@article{ASCFM_1982__73_21_15_0, author = {Pabion, J.-F.}, title = {$\Pi _2$ - {Th\'eorie} des ensembles}, journal = {Annales scientifiques de l'Universit\'e de Clermont. Math\'ematiques}, pages = {15--45}, publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont}, volume = {73}, number = {21}, year = {1982}, zbl = {0574.03040}, language = {fr}, url = {http://www.numdam.org/item/ASCFM_1982__73_21_15_0/} }
TY - JOUR AU - Pabion, J.-F. TI - $\Pi _2$ - Théorie des ensembles JO - Annales scientifiques de l'Université de Clermont. Mathématiques PY - 1982 SP - 15 EP - 45 VL - 73 IS - 21 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - http://www.numdam.org/item/ASCFM_1982__73_21_15_0/ LA - fr ID - ASCFM_1982__73_21_15_0 ER -
%0 Journal Article %A Pabion, J.-F. %T $\Pi _2$ - Théorie des ensembles %J Annales scientifiques de l'Université de Clermont. Mathématiques %D 1982 %P 15-45 %V 73 %N 21 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U http://www.numdam.org/item/ASCFM_1982__73_21_15_0/ %G fr %F ASCFM_1982__73_21_15_0
Pabion, J.-F. $\Pi _2$ - Théorie des ensembles. Annales scientifiques de l'Université de Clermont. Mathématiques, Tome 73 (1982) no. 21, pp. 15-45. http://www.numdam.org/item/ASCFM_1982__73_21_15_0/
[1] Admissible sets and structures - Springer - Berlin. | MR | Zbl
(1975) -[2] Une théorie locale des ensembles: Π2- ZF - Forcing dans cette théorie- Thèse de 3e Cycle - LYON.
(1979) -[3] Set theory: an introduction to large cardinals- North-Holland- Pub. | Zbl
(1974)-[4] A note on models and submodels of arithmetic- Conf. in Math. Logic - London 1970 - Lectures Notes in Math. - Vol. 255 - Springer Berlin - pp. 128-144. | MR | Zbl
(1972)-[5] Some remarks in set theory - Math. Logic - Proceedings of the 1st Brazilian conference- Dekker Inc. - New-York. | MR | Zbl
(1977) -[6] The forcing companions of number theories - Isr. J. Math. - Vol.14 - pp. 317-337. | MR | Zbl
, and (1973) -[7] Forcing - Arithmetic and Division Rings - Lectures Notes in Math. Vol. 454 - Springer Berlin. | MR | Zbl
(1975) -[8] Ordinal definability-Axiomatic set theory- Proceedings of symp. in pure Math. - Providence - pp. 271-278. | MR | Zbl
and (1971) -[ 9] V = HC ? Non publié.
(1978) -[ 10] Diophantine equations and non-standard models of arithmetics- Proceedings of the 1960 Int. Cong. in Logic. Math. and Ph. Sc. - Stanford University Press - pp. 151-158. | MR | Zbl
(1962) -[11] Non-standard models and the independance of induction axiom-Essays on the found. of Math. - The Magness Press - Jerusalem - pp. 287-299. | MR | Zbl
(1961)-[12] Mathematical Logic - Addison Wesley. | MR | Zbl
(1967) -[ 13] On models of arithmetic- J.S.L. - Vol. 40 - pp. 41-47. | MR | Zbl
(1973) -