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THE RADON-NIKODYM PROPERTY AND CONVERGENCE OF AMARTS

IN FRECHET SPACES

DINH QUANG LUU

Résumé. On démontre que l'espace de Fréchet E posséde la propriété
de Radon-Nikodym si et seulement si tout amart uniformément intégrable
3 valeurs dans E est convergente pour la topologie de Pettis.

On donne aussi des conditions nécessaires et suffisantes pour la
convergence des amarts uniformément intégrables 3 valeurs dans les

espaces de Fréchet généraux.



§ 0. INTRODUCTION.

The martingale limit theorems in the Banach spaces with
the Radon-Nikodym property were considered in [10, 2, 8] and etc.
A necessary and sufficient condition for the Ll—convergence of
martingales in general Banach spaces was also obtained.in (121,
using the Radon-Nikodym theorem of Rieffel [9] . The main purpose
of the paper is to extend some of these above results to amarts in
Fréchet spaces (see Section 2). One of our main results says that a
uniformly integrable amart in Fréchet spaces 1s convergent in the
Pettis topology if and only if it satisfies ''the Uhl's condition'.
This extension is not trivial because the semi-balls in Fréchet spaces
are, in general unbounded. For terminology and notations we refer

to Section 1.

§ 1. TERMINOLOGIES AND NOTATIONS..

Throughout the paper, let E be a Fréchet space, <:Un¢>
a fundamental decreasing sequence of closed absolutely convex sets
which forms a o-neighborhood base for E , E' the topological dual
of E, N the set of all positive integers and (Q,A,P) a proba-
bility space. By Uz and pn(.) , resp. we mean the polar and
the continuous semi;norm, resp. associated with Un (n € N) . For

any x € E and A,B € 2E , we define



d (x,B) = inf {p (x=y) 3 y € B} 3

= . x €
en(A,B) sup {dn(x,B) ; x € A}

It is easily seen that the sequence <en(.,.)> has the following

property :

Property l.l. let x€ E and A,B,CE€ 2 .

(n en(A,C) < en(A,B) + en(B,C) s
(2) en(A,B) <0 (n€N) ACB,

(3) 1§ A s convex compact and 8= 0 then

x€A+ U ©®e (x,A) <8 .
n n

A function f : @ ~» E 1is called to be strongly measurable,
if there is a sequence <fn> of simple function such that for each
€ >0 there is some Te €A . with P(Te) > 1-€ and

lim fn(w) = f(w) , wuniformly on Te .
n >

A strongly measurable function f 1is said to be Bochner
integrable, write f € £1(E) if each Vn(f) = {2 pn(f)dP <o
It is easy to check that for any f,g € £1(E) , £ =g a.e. if
and only if Vn(f—g) =0 (n€N) . Now let LI(E) = L](Q,A,E) be
the space of all (equivalence classes of) Bochner integrable functions.
Therefore, according to [3] , the class LI(E) , endowed with the

Bochner topology, generated by the sequence <Vn(')> of continuous



semi-norms, becomes also a Fréchet space. Further for f € LI(E) s

we define

5\n(f) = sup {pn(f fdpP) ; AE€ A},
A
S (£) = sup {[ |[<e,f>KdP , e € U°}
n Q n

Then LI(E) , endowed with the Pettis topology, generated by the
sequence <iSn(.):> of continuous semi-norms is a metrizable (but
not necessarily complete) space. The proof of the following property

is analogous to that for the Banach space-valued case.

Property 1.2, let f € LI(E) and g € LI(Q,B,E) , Where B s

a subs-4ield o4 A . Then

(1) s (O <V,
() q (O <5 () <hg () @EW,
(3 q(® <S_(a) S4g(®) EWM,

where qS(g) = sup {pn( Bg(iP) ; B € B}

Finally, for definition and basis properties of vector-

valued measures we refer to [6] .



§ 2. THE RADON-NIKODYM PROPERTY AND CONVERGENCE OF AMARTS.

Hereafter, we shall consider an increasing sequence

<An> of subé-fields of A with f =U An and A=0- () . A
N
sequence <f > in L,(E) is said to be adapted to <An> if each

fn is An—measurable. We shall consider only such sequences. Let T

be the set of all bounded stopping times, relative to <An> . Given

a sequence <fn> and TE€T, let AT , f‘r and Mo be defined as

in [8] . Thus <AT>T erT is an increasing family of subs -fields

T -—
of A, £ €L(E) =L (%A ,E) and u (A) = & £ 4P (A€A

TET) .

Call <fn> a martingale if for all m=2n € N ,
Jfdp=f £dp (A€A) .
A D A D n

: 1 = = = (S

If this occurs then Mg, 1 uolA_r ue (@=1€ED .

In what follows we shall need the following Fréchet version of

Proposition 1IV-2-3 [8] .

Proposition 2.1. let <f > be a martingale. Then the following

conditions are equivalent :

(n <f > 48 negular, L.e., there 45 some f € L, (E) such that

[f dp=[ fdP (A€A , neN .
s " A o

(2) <f_ > converges strongly almost surely to f € L, (E)

and <f > 48 uniformly integrable, L.e.



Sup f pk(fn)dP } 0 as atw= (k € N)
N {pk(fn) > a}

(3) <f > converges in the Bochner fopology.

(4) <f_> converges 4in the Pettis ztopology o some £ € L, (E)

Proof. (1 » 2) Let <:fn>’ be a martingale satisfying (1) .

Define F = span {£,(),£,(@),...,£(2)} . Then by lemma 1.1.[4]
F 1is a separable closed subspace of E . Thus to show (2) , it
suffices to suppose that E 1is itself separable. Let e € E' , by
(1) it follows that each ‘<e,fn:> is a regular martingale. Hence
lim [<e,fn>] = |[<e, £>| , a.e. (2.1)
n->w
Further, for any but fixed k € N, by ([11], III.4.7) the sepa-
rability of E implies the separabilit& of UE in the o(E'E)-
topology. Let {ei,i € Ik} be a countable o(E',E)-dense family

in U; . By theorem II.18 in[1], it follows that

ﬁk(fn) sup {I<é,fn>| ; e € U;}

sup {!<éi,fn>l ; 1€ Ik} (n €N) ,
and
p () = sup{]<ei ,E> 3 1€ L} -

Consequently, by lemma V.2.9 in [8], (2.1) yields



1im Pk(fn) =Pk(f) a.e. (2.2)
N > o
This with the submartingale property of <<Pk(fn)2> implies that

each <Pk(fn)>:= is uniformly integrable. Equivalently, <fn>

1
is uniformly integrable. Further, given a € E , by using the
above argument to <fn—a> , we infer that as (2.2) we get

lim pk(fn-a) = pk(f-a) , a.e.

n 5> o

But since E 1is separable then the same argument used by Neveu in
the proof of Proposition V.2.8 [8] shows that

lim pk(fn-f) =0 , a.e.

n »> o
Equivalently, <ifn>> converges, strongly almost surely, to f . It
proves (2) .

Finally, we note that (2 » 3) follows directly from
Lemma IV.2.5[8] and the implications (3 - 4 » 1) are easy
consequences of Property 1.2. Thus the proof of the proposition

is completed.

In the opinion of the referee, the proof of the following

proposition is classical hence omitted.

Proposition 2.2. Let f &€ L, (E) Then for each k € N there

L8 a sequence <f§ >:=1 04 I-simple functions such that
. k
lim qk(fn—f)-—O (2.3)

n >



. . <
Call <fn> an amart if the net fQ deP>T e p converges

strongly in E . It is easily seen that every martingale is an amart.

Moreover, by Lemma 2.2[7] it follows that <fn> is an amart if

and only if there is a finitely additive measure U : ¢ - E such that
lim  sup pk(f fdP -y (A)) =0 (k EN) (2.4)
T (= 2]
teT Ar A

In the sequel, | will be called the limit measure associated with
o
the amart <fn> . The following result gives a relationship between

an amart <fn> and its limit measure y .

oo

Proposition 2.3. An amarnt <f > converges Lo an element Ln L, (E)
An the Petlis topology if and only if the Limit measure v ,
associated with it has the Radon-Nikodum derdivative contained in L (E) .

Proof. Let <fn> and u_ be as in the hypothesis of the proposi-
tion. Suppose first that <fn> converges, in the Pettis topology,

to some f € L](E) . Then by the above remark, f must be a

Radon-Nikodym derivative of u_ 1i.e.

w_(8) = [ f£dp (A € 1) (2.5)
A

Conversely, suppose that (2.5) 1is satisfied for some

f e LI(E) . Given k € N, let <f1;>:=1 be the sequence of

Z-simple function, satisfying (2.3) in Proposition 2.2. Then

given ¢ > 0 one can choose some n(eg) € N such that



k €
- < & 9

UWhey D <13 (2.6)
Since fﬁ(e) is ZI-simple, one can choose some n, € N such that
1
£< is A -measurable. Further, by (2.4) - there is some n. > n
n(e) n, 2 1
such that

sup sup pk(f fn dP - u_(A)) <-{%
n = n, A A

This with (2.6) and Property 1.2 vields

k k
Sk(fn-f) < Sk(fn-fn(e)) + Sk(fn(e)-f)

A

<4 q (g £

k
n n(e)) *a qk(fn(e)‘f)

- €
< 4 s:\.lp pk(‘&fn dp—_f.".:qp)wsxp pk(f £ dp-[ fdP)+ =

I'4
n A A nfe)A

P E E E=
S 3*t3zty=e@>ny .

This implies that for each k € N

lim Sk(fn-f) =0 .

n > o«

It means that <1fn3> converges to f 1in the Pettis topology.

This completes the proof.
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Theorem 2.l1. Let E be a Fréchex space. Then the following condi-

ons are equivalent :

(1) E has the Radon-Nikodym property .
(2) Every uniformly integrable E-valued amart convernges
to some element of L, (E) in the Pettis topology.

(3) Every undiformly integhable E-valued martingale con-
verges 4in the Bochner Ztopology.

Proof (1-2) follows from Proposition 2.3.

(2-3) follows from Proposition 2.1.

(3 = 1) Suppose that E fails to have the Radon-Nikodym
Property. Hence by definition there is a measure pu : A - E which
is absolutely P-continuous, of bounded variation but vy # Mg for

all f € L (E) , where u.(A) = [£dp  (A€A) .
A

Now define

£ = 3 pea)”!

p@) 1, , A =o=(I) (1€ () ,
I aen A I

where 1(Q) denotes the indexed set of all finite partitions of & .

Let e € E' , it is known that the family {<e, fH>>, I e n}

is a martingale (w.r.t. < AH > ) . Consequently, if

Ie n(Q)
I<<1n', one has

[ <e,f >dP = [ <e,fn,>dP (A € An)



_l]_

Equivalently,

<e,fA £ 4P > = <e,f £ dP> (AEAH)
A

But since e € E' was arbitrarily taken then

[Epae =] £, dP aeAy .

Since u does not have any Radon-Nikodym derivative in LI(E) then
the generalised martingale {fﬂ' II € I(R)} cannot be convergent in
the Bochner topology. But endowed with the last topology, LI(E) is

a Fréchet space, then by Lemma V.l1.l1 [8] , there is an increasing

I
n

sequence <IH1> such that the martingale < fn = £ > cannot be
convergent in the Bochner topology.

On the other hand, the measure 1y 1is assumed to be absolutely
P-continuous and of bounded variation then ig is clear that the
martingale <:fn>>, constructed above is uniformly integrable. This
contradicts (3) which completes the proof of the theorem.

We say that a finitely additive measure u_ : I > E
satisfies the Uhl's condition, if for each & >0 there is a compact
absolutely convex set KE CE such that for each k€ N and § >0
there is some A(e,k,8) € £ with P(A(e,k,8)) > l-¢  and such that

if A€y with A C A(e,k,8) then

u(A) € P(A)Ke + §U 2.7)

Kk °
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The following result is a Fréchet version of Proposition 1[12].

Proposition 2.4. Llet u_: I > E be a finctely additive measure.

Then v = for some £ € L (E) 4§ and only L§ the following

e
conditions are satisfied :

(I L5 04 bounded variation.

(2) w {5 absolutely P-continuous.

(3) n, sailisfies the UhL's condition on 1 .

Proof. Let y_ be a finitely additive measure on . . Suppose
that My, = Mg for some f EL](E) . Then it 1s clear that u
satisfies the conditions (1,2) . We shall show that u, satisfies

also the Uhl's condition. For this purpose, let € >0 be any but
fixed. It follows from Lemma 1.1.[7] that there is some T-e € ¥ such
that P(TE) >1-¢ and f(TE),‘. is precompact. Let Ke be the closed
absolutely convex hull of f(Te) . By (.[11], II1.4.3) it follows
that Ke is compact. Therefore, if we put A(e,k,§) = Te for all
k€ N and § >0 then it is not hard to show that if A € ¢ with

A cA(e,k,8) then

ue(A) = uc(A)€ P(AK_ CP(AK_+ oU .

This proves (2.7) and the necessity condition.

Conversely, suppose that y_  satisfies the conditions (1-3).

It is clear that by (1-2) , u, can be extended to a og—-additive
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measure on A which satisfies conditions (1.2) and will be still
denoted by u_ . We shall show that yu_ satisfies the following
condition

(3') For every e > 0 there are a compact absolutely

convex set K; in E and Ae € A with P(Ae) > l-¢ and such

that for each A€ A with A C Ae we have
uw(A) € P(A)K;

Indeed, let ¢ be given. Take K' =K , where Ks is borrowed
€ €

from (2.7) . Define

U Ae,j,2 )
1 j=n

>
I
D8

n

Obviously, Ae 61( with P(Ae) = l-¢ . We show now that the triple
(e, Ké, Ae) satisfies the condition (3') . For this purpose
let A 3, A€ Ae and k€ N . For any but fixed n e N with

n 2 k we define

n -n
Sn =A(e,n, 2 )
n _ -(n+1) n
Sn+l = A(E ’ (1’1"‘1) ’ 2 ) \Sn ’
¢
n _ -(n+g+1) Att n .
Sn+g,+l = A(E ’ n+£+1 > 2 ) \‘U Sj s
: =
Clearly, < S? >;=n is a sequence of pairwise disjoint elements

of ¥ with
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o . o]
ACaA = U Ae,j,2 )y = U sg‘

Jj=n J=n

Therefore, <A N SI.I>°?_
J J=n

by Proposition 1.l. it follows that

is a I-measurable partition of A and

e (1, (&) 4 P(AK]) = e, (u (&) , PAK)

n+g n n+l n n+l n
<ek(uw(A),um(U A))) + ek(um(U AnS.) ,P(Y AN S)HK)
j:n J j=n J j=n J €
© n+2 ’ n+f
< p (n,( Y ANsH) + I e, (Ho(A N s ,P(Y AN sr.‘)Ke)
j=n+i+1 J j=n ] j=n
- n+ n+f
<p (Ha( U NANSDH) + T e (AN sH,P(VANSHE)
j=n+2+l J j=n ] J j=n J
n+l
since P(U AN s‘j‘)xe C P(A)K_ and e; (%) > ec(x) (j>n>K , x € E)
j=n '

On the one hand, since p_ satisfies the condition (2) then there

is some & € N such that

8

pu (. U AN sH <
© |, ] .
J=ntg+l J

2".]

™

n

On the other hand, since each AN S? €.5 with AN S? Cc A(e,j,Z—J)ez

then by condition (3) , (2.7) yields

n)

:\
V

n.' n |
A S. A S.)K + 2 U.
pm( (1 J) e P(ANn J) c j

This with Property 1.1. implies
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n+ g o .
5 e.(p (A NS, ,P(A NS.HK)
f = ] = J l €
j=n
o+l _.
< ¢ 277
j=n
< 1 27 .
j=n
Consequently,
e (u (A ,P@KY <2 1 27 =2"40 as nta.
€ j=n
This shows that
e, (u (&), P(AKY) <0 (k €N) .
It means that
u (A) € P(A)X' (Ae £, AcA) .
0 € €

Finally, since u satisfies condition (2) , then the last conclusion
remains valid for all A € A with A C Ae . This proves (3') .
Consequently, the extended measure u_ satisfies the Rieffel's
conditions given in Theorem 2.1.[3] . Therefore, the last theorem
guarantees the existence of some f € L,(E) such that y = ug -
It completes the proof of the propositionm.

We say that an amart '<fn3> satisfies the Uhl's condition
if for every ¢ > 0 there is a compact absolutely convex subset Q

€

in E such that for each ke N and ¢§ >0 one can choose some
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N(E,k,é) €N ’ B(E’k’\S) € AN(E with P(B(Q,k96)) =1 - €

yk,8)
and such that if o > N(e,k,8) and A € Ah with A C B(e,k,8) then

/ f dP € P(A)Q€ + 68U (2.8)
A

Proposition 2.5. Llet <f > be an amant and yu L& Lamt
n oo

measure. Then <f >  satisfies the URL'As condition 44 and only 44
n

50 does w

Proof. Since the proofs of the necessity and sufficiency conditions
are symetric. Thus we shall give only a proof of, for example ,

the necessity condition.

Suppose that <fn> satisfies the Uhl's condition. Given

e >0, take Ke: Qe , where Qe exists in (2.8) . For each

keN and § >0, 1let A(e,k,8) = B(e,k,—ﬁ-) , where B(e,k,é)
2 2

gxists in (2.8) . First, by (2.4) there is some n € N such that
- £
Sup pk(£ £ dP-u (8) <5  (@>n) (2.9)
n

Given A € I with A C A(e,k,8) then A GAn for some n >n0 .

Therefore, by (2.8) and (2.9) we get

e, (U (A),P(AK ) = e (1, (A),P(A)Q)

<P (u_(A) - fA £ dp) + ek(jA £ dP,P(A)Q)

N
N o
+
Noj o
]
o
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Hence, by Property 1.l. the above inequality implies
€
(&) € w(AK_ + §U .

This proves (2.7) and the proposition.

Note that in [5] , Dauréds has defined also the Uhl's
condition, where instead of the semiballs he used "a bounded set".
Thus it is clear that if an amart satisfies the Uhl's condition
then so does its limit measure. But the converse implication is
not true. Therefore the author thinks that the definitions (2.7)

and (2.8) are better suited for the Uhl's condition in Fréchet spaces.

Theorem 2.2. Let <f > be a uniformly integrable amant. Then
<f_ > converges, Ain the Pettis topology, Zo some element of
Lf and only Lif it satisfies the UhL's condition.

Proof. It follows from Propositions 2.4, 2.5 and 2.3.
Combining the theorem with Proposition 2.1. it is easy

to establish the following result :
Corollary 2.3. Llet <f_ > be a martingale. Then <f > converges
in the Bochner topology, 44 and only Lif Lt L8 uniformly integrable

and satisfies the UhL's condition.
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