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QUASISTATIC PROCESSES FOR ELASTIC-VISCOPLASTIC

MATERIALS WITH INTERNAL STATE VARIABLES

MIRCEA SOFONEA

Department of Mathematics, INCREST, Bd. Pacii 220,

79622 Bucharest, ROMANIA

1. Introduction

An initial and boundary value problem for materials with a constitutive equation of

the form

is considered, in which e is the small strain tensor, a is the stress tensor and x is an

internal state variable (in (1.1) and everywhere in this paper the dot above a quantity

represents the derivative with respect to the time variable of that quantity). Such type of

equations are used in order to model the behaviour of real bodies like rubbers, metals, rocks

and so on, for which the plastic rate of deformation depends also on an internal state variable.

There exists a large scope in the choice of the internal state variable, authors having

individual preferences varying even from paper to paper (for references in the field see

Cristescu and Suliciu [1] , ch. VI). Some of the internal state variables considered by many

authors are the plastic strain, a number of tensor variables that take into account the spatial

display of dislocations and the work-hardening of the material. A major and still remaining

open problem in viscoplasticity concerns the way of establishing the evolution equations for

the internal state variables. Here we suppose that X is a vector-valued function which
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satisfies the equation

in. which q/ is a given function.

In the case when G depends only on o existence and uniqueness results for dynamic or

quasistatic problems involving (1.1) for differents form of G were obtained by Duvaut and

Lions [2] ch. 5, Suquet [3] , [4] , [5] , Djaoua and Suquet [6] .

In the case when G depends only on 0 and e, existence and uniqueness results for

models of the form (1.1) were given by Ionescu and Sofonea [7] in the quasistatic case and by

Ionescu [8] in the dynamic case.

Initial and boundary value problems for models (1.1), (1.2) for different forms of G and

~ vere studied by many authors. So, existence and uniqueness results were given by Necas

and Krotochivil [9] , John [ 10] , Laborde [I I I (the case when G does not depends on c) and

by Sofonea [12] , [13] , Ionescu [8] , [ 14] (the case when G depends also on e). Energy
estimates for one -dimensional problems in the study of models (1.1) in which x is the work

hardening parameter were obtained by Suliciu and Sabac [ 15] .

The aim of this paper is to study a quasistatic problem governed by the constitutive

equations ( 1.1 ) , (1.2) . Thus an existence and uniqueness result is proved (theorem 3.1) and

the continuous dependence of the solution with respect the input data is also given (theorem

4.1) . No monotony properties for the functions G and w are required and no monotony

arguments for evolution equations are used. The technique presented here is based on the

equivalence between the studied problem and an ordinary differential equation in a product
Hilbert space. This technique was used before by Necas and Krotochivil [9] , Suquet [5] ,
Ionescu and Sofonea [7] . The results presented here generalized some results of Sofonea

[12] . Theorem 3.1 represent the quasistatic version of theorem 4.2 of Ionescu [8] .

2. Problem statement and preliminaries

Let Q eRN (N = 1 , 2, 3) be a bounded domain with a smooth boundary a Q = I’ and

let rl be an open subset of r such that meas rl &#x3E; 0 ; we denote by r2 = r B the
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outward unit normal vector on r and by SN the set of second order symmetric tensors on l~N.

Let T be a real positive constant. We consider the following mixed problem :

in which the unknows are the displacement function u : Q X [0,T] -~ 
, the stress

function Q : Q X [0,T] ~ SN and the internal state variable x : Q X [0,T] -~ R ~ (M EN).

This problem represents a quasistatic problem for rate-type models of the form (2.2), (2.3) in

which A is a forth order tensor, G and 4) are given constitutive functions and c (u) defines

1 Tthe small strain tensor (i.e. e (u) = 2 (Vu + V u)) ; in (2.1) Div o rep resents the divergence ofe (e () 
2 

( )), ) ed 

the vector-valued function a and b is the given body force ; the functions f and g in (2.4) ,

(2.5) are the given boundary data and finally the function uo , 00 , x o in (2.6) ar the initial

data.

In the sequel we denote by " . " the inner product on the spaces SN and by
I . I the Euclidean norms on these spaces. The following notations are also used :

The spaces H , H i , H, H 1 and Y are real Hilbert spaces endowed with the cannonical inner

products denoted by  , &#x3E; H , J  , &#x3E; H 1 ,  , &#x3E; H ,  , &#x3E; H 1 
and  , &#x3E; y

respectively.

Let Hr - [H1I2 (r ) and yl : Hr be the trace map. We denote by V the

closed subspace of H I defined by V = { u E H1 l y1 u = 0 on T1} and let Vr = Yi (V) .

We also denote by H’r and V’r the duals of Hr and Vr. The operator E : H I - H given by
c (u) = 2 (V u + DT u) is linear and continuous and moreover, since meas ri &#x3E; 0, Korn’s

inequality holds :
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where C is a strictely positive constant (everywhere in this paper C will represents strictely

positive generic constants that may depend on Q , rl , A , G , 4~ and T and do not depend on

time or on unput data).

If there exists y2 cr E H’r such that

for all u E H I . By 0 v j T2 we shall understand the restriction of Y2 0 on Vr and we

denote by V the closed subspace of HI defined by

Here we consider V and V as real Hilbert spaces endowed with the inner products of

Hi and H i respectively ; it is well known that c (V) is the orthogonal complement of V

in H , hence

Finally for every real Hilbert space X we denote by II. II x the norm on X and by

C j (0, T, X) (j = 0,1) the spaces defined as follows :

z is continuous}

there exists z the derivative of z and

} .

C’(0,T,X) are real Banach spaces, endowed with the norms

respectively.
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3. Existence and uniqueness of the solution

The following hypotheses are considered :

A : Q X sN is a symmetric and positively definite bounded tensor, i.e. :

(a) Aijkh E L°° (~) for all ij,k,h = l,N

(3.1) (b) A(x) o . z = o.A(x)t for all o,i E SN , a.e. in Q

(c) there exists a &#x3E; 0 such that A (x) o. o &#x3E; a|o|2 for all 0 E SN,

_ 

a.e. in Q.

G : Q X SN X SN X SN has the following properties:

(a) there exists L &#x3E; 0 such that IG(x, oi , ci ,xl) - G (x, 02 , E~ , x ~) I _
~ L ( loi - 02 I + Ici - c2 1 + IX1- x 2 I &#x3E; for all 

(3.2) , a.e. in Q.

(b) x -~ G (x, o , c , x ) is a measurable function with respect to the Lebesgue

measure on Q, for all o, c E SN and X E aM

(c) x-~G(x,0,0,0) E H .

Q X SN X SN X R~ has the following properties :

(a) there exists L &#x3E; 0 such that | o (x, cr1, £1, X1 ) - o (x, cr2,£2,X2) | 
.-J

_ L ( loi - 02 1 + |£1-£2| 1 + 1 xi - x 2 I ) for all cr1,cr2,£1,£2 ESN,
(3.3) xi , x 2 E aM, a.e. in Q.

(b) x -~ ~ (x, o, e, x ) is a measurable function with respect to the Lebesgue

measure on Q, for all o, c E SN and X E Rm

(c) x -&#x3E; Kx,0,0,0)~Y .

The main result of this section is the following :

Theorem 3.1:

Suppose that the hypotheses (3.1) - (3.6) are fulfilled. Then there exists a unique solution

u E C 1 (0,T,H I), a E C (0,T, H 1) , ~ E C (0,T,Y) of the problem (2.1) - (2.6).
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Remark 3.1 :

Let us observe that if the problem (2.1 ) - (2.6) has a solution (u, o , x ) such that

u E C 1 (O,T, li 1) , a E C (0,T, Tfi) x E C 1 (0, T, Y) then the hypotheses (3.4) - (3.6)

are fulfilled.

Remark 3.2 :

A relative simple example of constitutive functions G ans (P satisfying (3.2) and (3.3)

may be obtained by taking M = 1 and

for all o,e E SN and X E R where p &#x3E; 0 is a viscosity coefficient, is the

projection map on von Mises plasticity convex K (x) _ { o E SN I k (X) I defined

by the Lipschitz yield function x - k (x) and o is a Lipschitz continuous function.

Remark 3.3 :

Formula (3.9) defines the plastic strain rate J for the model (1.1 ) . The internal state

variable defined by (1.2) , (3.8) , ( 3.9) is called the strain hardening parameter.

Concrete examples for viscoplastic models involving a strain harderning parameter

were proposed by Cristescu [16~ for rock-like materials ; in this paper x is the

2
irreversible equivalent strain i.e. 4) (r) = - r in (3.8) .

3

In order to prove theorem 3.1 we need some preliminary results. Let X = V X V X Y

be the product space endowed with the inner product  , &#x3E; x defined by

for all x = E X and y = (V, i, n) E X. Using (3.1) and (2.7) we get that the norm

11 . 11 x generated by (3.10) is equivalent with the natural norm on X.
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Let u E C 1 (0,T,H 1 ) and o E C1 (0,T, H I) be the solution of the elastic problem

(the existence of u and o can be easily proved using (3.4) and standard arguments of linear

elasticity) and let F : [0,T] X X - X be the operator defined by

for all

Lemma 3.1

The operator F given by (3.15) is continuous and there exists C &#x3E; 0 such that

for all x1, x2 E X and 

and using (3.1) - (3.3) we get

which implies
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Hence F : [O,T~ X X - X is a continuous operator and taking tj = t2 = t in (3.17) we

get (3.16).

Let now denote by

Lemma 3.2

The triplet (u, o, x ) E C (0,T, Hi X Hl X Y) is a solution of (2.1) - (2.6) iff

x E C (0,T,X) is a solution of the following Caudhy problem

Proof : Using (3.11) - (3.14) , (3.18) , , (3.19) it is easy to see

that E C XH 1 X Y) is a solution of (2.1) - (2.6)

iff &#x3E; and

Let us suppose that (3.22) and (3.23) are fulfilled. Using (2.8) we have

for all y = X and t E [0,T] . Using now (3.10) and (3.15) we get

for all y E X and t E 10,T] which implies (3.20).
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Conversely, let (3.20) hold and let

for all t E [O,T] . Taking y = (v,0,0) E X in (3.25) and using (2.8) we get

Taking y = (0,t, 0) E X in (3.25) and using again (2.8) we get

This implies z (t) E e(V) for all t E [0,T] and taking c (u) = z (t) in (3.27) after using (3.1)

we get z (t) = 0 for all t E [0,T] hence by (3.26) we get (3.22). In the same way (3.23)

follows by (3.25) taking y = (0,0,11) E X where q is an arbitrary element of Y.

Hence we proved that (3.22) , (3.23) are equivalent to (3.20) and we finish the proof with

the remark that (3.24) is also equivalent to (3.21).

Proof of theorem 3.1

Using (3.5) and (3.6) we get xo E X and by lemma 3.1 and the classical Cauchy-

Lipschitz existence theorem we get that (3.20) , (3.21) &#x3E; has a unique solution x E C (0,T,X).

Theorem 3.1 follows now from lemma 3.2.

4. The continuous dependence of the solution upon the input data

In this section two solutions of the problem (2.1) - (2.6) for two different input data are

considered. An estimation of the difference of these solutions is given for finite time intervals

that give the continuous dependence of the solution upon all input data (theorem 4.1) . In this

way, the finite-time stability of the solution is obtained (corollary 4.1) .

Theorem 4.1

Let (3.1 ) - (3.3) hold and let be the solution of (2.1) - (2.6) for the data b; ,

fi. gi. uoi , Ooi i = 1,2, such that (3.4) - (3.6) hold. Then there exists C &#x3E; 0 such

that
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Proof : Let be the solution of the elastic problem (3.11) - (3.14) for the data bi , f i, gi,

i = 1,2 and

Using lemma 3.2 we have

-V N IV

where the operators Fi are defined by (3.15) replacing ( u, 0) by (ui,0i), i = 1,2 . Using

(3.15) and (3.1)-(3.3) we get

for all yi X and t E [0,T] . Hence, by (4.4) we get

for all t E [0,T] and using (4.5) it results

for all s E [0,T] . Using a Gronwall-type lemma it follows

for all s E [0,T] hence
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Using again (4.4) and (4.6) we have

and by (4.7) we get

Taking into account (4.2) and (4.3) inequalities (4.7) and (4.8) imply

Using standard arguments from (3.11) - (3.14) we get

j = 0,1 hence from (4.9) and (4.10) we deduce (4.1).

In particular, from theorem 4.1 we deduce

Corollary 4.1

Let the hypothesis of theorem 4.1 hold. If bl = b2 , fi 1 = f 2, 91 = g2 then
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In order to avoid misunderstanding we recall some definitions of stability theory

following Hahn [ 17] , ch. 5. A solution (u, o, x ) of the problem (2.1 ) - (2.6) will be called :

i) stable if there exists m : R+ -~ R+ a continuous function with m (0) = 0 such that

for all t &#x3E; 0 and uoi , xol , satisfying (3.5) , (3.6) where (ui is the

solution of (2.1) - (2.6) for the initial data uoi , ool 

ii) finite time stable if (4.12) holds for all finite time intervals.

Remark 4.1

From (4.11) we deduce the finite time stability of every solution of (2.1 ) - (2.6) . Some

unidimensional examples can be considered in order to prove that generally stability
does not hold.
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