKODYM PROPERTY AND CONVERGENCE OF AMARTS

IN FRECHET SPACES

DINH QUANG LUU

R6sum6. On démontre que 1’espace de Fréchet E poss6de la propriété

de Radon-Nikodym si et seulement si tout amart uniformément intggrable

a valeurs dans E est convergente pour la topologie de Pettis.

On donne aussi des conditions n6cessaires et suffisantes pour la

convergence des amarts uniformgment intggrables a valeurs dans les

espaces de Frechet généraux.



2

§ 0. INTRODUCTION.

The martingale limit theorems in the Banach spaces with

the Radon-Nikodym property were considered in [10, 2, 8] 1 and etc.

A necessary and sufficient condition for the L1*-convergence of

martingales in general Banach spaces was also obtained in [12], ,

using the Radon-Nikodym theorem of Rieffel [9] . The main purpose

of the paper is to extend some of these above results to amarts in

Fréchet spaces (see Section 2). One of our main results says that a

uniformly integrable amart in Préchet spaces is convergent in the

Pettis topology if and only if it satisfies "the Uhl’s condition".

This extension is not trivial because the semi-balls in Fréchet spaces

are, in general unbounded. For terminology and notations we refer

to Section 1. 

§ l. TERMINOLQGIES AND NOTATIONS.,

Throughout the paper, let E be a Fréchet space, 

a fundamental decreasing sequence of closed absolutely convex sets

which forms a o-neighborhood base for E , E’ the topological dual

of E , N the set of all positive integers and a proba-

bility space. By U° and p (.) , resp. we mean the polar and
n n

the continuous semi-norm, resp. associated with U n N) . For

any x E E and 2 , we define
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It is easily seen that the sequence en(.,.)&#x3E; has the following

property : ,

Property 1. I . Let x E E and A, B, C E 2E . .

A is canuex compact and ô ~ 0 then .

A function f : 0 - E is called to be strongly measurable,

if there is a sequence  fn &#x3E; of simple function such that for each

e&#x3E;0 there is some wi th P (T ) &#x3E; 1 - E and
E E

uniformly on T E .

A strongly measurable function f is said to be Bochner

integrable, write if each V n (f) = J S1 p n .

n Q n
It is easy to check that for any f = g a.e. if

and only if Vn(f-g) = 0 (n E N) . Now let Lj E&#x3E; = be

the space of all (equivalence classes of) Bochner integrable functions.

Therefore, according to [3] , the class L j (E) , endowed with the

Bochner topology, generated by the sequence  V n (.) &#x3E; of continuous
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semi-norms, becomes also a Frechet space. Further for 

we define

Then Lj(E) , endowed with the Pettis topology, generated by the

sequence  Sn (. ) &#x3E; of continuous semi-norms is a metrizable (but

not necessarily complete) space. The proof of the following property

is analogous to that for the Banach space-valued case.

Property 1.2. Let f E L 1 (E) and where B is

a 0 6 ~ . Then

Finally, for definition and basis properties of vector-

valued measures we refer to [6] . .
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§ 2. THE RADON-NIKODYM PROPERTY AND CONVERGENCE OF AHARTS.

Hereafter, we shall consider an increasing sequence

A&#x3E; of subs-fields of A with E = U A and A = a - (E) . A
n . N n

sequence  fn&#x3E; in LI (E) is said to be adapted to A n &#x3E; if each

fn is An-measurable. We shall consider only such sequences. Let T

be the set of all bounded stopping times, relative to ~n&#x3E; . Given

a sequence  f n &#x3E; and T E T , let A , T f T and 11T be defined as

in 1 8 1 . Thus is an increasing f ami ly of subs-fields

of A , f E = j f dP (A E A ,
T 1 1 T T A T T

TET) .

Call  f n &#x3E; a martingale if for all m &#x3E; 

If this occurs then u (Q &#x3E; T E T).

In what follows we shall need the following Fréchet version of

Proposition IV-2-3 [ 8 ] . ..

Proposition 2.1. Let  f &#x3E; be a Then the following 

are

(i) 
/ 

 f n &#x3E; i4 Begu2aB, 1. e. , is some Such 

(2)  f n&#x3E; conveagm 6utety to f ~ L.(E)
and f n &#x3E; is uniformly integrable, i.e. 
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Bochner

converges in the Pettis .0m2 f E L (E)

Proof . ( 1 ~ 2) Let  fn &#x3E; be a martingale satisfying (I ) . .

Define F = span {fl(n),f2(~),...,f(Q)}. Then by lemma 1.1. [ 4 ]

F is a separable closed subspace of E . Thus to show (2) , it

suffices to suppose that E is itself separable. Let e E E’ , by

(1) it follows that each e,f n &#x3E; is a regular martingale. Hence

Further, for any but fixed by ([!!], 111.4.7) the sepa-

rability of E implies the separability of Uok in the o (E’E)-

topology. Let be a countable cr(Ef,E)-dense family

in Ul . By theorem II.! 8 in [1], it follows that

Consequently, by lemma V.2.9 in [8] , (2.1) yields
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This with the submartingale property of implies that

each is uniformly integrable. Equivalently, f &#x3E;
k n n=I n

is uniformly integrable. Further, given a E E , by using the

above argument to  fn - a &#x3E; , we infer that as (2.2) we get

But since E is separable then the same argument used by Neveu in

the proof of Proposition V.2.8 [ 8 ] shows that

Equivalently,  fn &#x3E; converges, strongly almost surely, to f . It

proves (2) .

Finally, we note that (2 .~ 3) follows directly from

Lemma IV.2.5 [ 8 ~ and the implications (3 + 4 + 1) are easy

consequences of Property 1.2. Thus the proof of the proposition

is completed.

In the opinion of the referee, the proof of the following

proposition is classical hence omitted.

Proposition 2.2. Let f E Lj E) Then 10A each kEN there

a sequence fk&#x3E; of E-simple functions a such that
n n=1
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Call  f 
n 

&#x3E; an amart if the net  j 
Q 

ft dP&#x3E;t E T converges

strongly ’in E . It is easily seen that every martingale is an amart.

Moreover, by Lemma 2.2 [7] it follows that  fn &#x3E; is an amart if

and only if there is a finitely additive measure 1J : ¿ ~ E’ such that
m

In the sequel, y m will be called the limit measure associated with

the amart f &#x3E; . The following result gives a relationship between
n

an amart  f n &#x3E; and its limit measure u 
m 

.

n oo

Proposition 2. 3 . An amax.t  fn &#x3E; converges to element in L1 (E)
.tI1e i6 and 1,6 the limit measure uoo,

Rlt ha6 the derivative contained in L 1 (E)

Proof. Let  fn &#x3E; and p be as in the hypothesis of the proposi-

tion. Suppose first that f n &#x3E; converges, in the Pettis topology,

to some f E L I (E) . Then by the above remark, f must be a

Radon-Nikodym derivative of J.100 i.e.

Conversely, suppose that (2.5) is satisfied for some

k oo

fEL.(E) . Given k E N let fk&#x3E; 
1 

be the sequence ofi ’ 
n n=1

E-simple function, satisfying (2.3) in Proposition 2.2. Then

given E &#x3E; 0 one can choose some n(c) E N such that
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Since fkn(E) is E-simple, one can choose some N such that

k
is A n1 -measurable. Further, by (2.4) - there is some n 2 -&#x3E;- n 1

such that

This with (2.6) and Property 1.2 yields

This implies that for each k E N

It means that ~~&#x3E; converges to f in the Pettis topology.

This completes the proof.
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Theorem 2.1. Let E be a space. Then the 6otlowing 

cuce 

( 1 ) E Radon-Nikodym property. 

(2) Every uniformly integrale E-valued amart converges 

to dcm?n4 a ~ Lj (E) in the 

(3) Eveny E-value.d martingale can-

vengu In the Bochner

Proof (1-2) follows from Proposition 2.3.

(2-3) follows from Proposition 2.1.

(3 -~ 1) Suppose that E fails to have the Radon-Nikodym

Property. Hence by definition there is a measure p : A -~ E which

is absolutely P-continuous, of bounded variation but p £ y f for

all where = j A f dP (A E A) .

Now define

where H(Q) denotes the indexed set of all finite partitions of ii .

Let e E E’ , it is known that the family ~ ~;e , n E 

is a martingale (w.r.t. "  E ~ ) . ° Consequently, if

II «IT’ , , one has
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Equivalently,

But since e E E’ was arbitrarily taken then

Since p does not have any Radon-Nikodym derivative in L) (E) then

the generalised martingale tfrrt II E cannot be convergent in

the Bochner topology. But endowed with the last topology, L I(E) is

a Fréchet space, then by Lemma v.l.l I [8] , there is an increasing

sequence  11n&#x3E; such that the martingale  f n = f&#x3E; cannot be

n

convergent in the Bochner topology.

On the other hand, the measure u is assumed to be absolutely

P-continuous and of bounded variation then it is clear that the

martingale  fn &#x3E;, constructed above is uniformly integrable. This

contradicts (3) which completes the proof of the theorem.

We say that a finitely additive measure p : E -~ E

satisfies the Uhl’s condition, if for each c &#x3E; 0 there is a compact

absolutely convex set K C E such that for each k e N and 6 &#x3E; 0
E :

there is some A(e,k,6) E E with 1-c and such that

if A E E with A C A(E,k,6) then
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The following result is a Frechet version of Proposition l[12) . .

Proposition 2.4. Let p. : E - E be a additive 

Then 6ot 6 ome Ll (E) i6 and i6 the 

conditions are satisfied :

( 1 ) p bounded 

( 2 ) p i6 

(3) p the condition 

Proof. Let p be a finitely additive measure on E . Suppose

that p 
= 

pf for some f E LI(E) . Then it is clear that p

satisfies the conditions ( 1, 2) . We shall show that u satisf ies

also the Uhl’s condition. For this purpose, let e &#x3E; 0 be any but

fixed. It follows from Lemma 1.I.[7] that there is some E such

that P(T ) 1-c and f (T E: is precompact. Let K 
E: 

be the closed
e 

. 

e e

absolutely convex hull of f (T ) . By ([11], 11.4.3) it follows
E

that K 
E 

is compact. Therefore, if we put A(E:,k,6) = T E for all

k E N and 6 &#x3E; 0 then it is not hard to show that if A E E with

A CA(s,k,6) then

This proves (2.7) and the necessity condition.

Conversely, suppose that uoo satisfies the conditions (1-3).

It is clear that by ~1-2) , t p. can be extended to a a-additive
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measure on A which satisfies conditions (1.2) and will be still

denoted by uoo. We shall show that uoo satisfies the following

condition

(3’) For every e &#x3E; 0 there are a compact absolutely

convex set K’ in E and A E A with P(A ) &#x3E; I-e and such
E E E

that for each A E A with A C A we have
E

.

Indeed, let g be given. Take K’ = K , where K is borrowed
e e E

from (2.7) . Define

Obvious ly, A with P (A ) &#x3E;  I -c we show now that the triple
E E ,

(e, K’ ,A ) satisfies the condition (3’) . For this purpose
E c

let A -r , A E A and k E N . For any but fixed n E N with
E

n &#x3E; k we define

n oo

Clearly, S&#x3E; is a sequence of pairwise disjoint elementsj j =n
of E with
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n ooTherefore, A Q S&#x3E; is a E-measurable partition of A and
j j =n 

.

by Proposition I.I. it follows that

since

On the one hand, since P. satisfies the condition (2) then there

is some t E N such that .

On the other hand, since each A n Sn E.E with
J

then by condition (3) , (2.7) yields

This with Property I.I. implies
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Consequently,

This shows that

It means that

Finally, since p satisfies condition (2) , then the last conclusion

remains valid for all A E A with A C A . This proves (3’) .
E

Consequently, the extended measure p satisfies the Rieffel’s

conditions given in Theorem 2, l .l 31 . Therefore, the last theorem

guarantees the existence of some LiE&#x3E; such that p 
= 

It completes the proof of the proposition.

We say that an amart ’ fn&#x3E; satisfies the Uhl’s condition

if for every c &#x3E; 0 there is a compact absolutely convex subset Q
F-

in E such that for each k ~ N and a &#x3E; 0 one can choose some
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and such that if n &#x3E; and A E A with A C B(£,k,ô) then
n

Proposition 2.5. Let  f &#x3E; its 
n oo

 f &#x3E; satisfies the if and onzy i6
n

60 does P..

Proof. Since the proofs of the necessity and sufficiency conditions

are symetric. Thus we shall give only a proof of, for example ,

the necessity condition.

Suppose that fn &#x3E; satisfies the Uhl’s condition. Given

e&#x3E;0 , take Ks = QE , . where Qs exists in (2.8) . For each

k E N let where B(e,k,j-)2 2

exists in (2.8) . First, by (2.4) there is some n 0 E N such that

Given A E E with A CA(E:,k,6) then for some n &#x3E; n .
n o

Therefore, by (2.8) and (2.9) we get
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Hence, by Property I.I. the above inequality implies

This proves (2.7) and the proposition.

Note that in [5] , , Daures has defined also the Uhl’s

condition, where ins’tead of the semiballs he used "a bounded set".

Thus it is clear that if an amart satisfies the Uhl’s condition

then so does its limit measure. But the converse implication is

not true. Therefore the author thinks that the definitions (2.7)

and (2.8) are better suited for the Uhl’s condition in Frechet spaces.

Theorem 2. 2. Let  fn &#x3E; be a integrale amart. Then

 fn&#x3E; converges, in the Pettis topology, :to Some element of 

1,6 and only in 4he condition.

Proof. It follows from Propositions 2.4, 2.5 and 2.3.

Combining the theorem with Proposition 2.1. it is easy

to establish the following result :

Corollary 2.3. Let  f n &#x3E; Then  f n &#x3E; c0nueJtge4

in the Bochner topology, i6 and only i6 tt ..Ló uni6oAmZy integrale

arcd the 
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