Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Mathématiques

C. MARTIAS

Filtrage non linéaire dans des espaces de Hilbert réels et séparables

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 69, série Mathématiques, n° 19 (1981), p. 87-113

http://www.numdam.org/item?id=ASCFM 1981 69 19 87 0>

© Université de Clermont-Ferrand 2, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

FILTRAGE NON LINEAIRE DANS DES ESPACES DE

HILBERT REELS ET SEPARABLES

C. MARTIAS

ECOLE NATIONALE SUPERIEURE DES TELECOMMUNICATIONS Département Systèmes et Communications 46, rue Barrault, 75634 PARIS Cedex 13 - France

Résumé:

On étudie le problème de filtrage non linéaire des processus à valeurs dans des espaces de Hilbert réels et séparables. Le modèle choisi est analogue au modèle proposé par SZPIRGLAS et MAZZIOTTO dans [18] dans le cas des processus réels. On a aussi étendu, pour nos besoins, les résultats des travaux de JACOD dans [7] au cas des processus Hilbertiens.

PLAN

- I. <u>INTEGRATION STOCHASTIQUE HILBERTIENNE PAR RAPPORT A DES MESURES</u>
 ALEATOIRES A VALEURS ENTIERES
 - I.1. Notations.
 - I.2. Intégration par rapport à $(\mu-\nu)$.
 - I.3. Intégration par rapport à μ.
 - I.4. Représentation des martingales Hilbertiennes.
- II. CARACTERISTIQUES LOCALES DES SEMI-MARTINGALES HILBERTIENNES
- III. FILTRAGE NON LINEAIRE DES PROCESSUS HILBERTIENS
 - III.1 Notations et Rappels.
 - III.2 Equation de filtrage.
 - III.3 Un Exemple.

INTEGRATION STOCHASTIQUE HILBERTIENNE PAR RAPPORT A DES MESURES ALEATOIRES A VALEURS ENTIERES

I.l Notations

Soit $(\Omega, \mathfrak{d}, (\mathcal{F}_t)_{t\geqslant 0}, P)$ un espace de probabilité où la filtration $\mathcal{F}=(\mathcal{F}_t)_{t\geqslant 0}$ satisfait aux conditions habituelles, et (E, ϵ) un espace métrisable lusinien muni de sa tribu borélienne. On note

$$(\widetilde{E}, \widetilde{\epsilon}) = (]o, \infty[x E, \emptyset)(]o, \infty[)a(\epsilon)$$

$$\tilde{\Omega} = \Omega \times R^{+} \times E$$
 , $\tilde{\Theta} = \partial_{-} \alpha G_{-}(R^{+}) \alpha E$

 $\widetilde{\sigma}(\mathcal{F}) = \sigma(\mathcal{F})$ as ε où $\sigma(\mathcal{F})$ est la tribu \mathcal{F} -optionnelle sur $\Omega \times \mathbb{R}^+$.

 $\widetilde{\mathcal{C}}(\mathcal{G}) = \mathcal{C}(\mathcal{G})$ as ε où $\widehat{\mathcal{C}}(\mathcal{G})$ est la tribu \mathcal{G} -prévisible sur $\Omega \times \mathbb{R}^+$.

Soit μ une mesure aléatoire à valeurs entières de (Ω, \mathbb{A}) dans $(\widetilde{E}, \widetilde{\epsilon})$, de (F, P) projection duale prévisible ν . On note $D = \{ (\omega, t), \mu(\omega; \{t\} \times E) = 1 \}$

$$J = \{ (\omega, t), \nu(\omega; \{t\} \times E) > 0 \}$$

Soit K un espace de Hilbert réel et séparable. On désigne par $\mathcal{M}_K(\mathcal{F},P)$ l'ensemble des (\mathcal{F},P) -martingales à valeurs dans K fortement continues à droite et uniformément intégrables.

On pose :
$$\mathcal{M}_{K}^{2}(\mathcal{F},P) = \{ M \in \mathcal{M}_{K}(\mathcal{F},P), Sup E_{P}(\|M_{t}\|_{K}^{2}) < \infty \} ;$$

 $\begin{array}{l} V_K(\mathcal{F},P) = 1 \text{ 'ensemble des processus à valeurs dans K à variation} \\ \text{ intégrable, c'est-à-dire des processus A, \mathcal{F}-adaptés, p.s. à} \\ \text{ trajectoires fortement continues à droite et à variation finie,} \\ \text{ et tels que } E_P(\mathcal{F}_{[0,\infty[}\|dA_s\|_K)<\infty;\\ \mathcal{M}_{[0]}^{10c}(\mathcal{F},P) \text{ (resp. } \mathcal{M}_K^2,^{10c}(\mathcal{F},P), V_K^{10c}(\mathcal{F},P)) = 1 'ensemble des processus} \\ \text{M à valeurs dans K tels qu'il existe une suite } (T_n) \text{ de \mathcal{F}-temps} \\ \text{d'arrêt vérifiant } T_n \uparrow + \infty P - \text{ p.s. et} \\ \text{M.} \land T_n \in \mathcal{M}_K(\mathcal{F},P) \text{ (resp. } \mathcal{M}_K^2 \text{ ($\mathcal{F},P)$, $V_K(\mathcal{F},P)$)}. \end{array}$

I.2 Intégration par rapport à (μ-ν)

Soit Y : $(\widetilde{\Omega},\widetilde{\mathfrak{H}})$ \rightarrow K. On définit le processus $\beta_{\mathbf{t}}$ (Y) à valeurs dans $\overline{\mathbb{R}}^+$ par

$$\begin{split} \beta_{t}(Y) &= \int_{\left]o,\ t\ \right] \times E} & \|Y(s,\chi)\|_{K} \, 1_{J^{c}}(s) \, \nu(ds,\ d\chi) \\ &+ \sum_{s \leqslant t} \, 1_{J}(s) \, \| \, \int_{E} \, Y(s,\chi) \, \mu(\{s\},\ d\chi) \, - \int_{E} \, Y(s,\chi) \, \nu(\{s\},\ d\chi)\|_{K} \end{split}$$

avec la convention $\beta_t(Y) = + \infty$ si l'une des intégrales du type $\int_E \|Y(s,\chi)\|_K \nu(\{s\}, d\chi), s \leqslant t$, est égale à $+ \infty$.

On définit aussi le processus $B_t(Y)$ à valeurs dans \overline{R}^+ par

$$B_{t}(Y) = \int_{]0, t] \times E} \|Y(s,\chi)\|_{K}^{2} 1_{J^{c}}(s) \nu(ds, d\chi)$$

$$+ \sum_{s \leq t} 1_{J}(s) \int_{E} \|Y(s,\chi)\|_{K}^{2} \nu(\{s\}, d\chi) - \|f_{E}Y(s,\chi)\nu(\{s\}, d\chi)\|_{K}^{2}$$

avec la convention $B_t(Y) = + \infty$ dès que l'une des intégrales du type $\int_E \|Y(s,\chi)\|_K^2 v(\{s\}, d\chi), s \leqslant t$, est égale à $+ \infty$.

$$\mathcal{J}_{K}^{2}((\mathcal{F},P) \; ; \; \mu) \; = \; \{\; Y \; : \; (\widetilde{\Omega},\widetilde{\mathcal{P}}(\mathcal{G})) \; \rightarrow \; K, \; \mathbb{E}_{p}(\boldsymbol{\beta}_{\infty}(Y)) < \; \infty \}$$

Proposition 1 (cf. [10]): Soit Y ε $G_K^1((\mathcal{F},P);\mu)$ (resp. $G_K^2((\mathcal{F},P);\mu)$). It exists une martingale unique à l'indistinguabilité près de $\mathcal{M}_K(\mathcal{F},P)\cap V_K(\mathcal{F},P)$ (resp. $\mathcal{M}_K^2(\mathcal{F},P)$) notée Y * (μ - ν), telle que \forall k ε K. $(Y*(\mu-\nu)\mid k)_K = (Y\mid k)_K*(\mu-\nu)$ où le membre de droite de l'égalité est une intégrale stochastique

$$(Y * (\mu - \nu) \mid k)_{K} = (Y \mid k)_{K} * (\mu - \nu)$$

réelle par rapport à $(\mu-\nu)$ au sens de JACOD dans [7].

Posons $\mathcal{G}_{K}((\mathcal{F},P);\mu) = \mathcal{G}_{K}^{1}((\mathcal{F},P);\mu) + \mathcal{G}_{K}^{2}((\mathcal{F},P);\mu)$. On définit, pour Y $\in \mathcal{L}_K((\mathcal{F},P);\mu)$, Y * $(\mu-\nu)$ par :

$$Y * (\mu - \nu) = Y_1 * (\mu - \nu) + Y_2 * (\mu - \nu)$$

avec Y = Y₁ + Y₂, Y₁ $\varepsilon \mathcal{G}_{K}^{1}((\vec{y},P); \mu)$, Y₂ $\varepsilon \mathcal{G}_{K}^{2}((\vec{y},P); \mu)$.

Cette intégration est indépendante de la décomposition de Y.

Enfin par localisation, on étend l'intégration aux éléments de $\overset{\mathcal{C}}{\text{O}}\overset{\text{loc}}{\text{K}}((\mathfrak{F},P)$; $\mu)$ c'est-à-dire aux processus Y tels qu'il existe une suite (T_n) de \mathcal{F} -temps d'arrêt vérifiant $T_n \uparrow + \infty$ P- p.s. et ¹[0, Τ_η] ^{Υ ε} ζκ^{((ℑ,P)} ; μ).

I.3. Intégration par rapport à μ

Soit Y: $(\widetilde{\Omega},\widetilde{\mathfrak{H}}) \rightarrow \mathbb{R}^+$, la formule $M_{\mu}^P(Y) = \mathbb{E}_{P}(f_{0,\infty}[x \in Y(s,\chi) \mu(ds,d\chi))$ permet de définir une mesure positive M_{ij}^{P} sur $(\widetilde{\Omega},\widetilde{\mathfrak{G}})$.

On pose

$$\mathcal{K}_{K}^{1}((\mathcal{F},P) \; ; \; \mu) \; = \; \{\; Y \; : \; (\widetilde{\Omega},\widetilde{\mathcal{O}}(\mathcal{F})) \; \rightarrow \; K \; \; , \; M_{\mu}^{P}(\; \|Y\|_{K}) \; < \; \infty \;$$
 et $M_{u}^{P}(Y/\widetilde{\mathcal{P}}(\mathcal{F})) \; = \; o\}$

$$\begin{split} \mathcal{H}^2_K((\mathcal{F},P)~;~\mu) &= \{~\Upsilon~:~(\widetilde{\Omega},\widetilde{\sigma}(\mathcal{F})) \to K,~~M^P_{\widetilde{\mu}}(~\|\Upsilon\|^2_K) < \infty \\ &= \text{et}~M^P_{\widetilde{\mu}}(\Upsilon/\widetilde{\mathcal{P}}(\mathcal{F})) = o \} \end{split}$$

Proposition 2 (cf. [10]) : Soit Y $\varepsilon \mathcal{X}_{K}^{1}((\mathfrak{F},P)$; μ) (resp. $\mathcal{H}_{K}^{2}((\mathcal{F},P);\mu)$). Il existe une martingale unique à l'indistinguabilité près de $\mathcal{M}_{K}(\mathcal{F},P)\cap V_{K}(\mathcal{F},P)$ (resp. $\mathcal{M}_{K}^{2}(\mathcal{F},P)$) notée $Y*\mu$, telle que \forall k \in K $(Y*\mu \mid k)_{K} = (Y \mid k)_{K}*\mu$ où le membre de droite de l'égalité est une intégrale stochastique

$$(Y * \mu \mid k)_K = (Y \mid k)_K * \mu$$

réelle par rapport à μ au sens de JACOD dans [7].

On pose également $\mathcal{H}_K((\mathcal{F},P)$; $\mu)$ = $\mathcal{H}_K^1((\mathcal{F},P)$; $\mu)$ + $\mathcal{H}_K^2((\mathcal{F},P)$: $\mu)$, et on définit Y * μ pour Y $\in \mathscr{W}_{K}((\mathcal{F},P)$; $\mu)$ par

$$\begin{array}{l} Y * \mu = Y_1 * \mu + Y_2 * \mu \\ \\ \text{avec } Y = Y_1 + Y_2, \ Y_1 \in \mathcal{H}^1_K((\mathcal{F},P) \ ; \ \mu) \ , \ Y_2 \in \mathcal{K}^2_K((\mathcal{F},P) \ ; \ \mu), \\ \\ \text{et par localisation on étend l'intégration aux éléments de} \\ \mathcal{H}^{1\text{oc}}_K((\mathcal{F},P) \ ; \ \mu). \end{array}$$

I.4 Représentation des martingales Hilbertiennes

La représentation des martingales locales réelles de JACOD dans [7] s'étend au cas des martingales Hilbertiennes. La démonstration est tout à fait analogue au cas réel (cf. [10]).

Théorème 1: Soit μ une mesure aléatoire à valeurs entières fixée, de (F,P)-projection duale prévisible ν . Soit $M \in \mathcal{W}_K^{\mathrm{loc}}(F,P)$.

M est de manière unique, à l'indistinguabilité près, la somme de trois martingales locales

trois martingales locales
$$M = N + W * (\mu - \nu) + V * \mu$$
avec
$$\Delta N = 0 \text{ sur } D$$

$$W \in \mathcal{G}_{K}^{loc}((\mathcal{F}, P) ; \mu)$$

$$V \in \mathcal{G}_{K}^{loc}((\mathcal{F}, P) ; \mu)$$

II. CARACTERISTIQUES LOCALES DES SEMI-MARTINGALES HILBERTIENNES

Soit $(\Omega, d, (\mathcal{T}_t)_{t \geqslant 0}, P)$ un espace de probabilité. Par semimartingale à valeurs dans un espace de Hilbert réel et séparable K, nous entendons un processus X admettant une décomposition de la forme $X = X_0 + N + A$ avec $N \in \mathcal{U}_K^{loc}(\mathcal{T}, P)$, A processus adapté à valeurs dans K dont presque toutes les trajectoires sont fortement continues à droite et à variation finie, $A_0 = N_0 = 0$ p.s.

Etant donné X, semi-martingale à valeurs dans K,

 $X_t - X_o - \sum_{0 \le s \le t} \Delta X_s \mid_{\{\parallel \Delta X_s \parallel_{K} > 1\}} est alors une semi-martingale spéciale, c'est-à-dire qu'elle admet la décomposition unique suivante :$

$$X_t - X_0 - \sum_{\alpha \leq t} \Delta X_s |_{K} > 1$$
 $\|\Delta X_s\|_{K} > 1$ $\|\Delta X_t\|_{K} > 1$

où M $\in \mathcal{M}_K^{1oc}(\mathcal{F},P)$, a processus prévisible de $V_K^{1oc}(\mathcal{F},P)$,

$$M_0 = \alpha_0 = 0$$
 p.s.

Soit μ la mesure aléatoire à valeurs entières associée aux sauts de X :

$$\mu(\omega ; dt, d\chi) = \sum_{s>0} {}^{1} {\{ \| \Delta x_{s} \|_{K} \neq 0 \}} {}^{\varepsilon} (s, \Delta x_{s}) (dc, d\chi)$$

où $\mathcal{E}_{(s, \Delta X_s)}$ désigne la mesure de Dirac au point $(s, \Delta X_s)$. On désigne par v la (\mathcal{F}, P) -projection duale prévisible de μ . Enfin, posons $\beta = \langle M^C, M^C \rangle$ où M^C désigne la partie continue de la martingale locale Hilbertienne M et $\langle M^C, M^C \rangle$ l'unique processus croissant prévisible tel que $||M^C||_{\mathcal{K}}^2 - \langle M^C, M^C \rangle \in \mathcal{U}_R^{1oc}$.

Définition: Le triplet (α , β , ν) constitue les caractéristiques de la (F,P)-semi-martingale X à valeurs dans K.

A partir du théorème de représentation précédent on obtient, comme dans le cas réel, la décomposition canonique suivante des semi-martingales Hilbertiennes :

III. FILTRAGE NON LINEAIRE DES PROCESSUS HILBERTIENS

III.1 Notations et Rappels

K et G, désigneront des espaces de Hilbert réels et séparables munis de leur produit scalaire respectif $(.|.)_K$, $(.|.)_G$, et de leur norme Hilbertienne $\|.\|_K$, $\|.\|_G$. K $\widehat{\mathbb{R}}_1$ G (resp. K $\widehat{\mathbb{R}}_2$ G) sera le produit tensoriel projectif de K et de G muni de la norme trace $\|.\|_1$ (resp. le produit tensoriel Hilbertien de K et de G muni de la norme de Hilbert-Schmidt $\|.\|_{H.S.}$ et du produit scalaire $(.|.)_{H.S.}$).

Soit A un opérateur nucléaire de K, non nul, auto-adjoint et non négatif. Soit (λ_n) la suite des valeurs propres de A strictement positives, chaque valeur propre figurant autant de fois que sa multiplicité, et (e_n) un système orthonormal de vecteurs propres associé. On définit l'opérateur A^+ par A^+ $k=\Sigma$ $(k\mid e_n)_K$ $\frac{e_n}{\lambda_n}$, $k\in K$, avec pour domaine de définition $\mathfrak{D}(A^+)=\{\,k\in K,\,\Sigma\,\frac{(k\mid e_n)^2}{\lambda_n^2}<\infty\,\}$

 $\mathcal{P}(A^+)$ contient l'image de K par A noté $R_g(A)$, et A^+ est un pseudo-inverse de A(i.e. $A = A \ A^+A$). C'est ce pseudo-inverse que l'on adoptera toutes les fois qu'il s'agira du pseudo-inverse d'un opérateur nucléaire.

On remarquera que A⁺A est un opéra eur borné de K.

Rappelons brièvement la théorie de l'intégration stochastique de processus à valeurs opérateurs par rapport à une martingale locale Hilbertienne fortement continue, développée par METIVIER et PELLAUMAIL dans [12]

Soit $(\Omega, \mathcal{Q}, (\mathcal{F}_t)_{t \geqslant 0}, P)$ un espace de probabilité et M une (\mathcal{F}, P) martingale locale fortement continue à valeurs dans K. On note < M, M > 1 'unique processus prévisible de $V_{K \stackrel{\frown{\otimes}}{\otimes}_{1}}^{loc} K(\mathcal{F}, P)$ tel que $M \bowtie M - < M, M > \varepsilon \stackrel{loc}{\mathcal{M}_{K \stackrel{\frown{\otimes}}{\otimes}_{1}}} K(\mathcal{F}, P)$ et $M_0 \bowtie M_0 = < M, M >_0$. On pose $A = \mathbb{Z}_{M >_0} M = \mathbb{Z}_{M >_0}$

$$\langle M, M \rangle_t = \int_{[0,t]} \mathcal{M}_s d \langle M, M \rangle_s$$

et $\forall (s,\omega), \text{ Tr } \mathcal{M}_{s,\omega} = ||\mathcal{M}_{s,\omega}||_1 = 1.$

On définit l'espace $\bigwedge^2((\mathcal{F},P),M,K,G)$ comme étant l'espace des processus X à valeurs opérateurs bornés de K dans G tels que :

 $(i_1) \ \forall \ k \ \epsilon \ K, \forall \ g \ \epsilon \ G, \ (X \ k \ | \ g)_G \ est \ un \ processus \ r\'eel$ $\ \mathcal{F}\text{-pr\'evisible. On dira encore que } X \ est \ faiblement \ \mathcal{F}\text{-pr\'evisible.}$

$$(ii_{1}) \ \mathbb{E}_{\mathbf{P}}(f_{[o, \infty[} \parallel \mathbf{X}_{s} \mathcal{M}_{s}^{\frac{1}{2}} \parallel_{\mathbf{H.S.}}^{2} \ d \not | \mathbf{M,M}_{s}) < \infty.$$

On note Λ^2 * ((\mathcal{F}, P), M, K, G) l'espace des processus X tels que : (i_2) $X_{s,\omega}$ est un opérateur linéaire de K dans G de domaine de définition contenant $\mathcal{U}_{s,\omega}^{\frac{1}{2}}$ (K).

(ii₂) $X_s \mathcal{U}_s^{\frac{1}{2}}$ est un opérateur de Hilbert-Schmidt de K dans G.

(iii₂) $X_s \mathcal{M}_s^{\frac{1}{2}}$ est faiblement \mathcal{F} -prévisible et

$$E_{P} \left(\int_{[0,\infty]} \left\| X_{S} \mathcal{U}_{S}^{\frac{1}{2}} \right\|^{2}_{H.S.} d \left\langle M, M \right\rangle_{S} \right) < \infty.$$

 Λ^2 * ((F,P),M,K,G) est un espace préhilbertien complet et non séparé. On note $\bar{\Lambda}^2$ ((F,P),M,K,G) le complété de Λ^2 ((F,P),M,K,G) dans Λ^2 * ((F,P),M,K,G).

On intègre alors les processus X appartenant à $\bar{\Lambda}^2$, loc ((\mathcal{F},P) , M,K,G) c'est-à-dire des processus tels qu'il existe une suite (T_n) de \mathcal{F} -temps d'arrêt vérifiant $T_n \uparrow + \infty$ P- p.s., et $l[o,T_n]$ X ϵ $\bar{\Lambda}^2$ ((\mathcal{F},P) ,M,K,G).

 $N_t = \int_{[0,t]} X_s dM_s$ est une martingale locale fortement continue à valeurs dans G et on a

$$\{N,N\}_{t} = \int_{[0,t]} \|X_{s} \mathcal{U}_{s}^{\frac{1}{2}}\|_{H.S.}^{2} d \{M,M\}_{s}.$$

De plus, on note \bigwedge^* ((\widetilde{J} ,P),M,K,G) l'espace des processus X vérifiant les conditions (i_2) et (ii_2) précédentes et la condition (i_3) suivante :

(i₃) $X_s \mathcal{U}_s^{\frac{1}{2}}$ est faiblement \mathcal{F} -prévisible et $\mathbb{E}_{\mathbf{P}}(\int_{[0,\infty]} \|X_s \mathcal{U}_s^{\frac{1}{2}}\|_{H_s}^2 d \langle \mathbf{M}, \mathbf{M} \rangle_s)^{\frac{1}{2}} < \infty.$

 Λ^{\clubsuit} ((\mathfrak{F},P),M,K,G) est un espace vectoriel semi-normé et complet. On note $\overline{\Lambda}$ ((\mathfrak{F},P),M,K,G) le complété de Λ^2 ((\mathfrak{F},P),M,K,G) dans Λ^{\clubsuit} ((\mathfrak{F},P),M,K,G). On prolonge alors par continuité l'intégration stochastique aux éléments de $\overline{\Lambda}$ ((\mathfrak{F},P),M,K,G) grâce à la théorie des espaces H et B.M.O. Hilbertiens développée par USTUNEL dans [19], et même aux processus de $\overline{\Lambda}^{loc}$ ((\mathfrak{F},P),M,K,G) par le caractère local de l'intégration.

III.2 Equation de filtrage

Le problème de filtrage consiste à estimer un processus X, le signal, à partir d'un processus d'observation Z. Plus précisément, définis sur un espace de probabilité $(\Omega, \mathfrak{d}, \mathfrak{Q})$ muni de deux filtrations $\mathfrak{G} = (\mathfrak{G}_t)_{t\geqslant 0}$ et $\mathcal{F} = (\mathcal{F}_t)_{t\geqslant 0}$, continues à droite et Q-complètes, telles que \forall t $\mathfrak{G}_t \subset \mathcal{F}_t$, le signal X est supposé adapté à la filtration \mathcal{F} et le processus d'observation Z à la filtration \mathfrak{G} . Choisissant comme estimation de X sa $(\mathfrak{G},\mathfrak{Q})$ -projection optionnelle notée \mathfrak{g} , \mathfrak{g} , on cherche à établir une équation différentielle stochastique dépendant du processus d'observation Z et vérifiée par \mathfrak{g} , \mathfrak{g} .

Le modèle mathématique que l'on développe ici dans le cas des processus à valeurs Hilbertiennes est analogue au modèle proposé par SZPIRGLAS et MAZZIOTTO dans [18] dans le cas des processus réels.

Dans toute la suite, toutes les projections de processus pour lesquelles la filtration n'est pas précisée doivent être considérées par rapport à \S .

Le Modèle :

Le signal X est supposé être une (\mathcal{F},Q) -semi-martingale fortement quasi-continue à gauche à valeurs dans un espace de Hilbert réel et séparable K, et le processus d'observation Z une (\mathcal{G},Q) -semi-martingale fortement quasi-continue à gauche à valeurs dans un autre espace de Hilbert réel séparable G.

On fait les hypothèses suivantes :

$$(H_{1}) \begin{cases} \text{Il existe une probabilit\'e P \'equivalente \`a Q sur \ratelle} \\ \text{que 1'espace } (\Omega, \overrightarrow{a}, (\G_{t})_{t\geqslant 0}, (\F_{t})_{t\geqslant 0}, P) \text{ poss\`ede la} \\ \text{propri\'et\'e } (K) \text{ suivante :} \\ (K) \V t, \V \End{array} \times \Fightarrow F_{t}^{+}, \End{array} = E_{p}(Y/\G_{\infty}).$$

On note L_{∞} la densité de Q par rapport à P sur \mathcal{F}_{∞} , et (L_{t}) une version continue à droite de la (\mathcal{F},P) -martingale réelle $E_{p}(L_{\infty}/\mathcal{F}_{t})$.

(H₂) { L
$$\epsilon$$
 \mathcal{M}_R^2 (F,P) et est F-quasi-continu à gauche.

$$(H_3) \begin{cases} \text{X est une semi-martingale spéciale de } H_K^2(\mathcal{T},P) \text{, de décomposition unique } X = X_o + N + A \text{, avec } X_o \in L_K^2(\Omega,\mathcal{T}_o,P) \text{,} \\ \text{N } \in \mathcal{M}_K^2(\mathcal{T},P) \text{, A processus } \mathcal{T}\text{-prévisible de } V_K(\mathcal{T},P) \text{ tel} \\ \text{que } E_P(\int_{[o,\infty[} \|d A_s\|_K)^2 < \infty, N_o = A_o = 0 \text{ p.s.} \end{cases}$$

Soit μ la mesure aléatoire à valeurs entières associée aux sauts de la G-semi-martingale Z, et soit ν la (F,P) projection duale prévisible de μ . Grâce à la propriété (K), ν est aussi la (F,P) projection duale prévisible de μ . Si (α,β,ν) sont les (F,P) caractéristiques locales de Z, ce seront aussi ses (F,P) caractéristiques locales. On peut donc décomposer Z canoniquement sous la probabilité P et indépendemment des filtrations F ou G:

(1)
$$Z=Z_0 + z |_{\{\|z\|_G > 1\}} * \mu + \alpha + M^C + z |_{\{\|z\|_G \leqslant 1\}} * (\mu-\nu),$$

avec $\beta = \langle M^C, M^C \rangle$, et on posera $\langle M^C, M^C \rangle = \mathcal{U} \setminus \langle M^C, M^C \rangle$.

On remarquera que les processus α et A à valeurs respectivement dans G et dans K sont fortement continus, grâce aux hypothèses de la \mathcal{F} -quasi-continuité à gauche de X et de la \mathcal{F} -quasi-continuité à gauche de Z.

Appliquons le théorème l aux (F,P)-martingales L et N, et représentons leur partie continue comme intégrale stochastique par rapport à M^C (pour la représentation des martingales Hilbertiennes cf. [15]). On obtient une représentation générale de L et de N sous la filtration F et la probabilité P

(2)
$$L = L_0 + L_\Psi \cdot M^C + L_W * (\mu - \nu) + L_V * \mu + L$$

(3)
$$N = \Psi \cdot M^{C} + k * (\mu - \nu) + h * \mu + N$$

Dans chacune de ces deux décompositions les termes de la somme sont des (\mathcal{F},P) -martingales de carré intégrable et deux à deux orthogonales. De plus $|\Delta L^{\perp}| \|\Delta Z\|_G = 0$, $\|\Delta N^{\perp}\|_K \|\Delta Z\|_G = 0$, $<L^{\perp},M^C> = 0$, $<N^{\perp},M^C> = 0$, et de telles décompositions sont uniques.

En appliquant la formule de Ito (cf. [6], [11])
LX = L_. X + X_. L + [L,X], il vient :

(4)
$$LX = L_{o} X_{o} + L_{-} (\Psi + \Psi \times X_{-}) \cdot M^{c}$$

 $+ L_{-} (k + WX_{-} + Wk + M_{\mu}^{P} (Vh / \widetilde{\mathcal{P}}(\vec{Y}))) * (\mu - \nu)$
 $+ L \cdot A' + L F * \mu + (LX)^{\perp}$

avec $F = h + VX_{-} + Wh + Vh + Vk - M_{\mu}^{P}(Vh / \widetilde{\mathfrak{I}}) \in \mathcal{K}_{K}^{loc}((\mathfrak{T},P); \mu),$ $(LX)^{\perp} = [L^{\perp}, N^{\perp}] - \langle L^{\perp}, N^{\perp} \rangle + L_{-}. N^{\perp} + X_{-}. L^{\perp},$ $A' = A + \frac{1}{L_{-}}. \langle L, N \rangle, A' \text{ est le processus } \mathfrak{T}\text{-prévisible associé à la}$ $\mathfrak{F}\text{-semi-martingale spéciale } X \text{ sous la probabilité } Q.$

Lemme 1: Soit Y un processus $\widehat{\mathcal{Y}}(\overline{y})$ -mesurable à valeurs dans K, et tel que $E_p(\|Y\|_K^2 * \nu_\infty)^{\frac{1}{2}} < \infty$. Alors $^{1,P}(Y * (\mu-\nu)) = \widehat{Y}^{\nu,P} * (\mu-\nu)$ où $\widehat{Y}^{\nu,P} = M_{\nu}^P(Y/\widehat{\mathcal{Y}}(\overline{y}))$.

<u>Démonstration</u>: On établit tout d'abord l'égalité à démontrer pour Y tel que M_{μ}^{P} ($\|Y\|_{K}$) < ∞ . En effet, dans ce cas on a : Y * (μ - ν) = Y * μ - Y * ν . Grâce à la propriété (K) de l'espace de probabilité (Ω , Ω , (\mathcal{K}_{t}), (\mathcal{K}_{t}), P) il vient (cf. [2]) :

Revenons alors au cas annoncé. Soit une suite (A_m) , $A_m \in \widetilde{\mathcal{P}}(\xi)$, telle que $A_m \cap \widetilde{\Omega}$ et M_μ^P $(A_m) < \infty$. On pose $T_m^n = \inf \{t, I_{A_m} \neq \nu_t > n\}$. En appliquant l'inégalité de Schwarz on a : $M_\nu^P (I_{[\mathfrak{o},T_m^n]} \mid_{A_m} \|Y\|_K) \leqslant \sqrt{n} \quad \mathbb{E}_P (\|Y\|_K^2 \neq \nu_\infty)^{\frac{1}{2}} < \infty.$

Par l'étude précédente, il vient

$$^{1,P}(1_{[0,T_{m}^{n}]}, 1_{A_{m}} Y * (\mu-\nu)) = 1_{A_{m}} \hat{Y}^{\nu,P} * (\mu-\nu)_{t} \wedge T_{m}^{n}$$

Par la propriété (K), l'application $M \to {}^{1,P}(M)$ définie sur H_K^1 (\mathcal{T},P) et à valeurs dans $H^1_K(\xi,P)$ est continue. On passe alors à la limite dans l'égalité précédente en faisant d'abord $n \to +\infty$, puis $m \to +\infty$.

Lemme 2: $\forall Y \in \overline{\Lambda} ((\overline{G}, P), M^{C}, G, K), \stackrel{1,P}{} (Y.M^{C}) = \overline{Y}.M^{C}$ où $\overline{Y} \in \overline{\wedge} ((G,P),M^{c},G,K)$ et est une extension à $R_{g}(\mathcal{U}(\overline{2}))$ de l'opérateur non borné $Y\mathcal{U}^{\beta,P}\mathcal{U}^{+}$ pour dP d β presque tout (s,ω) avec $Y\mathcal{M}^{\beta,P} = M_{\beta}^{P} (Y\mathcal{M}/\mathbb{C}(\xi))$. On notera $\overline{Y}.M^{C} = Y\mathcal{M}^{\beta,P}\mathcal{M}^{+}.M^{C}$,

1'intégration ne dépendant pas de 1'extension choisie de $Y\mathcal{M}^{\beta,P}\mathcal{M}^{+}$ dans $\bar{\Lambda}$ ((ξ ,P),M^c,G,K),

<u>Démonstration</u>: On prend tout d'abord Y $\varepsilon \bar{\Lambda}^2$ ((J,P),M^c,G,K). Alors $^{1,P}(Y.M^{c}) = \overline{Y} \cdot M^{c}$ où \overline{Y} est une projection orthogonale de Y sur $\bar{\Lambda}^2$ ((G,P),M^c,G,K). Or cette projection orthogonale vérifie $M_{\beta}^{P} (Y \mathcal{M}/\mathcal{T}(\xi)) = \bar{Y} \mathcal{M}, dP d\beta p.p.$ Soit, pour tout (s,ω) , l'opérateur non borné Y \mathcal{M} β , \mathcal{P} \mathcal{M}^+ de domaine de définition égal à Rg(\mathcal{M}), où \mathcal{M}^+ désigne le pseudo-inverse de \mathcal{M} choisi au III.1. $\mathcal{U}^+\mathcal{U}$ est un processus à valeurs opérateurs bornés, faiblement ξ -prévisible car \forall g ϵ G, $\mathcal{U}_{s}^{+}\mathcal{U}_{s}^{-}g = \lim_{n \to +\infty} \int_{0}^{n} \exp((u-n)\mathcal{U}_{s}^{2}) du \mathcal{U}_{s}^{2}g, (cf. [16]).$

On peut alors écrire
$$\widehat{\gamma\mathcal{M}}^{\beta,P}\mathcal{M}^{+}\mathcal{M} = \widehat{\gamma\mathcal{M}\mathcal{M}^{+}\mathcal{U}}^{\beta,P} = \widehat{\gamma}\mathcal{M}^{\beta,P} = \widehat{\gamma}\mathcal{M}.$$

L'opérateur \overline{Y} coı̈ncide ainsi avec YM, β , P M sur $R_g(M)$ et est donc une extension à $R_g(\mathcal{M}^{\frac{1}{2}})$ de cet opérateur non borné.

Revenons au cas où Y $\varepsilon \bar{\Lambda}$ ((\bar{y} , P), M^C, G, K). Soit (Y_n) une suite telle que $Y_n \in \overline{\Lambda}^2$ ((T,P),M°,G,K) et $Y_n \xrightarrow[n \to +\infty]{} Y$ dans $\overline{\Lambda}$ ((T,P),M°,G,K). Par l'étude précédente on a

$$^{1,P}(Y_n. M^c) = \widehat{Y_n M}^{\beta,P} M^+ . M^c$$

On passe alors à la limite comme dans le lemme précédent en faisant $n \rightarrow + \infty$.

Lemme 3 : Sous les hypothèses (H_1) , (H_2) , (H_3) du modèle, et sous l'hypothèse (H₄) suivante :

$$\begin{cases}
1,P(L^{\perp} + L V \times \mu) = 0 \\
\frac{1}{1+\widehat{W}^{\nu,Q}} \text{ est } \xi \text{-localement borné}
\end{cases}$$

on a sous la probabilité P:
$$\frac{1}{1,P_{(L)}} = \frac{1}{1,P_{(L)_0}} - \frac{\widehat{\mathcal{P}}_{\mathcal{U}}^{\beta,Q} \mathcal{U}^+}{1,P_{(L)_0}} \cdot M^c - \frac{\widehat{\mathcal{W}}^{\gamma,Q}}{1,P_{(L)_0}(1+\widehat{\mathcal{W}}^{\gamma,Q})} * (\mu-\nu)$$

$$+ \frac{\widehat{\mathcal{W}}^{\gamma,Q}^{\gamma,Q}}{1,P_{(L)_0}(1+\widehat{\mathcal{W}}^{\gamma,Q})} * \nu + \frac{\widehat{\mathcal{P}}_{\mathcal{U}}^{\beta,Q} \mathcal{U}^+ \mathcal{U}^{\frac{1}{2}}}{1,P_{(L)_0}(1+\widehat{\mathcal{W}}^{\gamma,Q})} \cdot \beta$$

$$1,P_{(L)_0}(1+\widehat{\mathcal{W}}^{\gamma,Q}) \cdot \beta$$

Démonstration : A partir de l'expression (2) et des lemmes précédents, il vient : $^{1,P}(L) = ^{1,P}(L_{0}) + \widehat{L_{-}}\varphi_{i}\mathcal{U}^{\beta,P}_{i}\mathcal{U}^{\beta,P}_{i}$. $M^{c} + \widehat{L_{-}}W^{\nu,P} \neq (\mu-\nu)$ Soit encore,

$$^{1,P}(L) = ^{1,P}(L_{o}) + ^{1,P}(L)_{-}\widehat{\gamma_{\ell}\mathcal{U}}^{\beta,Q} \mathcal{U}^{+} \cdot M^{c} + ^{1,P}(L)_{-}\widehat{W}^{\nu,Q} * (\mu-\nu).$$

Puis, on applique la formule de Ito suivante :

$$\frac{1}{Y} = \frac{1}{Y_0} - \frac{1}{Y_2^2} \cdot Y + \frac{1}{Y_3^3} \cdot \langle Y^c, Y^c \rangle + \sum_{o < s \le t} \frac{(\Delta Y_s)^2}{Y_s (Y_s^-)^2}$$

Lemme 4: Sous les hypothèses
$$(H_1)$$
 à (H_4) et l'hypothèse (H_5) suivante : (H_5) $1,P((LX)^{\perp} + L_F * \mu) = 0$,

On a:
$$1,P(LX) = {}^{1},P(L_0X_0) + {}^{1},P(L)_{\perp} \cdot A^{3},Q$$

$$+ {}^{1},P(L)_{\perp} \cdot (\Psi \cdot \mathcal{M} \cdot \beta,Q + \widehat{\mathcal{P}} \cdot \mathcal{M} \cdot X_{\perp} \cdot A^{3},Q) \cdot \mathcal{M}_{C}^{+} \cdot M^{C}$$

$$+ {}^{1},P(L)_{\perp} \cdot (\mathbb{K} + \mathbb{W} \times \mathbb{K} + \mathbb{W} \times \mathbb{K} \times \mathbb{K} + (1 + \mathbb{W}^{V},Q) \hat{h}^{\mu},Q) * (\mu-\nu)$$

<u>Démonstration</u>: A partir de l'espression (4) et des lemmes 1 et 2, il vient:

$$\begin{array}{lll}
1,P_{(LX)} &= & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Mais grâce à la propriété (K) on a :

$$= M_{\mu}^{Q}(h/\widehat{Q}(\xi)) M_{\mu}^{P}(^{1,P}(L)/\widehat{Q}(\xi))$$

$$= ^{1,P}(L)_{(1 + \widehat{W}^{V,Q})} \hat{h}^{\mu,Q}$$

Par la formule élémentaire suivante, $^{1,Q}(x) = \frac{1,P(LX)}{1,P_{c.}}$ et en appliquant

la formule de Ito on obtient l'équation de filtrage. Si (α',β',ν'). sont les (ζ,Q) caractéristiques locales de Z, on a les transformations suivantes:

$$\alpha' = \alpha + \widehat{\mathcal{V}} \mathcal{U}^{\beta,Q} \cdot \beta + z \left\| z \right\|_{G} \leq 1 \right\} \widehat{W}^{\gamma,Q} \times \gamma$$

$$\beta' = \beta$$

$$\gamma' = (1 + \widehat{W}^{\gamma,Q}) \cdot \gamma$$

Et si M'c est la partie martingale continue de la (5,Q)-semimartingale Hilbertienne Z, on a :

$$M'^{c} = M^{c} - \widehat{\varphi_{\mathcal{U}_{c}}}^{\beta,Q} \cdot \beta$$

On peut ainsi exprimer l'équation trouvée en fonction des caractéristiques locales et de la partie martingale continue de la (ζ,Q) -semimartingale Hilbertienne Z. On en déduit le théorème suivant :

Soit (α', β', ν') les (ζ, Q) caractéristiques locales du processus d'observation Z, à valeurs dans G, de décomposition canonique : $Z = Z_0 + z^{-1} \{ \|z\|_{G} > 1 \} * \mu + \alpha' + M^{'c} + z^{-1} \{ \|z\|_{G} \leqslant 1 \} * (\mu-\nu')$

$$Z = Z_0 + z_0^{-1} \{ \| z \|_G > 1 \} * \mu + \alpha' + M^{c} + z_0^{-1} \{ \| z \|_G \le 1 \} * (\mu - \nu')$$

avec
$$\beta' = \langle M'^{c}, M'^{c} \rangle$$
, $\langle M'^{c}, M'^{c} \rangle = \mathcal{M}$. β'

Sous les hypothèses (H_{1}) à (H_{5}) , le processus $^{1,Q}(X)$ à valeurs dans K vérifie l'équation :

$$1,Q(X) = ^{1,Q}(X)_{o} + A'^{3,Q} + \widehat{(\Psi \mathcal{M} \otimes X_{-}^{\beta'}, Q + \widehat{\Psi \mathcal{M} \otimes X_{-}^{\beta'}, Q} - \widehat{\Psi \mathcal{M} \otimes X_{-}^{\beta'}, Q \otimes 1, Q(X)_{-})} \mathcal{M}^{+} \cdot M'^{c} + (1 + \widehat{W}^{V'}, Q)^{-1} (\widehat{k} + WX_{-} + Wk^{V'}, Q - \widehat{W}^{V'}, Q - \widehat{W}^{V'}, Q \otimes 1, Q(X)_{-}) * (\mu - \nu') + \widehat{h}^{\mu,Q} * (\mu - \nu').$$

III.3 Un Exemple

G,H,K désignant des espaces de Hilbert réels et séparables, sur une base de processus (Ω,&, (Ϝ_t)_{tɛ[o,T]},Q) considérons le modèle suivant :

$$\begin{cases} X_{t} = X_{o} + \int_{o}^{t} f_{s} ds + \int_{o}^{t} \phi_{s} dB_{s} & \varepsilon H \\ Y_{t} = \int_{o}^{t} h_{s} d_{s} + W_{t} & \varepsilon K. \end{cases}$$

On suppose:

B (resp. W) est un (\mathcal{F}_t) -mouvement Brownien à valeurs (H'_1) dans G (resp. K) et d'opérateur de covariance $\mathfrak{G} \in G \widehat{\mathfrak{A}}_l$ G (resp. W ε K 🗟 K).

On note $\langle W, B \rangle_t = \int_0^t C_s ds$ où C_s est un processus (\mathcal{F}_t) -prévisible à valeurs dans K 🗟 G. On sait d'ailleurs que

$$\left\| \begin{smallmatrix} C \\ s \end{smallmatrix} \right\|_1 \leqslant \mathtt{T}_r(\mathcal{V}) + \mathtt{T}_r(\mathcal{B}) \quad (\text{cf. [15]}).$$

est un processus à valeurs dans L(G,H), faiblement (\mathcal{F}_t) -(H'2) prévisible et tel que $E_Q(\int_0^T \|\phi_s\|_{L(G,H)}^4 ds) < \infty$. f_s est un processus à valeurs dans H, (\mathfrak{F}_t) -progressif et tel que $E_Q(\int_0^T \|f_s\|_{H}^4 ds) < \infty$

(H'3)
$$\begin{vmatrix} h_s & \text{est un processus } (\mathcal{F}_t) - \text{prévisible à valeurs dans } K & \text{tel que :} \\ \forall (s,\omega) h_s & \epsilon & \text{Rg}(\mathcal{N}) & \text{et } \sup_{(s,\omega)} (\|\mathcal{N}^{+}\|_{s,\omega}\|_{K}) < \infty$$

$$(H'_{\Lambda}) | X_o \in L^2_H(\Omega, \mathcal{F}_o, Q)$$

Soit $(G_t)_{t \in [0,T]}$ la filtration naturelle du processus d'observation $(Y_t)_{t \in [0,T]}$.

Les projections optionnelles qui suivront seront par rapport à la filtration $(\xi_t)_{t \in [0,T]}$. On notera d'autre part : $\widehat{(.)} = E_{\text{dtXdQ}} (./\mathcal{C}(\xi)).$

rème 3 : Sous les hypothèses (H') à (H'₄) du modèle ci-dessus

on a:
$$^{1,Q}(X)_t = ^{1,Q}(X)_o + \int_o^t \hat{f}_s \ ds$$

$$+ \int_o^t (\hat{h}_s \times X_s - \hat{h}_s \times \hat{X}_s + \hat{\phi}_s \cdot C_s) \, \mathcal{U}^{\gamma +} \, dI_s$$
 avec $I_t = Y_t - \int_o^t \hat{h}_s \, ds$. I est un (\S, \mathbb{Q}) -mouvement Brownien d'opérateur de covariance \mathcal{W} . C'est le processus d'innovation de l'observation.

<u>Démonstration</u>: L'hypothèse (H'3) permet de poser $\Upsilon_{s,\omega} = \iota \tilde{J}^+ h_{s,\omega}$ et Υ est un processus borné à valeurs dans K.

$$\mathcal{L}_{s,\omega} = \mathcal{U}^+ h_{s,\omega} = \lim_{n \to +\infty} \int_0^n \exp((u-n) \, u^{-2}) \, du \, \eta_{s,\omega}^{\alpha} (cf. [16]).$$

Cette égalité nous implique la prévisibilité du processus 🐈 à valeurs dans K. On pose alors,

$$L_{t} = \exp(\int_{0}^{t} (\gamma_{s} | d W_{s})_{K} + \frac{1}{2} \int_{0}^{t} || u^{\gamma}|^{\frac{1}{2}} \gamma_{s} ||_{K}^{2} ds)$$

On applique la théorie générale précédente en effectuant le changement de probabilité suivant :

$$\frac{dQ}{dP} = L_{T} \quad \text{sur } \mathcal{T}_{T}.$$

REFERENCES

- [1] Balakrishnan A.V.
 - "Introduction to optimization theory in a Hilbert space' Lect. Notes in Oper. Research and Math. Systems, 42, Springer-Verlag, Berlin-Heildelberg, New-York, 1971.
- [2] Baud A.
 "Thèse de 3° cycle"
 - Univ. de PARIS VI, 1977.
- [3] Bremaud P. Yor M.

 "Changes of filtration and of probability measures"

 Z. Wahrsch. Verw. Gebiete, 45, pp. 269-295, 1978.
- [4] Curtain Ruth F. Pritchard Anthony J.
 "Infinite dimensional linear systems theory'
 Lect. Notes in Control and Inf. Sciences, 8, Springer-Verlag,
 Berlin Heid., New-York, 1978.
- [5] Fujisaki M. Kallianpur G. Kunita H.
 "Stochastic differential equations for the non linear filtering problem"
 Osaka J. Math., 9, pp. 19-40, 1972.
- [6] Gravereaux Pellaumail "Formule de Ito pour des processus non continus à valeurs dans des espaces de Banach" Ann. de l'Inst. H. Poincaré, Sect. B, Vol. X, n° 4, 1974.

[7] Jacod J.

"Un théorème de représentation sur les martingales discontinues" Z. Wahrsch. Verw. Gebiete, 34, pp. 225-244, 1976.

[8] Jacod J. - Memin J.

"Caractéristiques locales et conditions de continuité absolue pour les semi-martingales"

Z. Wahrsch. Verw. Gebiete, 35, pp. 1-37, 1976.

[9] Kunita H.

"Asymptotic behavior of the non linear filtering errors of markov processes"

Journal of Multiv. Analysis, Vol. 1, n° 4, 1971.

[10] Martias C.

"Thèse de 3° cycle" Univ. de PARIS VI, 1979.

[11] Métivier M.

"Reelle und Vecktorwertige quasi-martingale und die theorie der stochastichen intergration"

Lect. Notes in Math., 607, Springer-Verlag; Berlin-Heid., New-York, 1977.

[12] Métivier M. - Pellaumail J.

"Stochastic Integration"

Ecole Polytechnique, Centre Math. Appli., Rapport Interne nº 44.

[13] Meyer P.A.

"Cours sur les intégrales stochastiques" Sém. X, Univ. de Strasbourg, Lect. Notes in Math. 511, Springer-Verlag, 1976. [14] Meyer P.A.

"Intégrales Hilbertiennes" Un. de Strasbourg, Sém. XI, Lect. Notes in Math. 581, Springer-Verlag, 1977.

[15] Ouvrard J.Y.

"Représentation de martingales vectorielles de carré intégrable à valeurs dans des espaces de Hilbert réels et séparables"

Wahrsch. Verw. Gebiete, 33, 1975, pp. 195-208.

[16] Ouvrard J.Y.

"Martingale projection and linear filtering in Hilbert spaces" SIAM Control and optimization, Vol. 16, n° 6, 1978.

[17] Pellaumail J.

"Sur l'intégrale stochastique et la décomposition de Doob-Meyer"

Ast. n° 9, Soc. Math. de France, 1973.

- [18] Szpirglas J. Mazziotto G.
 - "Modèle général de filtrage non linéaire et équations différentielles stochastiques associées"

Ann. Int. Henri Poincaré, Vol. XV, n° 2, 1979, pp. 147-173.

[19] Ustunel S.

"Les espaces H¹ et B.M.O. Hilbertiens" Séminaires ENST-CNET II, Processus Aleat. Applications, 1977-1978.

[20] Yor M.

"Existence et Unicité des diffusions à valeurs dans un espace de Hilbert"

Ann. Inst. Poincaré, 10, 1974, pp. 55-88.

[21] Yor M.

"Cours à l'Ecole d'Eté de Probabilités de St Flour" 1979.

[22] Zakai M.

"On the optimal filtering of diffusion processes" Z. Wahr. Verw. Gebiete, 11, 1969.