
ANNALES SCIENTIFIQUES

DE L’UNIVERSITÉ DE CLERMONT-FERRAND 2
Série Probabilités et applications

HELENA IGLÈSIAS PEREIRA
Rate of convergence towards a Fréchet type limit distribution
Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 76, série Probabilités
et applications, no 1 (1983), p. 67-80
<http://www.numdam.org/item?id=ASCFPA_1983__76_1_67_0>

© Université de Clermont-Ferrand 2, 1983, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’Université de Clermont-
Ferrand 2 » implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASCFPA_1983__76_1_67_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


67

RATE OF CONVERGENCE TOWARDS A FRECHET TYPE LIMIT DISTRIBUTION

Helena Iglèsias PEREIRA

Un i vers i dade de Lisboa

Abstract : i c N be a sequence of i.i.d. random variables, and
n

n = max ( X1’...’Xn ). It is well-known that = FX1 (x), and that if theren n n X1
are attraction coefficients n e N (an&#x3E; 0) and {b } n c N (bne R) such that
n 

n n n n

F (anx + b) -&#x3E; G(x), xc C , then G is one of the three extreme value stablen n G

types :

(Gumbel type)

(Fréchet type)

(Weibull type) 
’

There are no definite results on the rate of convergence of Fn towards the. 
’

limiting form hut in the case F is of normal type. Under mild conditions on the

taiweight of F, we study the rate of convergence in the case of a Frechet type

limit distribution.

1. Intoduction 

Let Mn = max ( X1#....Xn ), where {Xi} i c N is a sequence of independent

icenfiically distributed random variables (r.v.) with distribution

function (d.f.) F. It is known that, when the weak limit of Mn, suitably
n

normalized, exists, it has distribution function which belongs to one of the

three stable types - Gumbel, Fréchet or Weibull (see, Gnedenko,1943) - and we

say that, the d.f. F belongs to the domain of attractionof the limit distribution
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function, In particular, we say that, F belongs to the domain of attraction of

the Frechet d.f. ~ (a&#x3E;01 - F e li4$ 1 ~ that is, there are constants e N,
a a

{b~} n eN, an&#x3E;0, bn E R such that

if and only if

(1.2.b) 1-F(x) = x-a L(x) , L(x) is a slowly varying function (in Karamara’s,

,1933 sense) .. -

A general description of limit laws and domains of attraction concerning

maximums of i,i.d, r.v. may be found in Galambos (1978). The normalizing

constants an are usually defined in terms of levelcrossings; in the special case

of attraction towards the Fréchet distribution, it is easy to show that we can

take, ,

and b = 0 (cf. Galambos 

Observe that

(1.4) a n 
= n1/a T(n) , where T(x) is a slowly varying function (cf. Iglésias,

, 
1982.a) -

The case = A,&#x3E;o is particularly interesting. This happens if and only if

i.e., if and only if F has a Paretian tail.

The rate of convergence of Fn(x~ towards the limit distribution may be

extremely slow (see, Fisher and Tippett,1928; Gomes.1978,1982).In the present

paper we study this problem under certain mild conditions on the tail behavior

(assumed to be paretian) of F(.).

2. An asymptotic result

Let us suppose that for we have
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Theorem 2.1 : 1 Let F(x) be a d.f. which belongs to the domain of attraction of ~,
with normalizing constants a 

= A n . A&#x3E;0 , b - 0 and satisfying condition
(2.1); t hen for x&#x3E; 0 and n -~" we have :

Proof : In expression (2.1). replacing x by x we have

for x&#x3E;e and 

To simolify the notation we shall put d = CC1n)1/a . . Expanding log we

obtain

and hence
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Expanding now the factor exp {,., } we obtain

!~e now study the asymptotic behavior of the 3rd, , 4th and 5the summands in the right
hand side. of f2.8). According to (2,1) :

The 4th summand is equal to :

and by (2,5)

or else,

And hence the 5th summand may be written

And finally from (2.8), (2.12) and (2.13) we have

The result follows considering the magnitude relation between a and a .
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Example : Let X be a standard normal r.v. with and define the r.v.

Y = 1 / X~ whose d.f. is given by . 

X

It is known from the theory of the addition of independent random variables that,

if we have a sequence { Yi} i £ N of i.i.d. r.v. with d.f. Fy. then there are

constants an &#x3E;0 and bn E R such that

it is easy to verify that the norming constants must have the form a 
= A 10

A&#x3E;0 . a e~0~2) and the definition of the centering constants b n is unessential

unless a = 1 ( cf . Feller.1968]. As (2.16 ) may be rewritten :

we have that the r.v. Y is stable with characteristic exponent a = 1/2 . In
’a

particular we can say that F belongs’to its own domain of normal attraction, and

according to Gnedenko and Kolmogorov (1968) we have :

On the other hand, as 1-F y (y) satisfies conditions (1-2.a), (1.2.-b~ and (1.5] we

may conclude that F Y ~~(~1/2)’ where 01/2 is the Frichet distribution with

parameter a = ’~/2 ,  and attraction coefficients an 
= A n ~ A&#x3E;0 and b n = 0 .

Finally expanding on power series (Abramowitz, 1972, P.932) we have :

taking

we see that the d.f. FY satisfies the conditions

of theorem 2.1 and so :
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n -* + m.

For the particular choice x = 1/64 we obtain

3. Optimal choice of attraction coefficients

. In theorem 2.1 we used a particular form f or the attraction coefficients. In

the next theorem we will show that this particular choice is essentially optimal.

Let us consider arbitrary constants a’ &#x3E;0 and b’ c R for which it remains true
n n

that

Theorem 3.1 : : Let F be a distribution function satisfying conditions (2.1) and

(3.1). Let 

where a and b are the same constants of theorem 2.1. Then,
n n
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c) if 6&#x3E;2a

Proof : By hypothesis we have

for x ( &#x3E;0) E Co and n -&#x3E; +oo, and where A -&#x3E; 1 and B -&#x3E; 0 .

d = lc On the other hand b condition (2.1) l and putting, as before, d n = 

for x &#x3E;0 and n-*+= .

Let us take x n 
= A n x + Bn and apply the expansion of the logarithm on power

series to get :
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Expanding on power series the factor exp { " ,} we obtain :

Observing that from (2.1) we get :

Let us now study the behavior of the 4th and 5th summands of the expansion in
(3.10)

and by (3.7)

or else, after some calculations,

Then the 5th summand becomes

From (3.11), (3.14) and (3.15) we can write
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admits an expansion on Taylor series and considering that

Then,

The result follows considering the possible ordering of g and 2 a.

From the analysis of (3.18) we can see that the rate of convergence hasn’t

improved; in fact if (x(A -1) + B ) converges faster than (n-6/a t overall
n n 

g 
0/1

convergence in (3.18) is still of the order of (n"" and if (x(A -1) + B )
+t 

converges more slowly, then convergence in (3.18) is slower than (n ). In

this sense, we may say that the constants an and bn in theorem 2.1 are optimal.

4. Pareto distributions

In this paragraph our aim is to study the rate of convergence of suitably

normalized maximum of Pareto r.v.’s with d.f. of the form :

where for simplicity we take a = 1
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The limiting distribution is, of course, of Fr6chet type . More precisely, by

(1.5) we know that C o ) with normalizing constants a = A n1/(I and b = 0 .
a n n

Hence,

Using the methods developed in paragraph 2 we may estabilish the following result:

Theorem 4 ,1 : : Let F ( x ) be a Pareto d. f . defined in ( 4,1. b ) . Then for »0 and n

we have : 
’

Proof : Expanding the logarithm in power series we obtain :

It is well-known that the above choice of the constaants an and bn isn’t the only
possible one. According to t 1.4~ v~e may take a~ 2 where ~ ~(.] 3 is a

slowly varying function, as long as,

Let us take

Further,
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After some algebra in the line of what had been done to prove theorem 4.1 we

arrive to :

Related results appear in Anderson (1971) .

Comparing expressions (4.3) and (4.9) we see that the overall rate of

convergence is still of order (1/n). As in paragraph 2 we shall grove that the
l/ft

constants a n 
= n and b =0 are essentially ptimal. In fact tables 1 and 2

illustrate what has been said. Let,

and take x = 0.5 Ctable 1 ) and x = 2 (table 2) .

TABLE 1

TABLE 2
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Theorem 4.2 : Let F(x) be a Pareto d.f. and a’&#x3E; 0 , b’n c R normalizing constants
n n

such that,

Proof: According to (4.10)

f or x&#x3E;O and n ~+0153 .

Besides,

and expanding the logarithm on power series we have
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Taking A n x + 8n ~ x + x(A n- 1) + 8n and expanding the exponencial on power series
at the neighborhood of point x we get

Finally,

As in paragraph 3 we conclude that the overall convergence is still of order

~1/n) or slower than (1/n), according as (x (A -1) + 8n) converges faster or
slower than (1/n) .
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