Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Mathématiques

A. EHRHARD

Une démonstration de l'inégalité de Borell

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 69, série Mathématiques, nº 19 (1981), p. 165-184

http://www.numdam.org/item?id=ASCFM 1981 69 19 165 0>

© Université de Clermont-Ferrand 2, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

UNE DEMONSTRATION DE L'INEGALITE DE BORELL

A. EHRHARD

Université de Strasbourg

RESUME

A partir de l'inégalité de Brunn-Minkowski sur la sphère euclidienne on donne une démonstration détaillée d'une inégalité de type Brunn-Minkowski pour les espaces de Gauss due à Christer Borell. (C. Borell : Invent. Math. 1975 p. 207-215).

On rappelle d'abord l'inégalité de Brunn-Minkowski sur la sphère.

Dans la première partie on démontre l'inégalité de Borell dans \mathbb{R}^d en s'appuyant sur un lemme de Poincaré et on donne une application simple à l'évaluation d'une loi gaussienne.

Dans la deuxième partie on démontre le lemme de Poincaré.

La troisième partie ainsi que la quatrième sont consacrées à la généralisation en dimension infinie.

O - RAPPELS

01 - L'inégalité de Brunn-Minkowski sur la sphère

On utilisera les notations suivantes :

 s_r^{n-1} est la sphère de centre O de rayon r de dimension (n-1) dans \mathbb{R}^n ; on la munit de la mesure uniforme et de masse 1 que l'on note σ_r^{n-1} et de la distance géodésique notée θ_r^{n-1} : pour $(x,y) \in (s_r^{n-1})^2$, $\theta_r^{n-1}(x,y)$ est la longueur du plus petit arc de grand cercle sur s_r^{n-1} joignant x à y.

Pour toute partie A de S_r^{n-1} et pour tout réel positif h, on définit A_h par :

$$A_h = \{x \in S_r^{n-1} / \exists y \in A : \partial_r^{n-1}(x,y) \le h\}.$$

Pour tout x_0 appartenant à s_r^{n-1} et pour tout ρ positif, on pose :

$$\beta_0 = \beta_0 (x_0) = \{x \in S_r^{n-1} / \partial_r^{n-1} (x_0, x) \le \rho\}.$$

L'inégalité de Brunn-Minkowski s'énonce alors :

Inégalité de Brunn-Minkowski:

A tout ensemble mesurable A de S_r^{n-1} on associe le nombre positif $\rho = \rho(A)$ tel que :

$$\sigma_r^{n-1}(A) = \sigma_r^{n-1}(B_0)$$

On a alors :

$$\forall_h \geq 0 : \sigma_r^{n-1}(A_h) \geq \sigma_r^{n-1}(B_{0+h})$$

Pour A fermé l'égalité n'a lieu que si A est égal à S_r^{n-1} ou si A est lui-même une boule de rayon ρ sur S_r^{n-1} .

O2 - Le volume de la sphère de rayon 1 de dimension n-1 dans \mathbb{R}^n est :

$$\frac{2\Pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}$$

1 - L'INEGALITE DE BORELL EN DIMENSION FINIE

1.1 - Soit \mathbb{R}^d l'espace euclidien de dimension d, d $\in \mathbb{N}^*$, muni de la tribu borélienne \mathcal{D} (\mathbb{R}^d) et de la mesure canonique de Gauss notée γ_d ; on pose :

$$\emptyset(.) = \gamma_1 (]-\infty,.]);$$

on note:

$$\mathcal{O}_{d} = \{ \mathbf{x} \in \mathbb{R}^{d} / ||\mathbf{x}|| \leq 1 \} ;$$

on a alors :

Théorème 1.1. (Inégalité de Borell)

Soit A une partie borélienne de \mathbb{R}^d , on lui associe le nombre $\alpha \in \overline{\mathbb{R}}$ tel que :

$$\gamma_{d}(A) = \emptyset (\alpha)$$
.

On a alors

$$\forall$$
t \geq 0 : γ_d (A + t \mathcal{O} d) \geq \mathcal{O}(\alpha + t).

1.2 - L'outil principal pour la démonstration du théorème 1.1 sera le lemme de Poincaré (lemme 1.2)

On considère \mathbb{R}^m comme étant le produit $\mathbb{R}^m = \mathbb{R}^d \times \mathbb{R}^{n+2}$ $n \ge 0$, m = m(n)= n + d + 2, d fixe.

On note $\Pi_{m,d}$ la projection canonique de R^m sur R^d . On simplifie les notations introduites en 0.1 en posant :

$$S_{\sqrt{n}}^{n+d+1} = S_n \text{ et } \sigma_{\sqrt{n}}^{n+d+1} = \sigma_n$$

Pour toute partie borélienne A de \mathbb{R}^d on définit $v_{d,n}$ par :

$$v_{\underline{d,n}}(A) = \sigma_{\underline{n}}(\Pi_{\underline{m,d}}^{-1}(A) \cap S_{\underline{n}})$$

La fonction d'ensemble $v_{d,n}$ est une mesure de support $\sup v_{d,n} = \{x \in \mathbb{R}^d / ||x|| \le n\} .$

On a le lemme

Lemme 1.2:
$$\forall A \in \mathcal{B}(\mathbb{R}^d)$$
: $\lim_{n\to\infty} v_{d,n}(A) = v_{d}(A)$.

Le lemme 1.2. sera démontré en 2.

1.3 - Démonstration du théorème 1.1

A est une partie borélienne de \mathbb{R}^d et α un réel tel que :

$$\gamma_{\vec{d}}(A) = \emptyset (\alpha)$$
.

On va montrer que pour tout réel $\beta < \alpha$ on a :

$$\forall t \geq 0 : \gamma_d((A) + t \mathcal{O}_d) \geq \emptyset(\beta + t).$$

On fixe β , $\beta < \alpha$ et on pose :

$$B = \Pi_{d,1}^{-1} (]-\infty,\beta]),$$

de sorte que l'on ait :

$$\forall t \geq 0 : \gamma_d(B + t \mathcal{O}_d) = \emptyset (\beta + t).$$

En appliquant le lemme 1.2 on a :

$$\lim_{n\to\infty} \sigma_n (\prod_{m,d}^{-1}(A) \cap S_n) = \emptyset(\alpha) > \emptyset \beta),$$

et par suite en réappliquant le lemme à B on a :

$$\lim_{n\to\infty} \sigma_n(\prod_{m,d}^{-1}(A) \cap S_n) > \lim_{n\to\infty} \sigma_n(\prod_{m,d}^{-1}(B) \cap S_n).$$

D'où l'on déduit qu'à partir d'un rang $\boldsymbol{n}_{\mbox{\scriptsize O}}$ on a :

(i)
$$\forall n \ge n_0 : \sigma_n(\Pi_{m,d}^{-1}(A)) > \sigma_n(\Pi_{m,d}^{-1}(B)) > \sigma_n(\Pi_{m,d}^{-1}(B))$$

L'ensemble $\Pi_{m,d}^{-1}(B) \cap S_n$ est ou bien vide ou bien une boule sur S_n on peut donc appliquer l'inégalité de Brunn-Minkowski (0.1) à partir de (i), on obtient :

(ii)
$$\sigma_{n}([\Pi_{m,d}^{-1}(A) \cap S_{n}]_{t}) > \sigma_{n}([\Pi_{m,d}^{-1}(B) \cap S_{n}]_{t}).$$

En comparant la distance géodésique sur s_n et la distance euclidienne dans ${I\!\!R}^m$, on obtient l'inclusion :

$$(\Pi_{m,d}^{-1}(A) \cap s_n)_t \subset \Pi_{m,d}^{-1}(A+t \mathcal{O}_d) \cap s_n.$$

Ce qui entraîne avec (ii) :

$$\sigma_{n}(\prod_{m,d}^{-1}(A + t\mathcal{O}_{d}) \cap S_{n}) > \sigma_{n}(\prod_{m,d}^{-1}(B) \cap S_{n}).$$

On remarque alors que pour n assez grand devant β et t on peut écrire :

$$(\Pi_{m,d}^{-1}(\mathsf{B}) \cap \mathsf{S}_{\mathsf{n}})_{\mathsf{t}} = \Pi_{m,d}^{-1}(\mathsf{B} + \mathsf{r}(\mathsf{t},\mathsf{n},\beta) \mathcal{O}_{\mathsf{d}}) \cap \mathsf{S}_{\mathsf{n}},$$

il suffit de poser :

$$r(t,n,\beta) = \sqrt{n} \cos \left[(Arcos \beta/\sqrt{n}) - t/\sqrt{n} \right] - \beta$$
.

On vérifie que :

$$\lim_{n\to\infty} r(t,n,\beta) = t.$$

On a donc :

$$v_{d,n}(A + tO_d) \ge v_{d,n}(B + r(t,n,\beta)O_d)$$
.

Soit en faisant tendre n vers l'infini :

$$\gamma_d(A + t \mathcal{O}_d) \ge \gamma_d(B + t \mathcal{O}_d)$$
;

le théorème est démontré.

1.4 - Une application simple et directe du théorème 1.1

Le vecteur $(x_n)_{n \in \mathbb{N}}$ est un vecteur gaussien centré à valeur dans 1 , avec, pour tout $n \in \mathbb{N}$, E $x_n^2 = 1$.

On note B la boule unité de 1^{∞} .

On a alors la proposition suivante.

Proposition 1.4. Pour tout ensemble mesurable A de R N et pour tout réel α

tel que :

$$P(x \notin A) = \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{\infty} e^{-\frac{1}{2}} dx,$$

on a:

$$\forall t \geq 0 : P \{x \notin A + t B\} \leq \frac{1}{\sqrt{2\Pi}} \int_{\alpha+t}^{\infty} e^{-\frac{1}{2}x^2} dx.$$

1.5 - Démonstration de la proposition 1.4

Sous les hypothèses de 1.4, il existe un tableau numérique $L = (L_{k,n} ; k = 1,..., n ; n \in \mathbb{N}) \in \prod_{n \in \mathbb{N}} \prod_{k=1}^{n} \mathbb{R}_{k}, \text{ et une suite}$ $Y = (Y_{n})_{n \in \mathbb{N}} \text{ de variables aléatoires gaussiennes de loi } \mathscr{N}(0,1), \text{ indépensions to the suite}$

$$\forall n \in \mathbb{N}, x_n = \sum_{k=1}^n L_{k,n} Y_k$$
.

On définit une application L_n de \mathbb{R}^n dans \mathbb{R}^n en posant :

$$\forall x \in \mathbb{R}^{m}, L_{n}(x) = (\sum_{j=1}^{k} L_{j,k} x_{j}, k \in \{1, ..., n\}).$$

On désigne par Π_n la projection canonique de \mathbb{R}^N sur \mathbb{R}^n . On a alors pour tout ensemble A mesurable dans \mathbb{R}^N et pour tout réel α tels que $P(X \in A) = \emptyset(\alpha) :$

$$P\left\{\prod_{n}(X) \in \prod_{n}(A)\right\} \geq \emptyset(\alpha).$$

D'où on déduit :

dantes, tels que :

$$\mathbb{P}\{\Pi_{n}(Y)\in L_{n}^{-1}(\Pi_{n}(A))\} \geq \emptyset(\alpha),$$

puis en appliquant le théorème

$$P \{ \Pi_n(Y) \in L_n^{-1}(\Pi_n(A)) + t \mathcal{O}_n \} \ge \emptyset(\alpha + t).$$

On a donc :

$$P \{ \Pi_{n}(X) \in \Pi_{n}(A) + t.L_{n}(\mathcal{O}_{n}) \} \ge \emptyset(\alpha+t).$$

Comme la condition :

$$E x_k^2 = 1$$

entraîne :

$$\max_{\substack{k \leq n \\ \mathbf{x} \in \mathcal{O}_{n}}} \sum_{j=1}^{k} \mathbf{L}_{j,k} \mathbf{x}_{j} \leq \max_{\substack{k \leq n \\ \mathbf{x} \in \mathcal{O}_{n}}} (\sum_{j=1}^{k} \mathbf{L}_{j,k}^{2})^{\frac{1}{2}} (\sum_{j=1}^{k} \mathbf{x}_{j}^{2})^{\frac{1}{2}} \leq 1,$$

On a:

$$L_n(\theta_n) \subset \Pi_n(B)$$
,

et donc :

$$P\{\Pi_{n}(X) \in \Pi_{n}(A + tB)\} \ge \emptyset (\alpha+t)$$
;

en faisant tendre n vers l'infini on obtient la proposition.

2 - DEMONSTRATION DU LEMME 1.2

Nous allons montrer que la mesure $\nu_{d,n}$ définie en 1.2 est absolument continue par rapport à la mesure de Lebesgue dx et que, $f_{d,n}$ désignant sa densité,on a uniformément sur tout compact :

$$\lim_{n\to\infty} f_{d,n} = \frac{d_{\gamma d}}{dx} .$$

On conserve pour cela les notations introduites en 1.2 et on considère le paramétrage (Φ,Ω) où on a :

$$\Omega = \{\lambda = (\mathbf{x}, \boldsymbol{\theta}) : \mathbf{x} \in \mathbb{R}^d : \mathbf{x}_1^2 + \ldots + \mathbf{x}^2 \boldsymbol{\alpha} < \mathbf{n} : -\frac{\mathbb{I}}{2} < \boldsymbol{\theta}_1, \ldots, \boldsymbol{\theta}_n < \frac{\mathbb{I}}{2} ,$$

$$0 < \boldsymbol{\theta}_{n+1} < 2 \, \mathbb{I} \} ,$$

$$\Phi(\lambda) = x = (x_1, \dots, x_{d+n+2}),$$

$$\begin{aligned} &x_1 = x_1 \\ &\vdots \\ &x_d = x_d \\ &x_{d+1} = \begin{bmatrix} n - x_1^2 + \dots + x_d^2 \end{bmatrix}^{\frac{1}{2}} &\cos \theta_1 & \dots & \cos \theta_n & \cos \theta_{n+1} \\ &x_{d+2} = \begin{bmatrix} n - x_1^2 + \dots + x_d^2 \end{bmatrix}^{\frac{1}{2}} &\cos \theta_1 & \dots & \cos \theta_n & \sin \theta_{n+1} \end{aligned}$$

$$\vdots$$

$$X_{\alpha+n_{\tau}} k = [n - (x_1^2 + ... + x_n^2)]^{\frac{1}{2}} \cos \theta_1 \dots \cos \theta_{n+1-k} \sin \theta_{n+2-k}$$

$$x_{d+n+2} = [n - (x_1^2 + ... + x_n^2)]^{\frac{1}{2}} \sin \theta_1.$$

 $(\!\!\!/\, \varphi\,,\!\!\!\!/\, \Omega)$ est une carte representant un ouvert dense de S $_{n}^{}$.

L'élément d'aire normalisé de S_n au point $\Phi(\lambda)$ où λ = (n, θ) s'écrit :

$$d\sigma_{n}(\Phi(\lambda)) = \frac{\Gamma((n+d+2)/2)}{2\Pi(n+d+2)/2} \quad \det_{k,1} (\frac{\partial \emptyset}{\partial \lambda_{k}}) \frac{\frac{1}{2}}{\partial \lambda_{1}} d \theta dx$$

On va calculer det $(\frac{\partial \Phi}{\partial \lambda_k} \mid \frac{\partial \Phi}{\partial \lambda_1})$.

On remarque que :

$$\forall k, 1 \le k \le d$$
; $\forall 1, 1 \le 1 \le n+1$: $(\frac{\partial \Phi}{\partial x_k} \middle| \frac{\partial \Phi}{\partial \theta_1}) = 0$.

On a:

$$\left(\frac{\partial \Phi}{\partial x_{k}} \middle| \frac{\partial \Phi}{\partial x_{1}}\right) = \partial_{k,1} + \frac{x_{k} x_{1}}{n - (x_{1}^{2} + .. + x_{d}^{2})},$$

$$\left(\frac{\partial \Phi}{\partial \theta_{\mathbf{k}}} \middle| \frac{\partial \Phi}{\partial \theta_{\mathbf{l}}} \right) = \partial_{\mathbf{k},\mathbf{l}} \cdot \left[\mathbf{n} - (\mathbf{x}_{\mathbf{l}}^2 + \ldots + \mathbf{x}^2 \mathbf{d}) \right] \cos^2 \theta_{\mathbf{l}} \cdot \ldots \cos^2 \theta_{\mathbf{k}-\mathbf{l}}.$$

D'où on déduit :

$$\det_{k,1} \left(\frac{\partial \Phi}{\partial \lambda_k} \middle| \frac{\partial \Phi}{\partial \lambda_1} \right) = \det_{(Id_{(d)}} + \frac{1}{n - (x_1^2 + \ldots + x_d^2)} (x_i x_j)_{1 \le i, j \le d}$$

$$\times \left[n - (x_1^2 + \ldots + x_d^2) \right]^{n+1} \cos_{1} \theta_{1}^{2n} \ldots \cos^{2} \theta_{n}^{2n}.$$

On pose alors:

$$P(\lambda) = \det ((x_i x_j)_{1 \le j, i \le d} - \lambda Id_{(d)})$$

 $P(\lambda)$ est le polynôme caractéristique de $(x_i x_j)_{1 \le i,j \le d}$.

Comme:

$$(x_i x_j)_{1 \le i, j \le d} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \begin{pmatrix} x_1 \dots x_d \\ 0 \end{pmatrix}$$

l'équation :

$$(x_i x_j)_{1 \le i, j \le d}$$
 $\begin{pmatrix} a_1 \\ \vdots \\ a_1 \end{pmatrix} = \lambda \begin{pmatrix} a_1 \\ \vdots \\ a_d \end{pmatrix}$

s'écrit :

$$\forall j : x_j \sum x_i a_i = \lambda a_j$$
.

Ce qui s'écrit encore :

$$\sum x_{j}^{2} \sum x_{i} a_{i} = \lambda \sum x_{j} a_{j}.$$

Les valeurs propres de $(x_i x_j)_{1 \le i,j \le d}$ sont :

$$\lambda = 0$$
,

qui correspond au sous-espace propre de dimension n-1 défini par

$$\{\sum x_i a_i = 0\},$$

et:

$$\lambda = \sum_{i} x_{i}^{2} .$$

On en déduit :

$$P(\lambda) = (-1)^{d} (\lambda)^{d-1} (\lambda - \sum_{i=1}^{d} x_{i}^{2}).$$

D'où on a:

$$\det(\mathrm{Id}_{(d)} + \frac{1}{n - ||x||_{d}^{2}} (x_{i} x_{j})_{1 \le i, j \le d}) = \frac{n}{n - ||x||_{d}^{2}}$$

et det
$$(\frac{\partial \Phi}{\partial \lambda_k} \mid \frac{\partial \Phi}{\partial \lambda_1})$$
 s'écrit

$$\det \left(\frac{\partial \Phi}{\partial \lambda_{k}} \middle| \frac{\partial \Phi}{\partial \lambda_{1}}\right) = n \left[|x| \middle|_{d}^{2} \right]^{n} \cos^{2n} \theta_{1} \dots \cos^{2} \theta_{n}.$$

On a par suite:

$$\frac{dv_{d,n}}{dx} = \frac{\Gamma((n+d+2)/2)}{2\Pi(n+d+2)/2} n^{(n+1)/2} 1 - \left[\frac{||x||_d^2}{n}\right]^{n/2}$$

$$x \int |\cos^{2n}\theta_1 \cdots \cos\theta_n| d\theta_1 \cdots d\theta_n I_{\{||x||_d^2 < n\}}$$

$$-\frac{\Pi}{2} < \theta_1, \dots, \theta_n = \frac{\Pi}{2}$$

$$0 < \theta_{n+1} < 2\Pi$$

La dernière intégrale représente le volume de la sphère unité de dimension (n+1) dans \mathbb{R}^{n+2} , on a donc :

$$\frac{dv_{d,n}}{dx}(x) = \frac{\Gamma((n+2+d)/2)}{\prod^{d/2}\Gamma((n+2)/2)} n^{(n+1)/2} [1-||x||^2/n] \cdot I_{\{||x||^2 < n\}}.$$

En faisant tendre n vers l'infini on obtient :

$$\lim_{n\to\infty} \frac{dv_{d,n}}{dx} (x) = (2\pi)^{-d/2} \exp(-|x||^2/2),$$

la convergence étant uniforme sur tout compact de \mathbb{R}^d ceci achève la démonstration du lemme.

3 - L'INEGALITE DE BORELL POUR UNE MESURE DE GAUSS SUR UN ESPACE LOCALE-MENT CONVEXE ET SEPARE

On définit d'abord les espaces de Gauss (E, μ) (définition 3.1). On montre ensuite (Théorème 3.2) l'existence dans E de l'espace autoreproduisant $\mathcal{H}(\mu)$ associé à la mesure gaussienne μ . Le théorème 3.2 est du à C. Borell (C. Borell : Gauss-Radon measure... Math. Scand. 38(76)). La mesure μ étant de Radon on note μ la mesure intérieure définie par :

$$\forall A \subset E \quad \mu_{\star}(A) = Sup \quad \{ \mu(K) ; K \text{ compact, } K < \subset A \}.$$

3.1 - Définition d'un espace de Gauss

Définition 3.1

E est un espace vectoriel topologique localement convexe et séparé $(e.v.t.l.c.s) \; \mu \quad \text{est une mesure de Radon sur la tribu borélienne de E} : \\ on dit que (E,\mu) est un espace de Gauss si de plus pour tout <math>\xi \in E', \\ \xi(\mu) \text{ est une mesure de Gauss sur R}.$

3.2 - Théorème d'existence de l'espace autoreproduisant associé à μ dans E.

Si (E,μ) est un espace de Gauss d'après la définition 3.1 on a :

on pose alors :

$$E_2^{\dagger} = \overline{E^{\dagger}} L^2(E, \mu)$$
.

Si μ a un barycentre b dans E on note $\;\mu_{O}$ la mesure définie par :

$$\mu_{O}(.) = \mu(. + b).$$

On a alors le théorème suivant :

Théorème 3.2. Si (E,μ) est un espace de Gauss alors :

- (a) μ a un barycentre b dans E
- (b) pour tout $\xi \in E'_{2}(\mu)$, $\xi(\mu_{0})$ a un barycentre noté $\Lambda(\xi)$ dans E
- (c) l'application Λ qui a tout $\xi \in E_2'(\mu)$ associe son barycentre $\Lambda(\xi)$ dans E est injective et E_2' dans E.

On pose alors :

$$\mathcal{H}(\mu) = \operatorname{Im}(\Lambda) = \Lambda(E_2(\mu))$$

et pour tout (h,g) élément de $\mathcal{H}(\mu)^2$:

$$< h | g> = \int \Lambda^{-1} h(x) \cdot \Lambda^{-1} g(x) d \mu_0(x)$$
.

On désigne par θ l'injection canonique de $\mathcal{H}(\mu)$ dans E.

- (d) $(\Re(\mu), <.|.>)$ est un espace Hilbert et θ est faiblement continue.
- (e) Si γ désigne la promesure gaussienne canonique sur \mathcal{H} (μ) on a :

$$\frac{\theta(\gamma \mathcal{G}_{(\mu)})}{\mathcal{G}_{(\mu)}} = \mu_0.$$

3.3 - Démonstration du théorème 3.2

La démonstration du théorème 3.2 s'appuie sur les lemmes 3.4 et 3.5 que l'on démontre d'abord.

3.4 - Supposons les points (a), (b) et (c) du théorème 3.2 vérifiés pour (E,μ) .

Pour tout $h \in \mathcal{H}(\mu)$ on note:

$$\mu_h(.) = \mu(.-h) .$$

On a alors le lemme

Lemme 3.4:
$$\mu_h = \exp ((\Lambda^{-h} - ||h||^2/2)) \mu_0$$
.

3.5 - Sous les mêmes hypothèses que 3.4, on a le lemme :

Lemme 3.5 : Soit G un sous-groupe additif de E, de mesure strictement positive (ie de mesure 1) alors :

2b
$$\in$$
 G et $\Re(\mu)$ \subset G.

- 3.6 Démonstration des lemmes 3.4 et 3.5
- 3.6.1 Démonstration du lemme 3.4 : il suffit de démontrer que les mesures μ_h et $[\exp(\Lambda^{-1}\ h\ -||h||^2/2)\ \mu_O]$ ont même transformée de Fourier. On en a d'une part, pour tout ξ dans E' :

$$\int \exp(-i <\xi \mid x>) d\mu_h(x) = \exp(-i <\xi \mid h>) \exp[-\frac{1}{2}\mu_O(\xi^2)],$$
 et d'autre part, pour tout ξ dans E' :

$$\begin{split} \int & \exp{(-i\ <\!\xi\,\big|\,\mathbf{x}\!>\,+\,\Lambda^{-1}\mathbf{h}\,(\mathbf{u})\,\,-\,\big|\,|\mathbf{h}\,\big|\,\big|^{2}/2)} \ d\mu_{O}(\mathbf{x}) \; = \\ & \exp{(-\big|\,\big|\,\mathbf{h}\,\big|\,\big|^{2}/2)} \ \exp{[\,-\,\frac{1}{2}\,\,\int{(\xi\!+\,\mathbf{i}\,\,\Lambda^{-1}\mathbf{h})^{\,2}}\,\,d\mu_{O}]} = \\ & \exp{(-i\ <\!\xi\,\big|\,\mathbf{h}\!>)} \ \exp{[\,-\,\frac{1}{2}\,\,\mu_{O}(\xi^{\,2})\,]}\,, \end{split}$$

car pour tout $h\in\mathcal{H}(\mu)$ et pour tout ξ dans E' on a :

On peut donc conclure.

3.6.2 - Démonstration du lemme 3.5

On a par hypothèse :

$$\mu(G) = 1$$

donc aussi :

$$\mu_{O}(-b+G) = 1.$$

La mesure μ_{O} étant symétrique :

$$\mu_{O}(-(-b+G)) = \mu_{O}(b+G) = 1$$
,

on a par conséquent :

$$\mu_{O}((-b+G) \cap (b+G)) = 1.$$

On a donc:

$$(-b+G) \cap (b+G) \neq \emptyset$$

ce qui implique :

De plus par le lemme 3.4 on a :

$$\forall h \in \mathcal{J}_{h}(\mu) : \mu_{-h}(-b+G) = 1.$$

On a donc:

$$\mu_{O}((h-b+G) \cap (-b+G)) = 1$$

d'où:

$$(h-b+G) \cap (-b+G) \neq \emptyset$$
.

Ce qui implique :

Le lemme est donc démontré.

3.7 - Démonstration du théorème 3.2

3.7.1 - On suppose d'abord E complet et on montre (a) et (b).

Si E est complet l'enveloppe convexe de tout compact de E est compacte ; par conséquent, μ étant de Radon, pour tout $\epsilon > 0$ il existe un compact convexe K tel que :

(i)
$$\mu(K) > 1 - \epsilon$$
.

On munit E' de la topologie de Marckey $\tau(E',E)$ de la convergence uniforme sur les parties faiblement compactes et convexes de E ; on a alors :

(ii) l'application de E' dans $\mathbb R$ qui à tout ξ ϵ E' associe le réel $\mu(\xi^2)$ est $\tau(E',E)$ -continue.

En effet d'après (i) la convergence suivant $\tau(E',E)$ revient à la convergence en probabilité des variables aléatoires à valeurs réelles $\xi(\mu)$ ce qui, pour des gaussiennes, implique la convergence dans $L^2(\mu)$.

On conclut ensuite par le théorème de Mackey :

(a) l'application de E' dans ${\mathbb R}$ qui a tout ξ ${\boldsymbol \epsilon}$ E' associe le réel $\mu(\xi)$ est $\tau({\text E}',{\text E})$ -continue donc :

$$\exists ! b \in E \mid \forall \xi \in E' : \mu(\xi) = \langle \xi | b \rangle_{E',E'}$$

b est le barycentre de $\boldsymbol{\mu}$.

(b) pour tout $\xi \in E_2'(\mu)$ l'application de E' dans $\mathbb R$ qui a tout $\eta \in E'$ associe le nombre réel $\mu(\xi, \eta)$ est $\tau(E', E)$ -continue donc :

 $\forall \, \xi \in E_2', \, \, \exists \, ! \, \Lambda(\xi) \in E \, | \, \forall \, \eta \in E' \, : \, \mu_O(\xi \cdot \eta) \, = \, \langle \eta \, \big| \, \, \Lambda(\xi) \rangle_{E',E}$ $\Lambda(\xi)$ est le barycentre de $\xi(\mu_O)$.

3.7.2 - Cas général (a) et (b)

Soit F le complété de E et j l'injection canonique de E dans F ; on pose :

$$v = j(\mu)$$
.

La mesure ν est gaussienne et de Radon sur F.

On pose :

$$F_2'(v) = \overline{F'}^{L^2(v)}$$
.

On applique le théorème à (F,ν) , on définit l'application Λ de $F_2^!(\nu)$ dans F comme dans le théorème et on pose :

$$\mathcal{H}(v) = \operatorname{Im}(\Lambda) = \Lambda(F_2(v)).$$

Par les lemmes 3.4 et 3.5 on a :

$$v(E) = 1$$
,

donc v a un barycentre b dans F et b \in E.

Par suite b est le barycentre de μ , (a) est démontré.

Comme on a:

$$j(\mu_0) = \nu_0$$

en réapliquant les lemmes on a :

$$\forall \xi \in E'_2 : \Lambda \xi \in E$$

et ceci montre (b).

3.7.3 - On démontre maintenant les points (c), (d) et (e) du théorème 3.2

- (c) L'espace E est un e.v.t.l.c.s., il est donc séparé par son dual.
- (d) L'espace $\mathcal{H}(\mu)$ est muni du produit scalaire :

$$\begin{array}{lll} \forall (\mathtt{h},\mathtt{g}) \in \mathcal{H}(\mathtt{\mu})^2 : \langle \mathtt{h} \big| \mathtt{g} \rangle_{H(\mathtt{\mu})} & = & \int \Lambda^{-1}(\mathtt{x}) \ \Lambda^{-1}\mathtt{g} \ (\mathtt{x}) \ \mathtt{d} \mathtt{\mu}_{\mathrm{O}}(\mathtt{x}) \\ \\ & = & \langle \Lambda^{-1} \ \mathtt{h}, \ \Lambda^{-1}\mathtt{g} \rangle_{E_2^+} \end{array}.$$

L'espace \mathcal{H} (μ) est donc un espace de Hilbert puisque E_2' en est un. De plus pour tout $\,\xi$ dans E' on a :

$$\forall h \in \mathcal{J}_{(\mu)}, \langle \xi | \theta(h) \rangle = \langle \Lambda \xi | h \rangle$$

Donc l'application θ de l'espace de Hilbert ($\mathcal{H}(\mu)$, <...) dans E est bien faiblement continue.

(e) On vérifie que pour tout cylindre fermé A dont la base est de dimension finie on a :

$$\theta(\gamma_{O})$$
 (A) = μ_{O} (A).

Soient $\xi = (\xi_j, j=1,...,n) \in (E')^n$ et M un fermé de \mathbb{R}^n ; on considère :

$$A = \{x \in E \mid \xi(x) \in M\}.$$

On a:

$$\theta^{-1}(A) = \{a \in \mathcal{H}(\mu) \mid \langle a | \Lambda \xi \rangle_{\mathcal{H}(\mu)} \in M\}$$

et

$$\gamma_{\mathcal{J}(\mu)}(\theta^{-1}(\mathbf{A})) = \mathcal{N}(0, [\langle \Lambda \xi_{\mathbf{j}} | \Lambda \xi_{\mathbf{k}} \rangle]_{\mathbf{j}, \mathbf{k}}) \quad (\mathbf{M})$$

$$= \mathcal{N}(0, [\int \xi_{\mathbf{j}} \xi_{\mathbf{k}} d\mu_{\mathbf{0}}]_{\mathbf{j}, \mathbf{k}}) \quad (\mathbf{M})$$

$$= \mu_{\mathbf{0}}(\mathbf{A}).$$

3.8 - Compacité de la boule de l'espace autoreproduisant

Avec les mêmes notations que pour le théorème 3.2 on a le corollaire suivant :

Corollaire 3.8: soit $\mathcal{O}(\mu) = \{h \in \mathcal{H}(\mu) \mid |h| \mid_{\mathcal{H}} \leq 1\}$; on a:

-
$$\mathcal{O}(\mu)$$
 est compact dans E

$$- \forall \xi \in E' : \mu_0(\xi^2) = \int \xi^2 d\mu_0 = \text{Max} \{\xi(x) : x \in \mathcal{O}(\mu)\}$$
.

Démonstration du corollaire 3.8

On reprend la démonstration du théorème 3.2 pour les points (a) et (b), avec les mêmes notations on a :

$$\mathcal{J}_{b}(u) = \mathcal{J}_{b}(v) \subset E$$
.

On en déduit :

$$Q(u) = Q(v)$$
.

On montre alors que $\mathcal{O}(v)$ est compact dans F.

Comme il existe dans F un compact convexe symétrique en O, K tel que :

$$\sim$$
 $V(K) > 0,$

On pose :

$$G = U(nK, n \in N)$$

et on a :

$$\nu(G) > 0.$$

Mais G est un sous-espace vectoriel de F on a donc d'après le lemme 3.5. :

$$(\mathcal{O}(v) \subseteq G.$$

Or $\mathcal{O}(v)$ est faiblement compact car θ et faiblement continue et pour tout n, n. K est faiblement compact car compact ; on considère alors l'application N_K de G dans R_+ définie par :

$$\forall x \in G, N_K(x) = \inf \{\lambda > 0 \mid x \in \lambda K\}$$
.

N est continue pour la topologie faible restreinte à G donc N admet un maximum sur $\mathcal{O}(v)$ qui est compact pour cette topologie, c'est-à-dire :

$$\exists n_0 \in \mathbb{N}, \ (0(v) \subset n_0.K.$$

Donc $\mathcal{O}(v)$ est compact.

Pour tout x dans $\mathcal{J}_{6}(\mu)$ et pour tout ξ dans E' on a :

$$<\xi |x>_{E',E} = <\xi |x>_{g_{E}} = \int \xi \Lambda^{-1} x d\mu_{0}.$$

en découle :

$$\mu_0(\xi^2) = \langle \xi, \Lambda \xi \rangle g_{\mathcal{B}}$$

et on a bien :

$$\operatorname{Max}(\langle \Lambda \xi, \mathbf{x} \rangle, ||\mathbf{x}|| \leq 1) = ||\Lambda \xi||.$$

4. - L'INEGALITE DE BORELL DANS (E, u) ESPACE DE GAUSS

L'espace E est un e.v.t.l.c.s., μ est une mesure de Radon gaussienne sur E, \mathcal{H} désigne l'espace autoreproduisant associé à (E,μ) . On reprend les notations de 1.

4.1 - L'inégalité de Borell s'énonce alors :

Théorème 4.1 (Inégalité de Borell) : A tout ensemble A, μ -mesurable dans E, on associe le réel α tel que :

$$\mu(A) = \emptyset(\alpha)$$

on a alors :

$$\forall t \geq 0 \quad \mu \quad (A + t \mathcal{O} (\mu)) \geq \mathcal{O}(\alpha + t)$$

l'égalité ayant lieu si A est un demi-espace.

4.2 - On démontre d'abord un lemme topologique

Soient K un compact dans E et \mathcal{F} (K) la famille des cylindres fermés dans E qui contiennent K et dont les bases sont de dimensions finies ; on a :

Lemme 4.2: Pour tout compact K' dans E on a:

$$\bigcap (F + K' ; F \in \mathcal{F}(K)) = K + K'.$$

4.3 - Démonstration du lemme 4.2

C'est un corollaire immédiat du théorème de Hahn-Banach. Pour tout x n'appartenant pas à K + K' on trouve F ϵ \mathcal{F} (K) tel que :

$$K \subset F$$
 et $F \cap (x - K') = \emptyset$.

En effet si x $\not\in$ K + K' alors il existe un voisinage convexe de O, u, dans E, tel que :

$$(K + K' + u) \cap \{x\} = \emptyset .$$

Ce qui s'écrit aussi :

$$(K + u) \bigcap (x - K') = \emptyset.$$

On considère :

$$K + u = U (y + u ; y \in K)$$
.

C'est un recouvrement du compact K dont on extrait un recouvrement fini :

$$\exists n, \exists (y_1, ..., y_n) \in K^n : K \subset \bigcup_{1=k}^n (y_k + u).$$

D'après le théorème de Hahn-Banach pour tout j $\in \{1, \ldots, n\}$ il existe un demi-espace F_j tel que :

$$(y_j + u) \subset F_j$$
 et $F_j \cap (x-K') = \emptyset$.

On prend alors $F = \bigcup_{j=1}^{n} F_{j}$. Le lemme est démontré.

4.4 - Démonstration du théorème 4.1

On peut supposer :

$$-\infty < \alpha < +\infty$$
.

Soit $\beta \in]-\infty, \alpha [$; comme μ est de Radon il existe un compact K, K \subset A, tel que :

$$\mu(K) > \emptyset(\beta)$$
.

On montre :

$$\forall t \geq 0 : \mu(K + t \mathcal{O}(\mu)) \geq \emptyset (\beta + t).$$

On désigne par \mathcal{F} (K) la famille des cylindres fermés dont les bases sont de dimensions finies et qui contiennent K :

$$F \in \mathcal{F}(K) \longleftrightarrow \exists n \in \mathbb{N}, \exists \xi = (\xi_j j=1, ..., n) \in (E')^n, \exists M \text{ fermé, } M \subset \mathbb{R}^n :$$

$$F = \{x \in E' \mid \xi(x) \in M\} \text{ et } F \supset K.$$

Par le lemme 4.2 on a :

$$\bigcap (F, F \in \mathcal{F}(K)) = K.$$

Soit $F \in \mathcal{F}(K)$, $F = \{x \in E/\xi(x) \in M\}$; pour tout $j \in \{1,...,n\}$ $\xi_j \circ \theta$ est une forme linéaire continue sur \mathcal{F} car θ est continue. Si L désigne le sous-espace vectoriel engendré par les formes linéaires $(\xi \circ \theta, j \in \{1,...n\})$ dans l'espace de Hilbert \mathcal{F} on a par l'inégalité de Borell dans \mathbb{R}^n :

$$\forall t \geq 0, \ \gamma \neq \beta \left(\theta^{-1}(F) + t(\mathcal{O}(\mu) \cap L)\right) > \emptyset(\beta + t).$$

On a donc pour tout $t \ge 0$ et pour tout $F \in \mathcal{F}(K)$:

(i)
$$\mu(F + t \mathcal{O}(\mu)) \ge \mu(F + t(\mathcal{O}(\mu) \cap L)) > \emptyset(\beta + t)$$
.

Comme la mesure μ est de Radon on a :

(ii) inf
$$\{\mu(F + t\mathcal{O}(\mu)) ; F \in \mathcal{F}(K)\} = \mu[\Lambda(F + t\mathcal{O}(\mu)) ; F \in \mathcal{F}(K)]$$
. La boule $(\mathcal{O}(\mu))$ étant compacte on applique le lemme 4.2 :

(iii) $\mu [\cap (F + t \mathcal{O}(\mu)) ; F \in \mathcal{F}(K)] = \mu(K + t \mathcal{O}(\mu)).$

En prenant l'infimum en F dans (i) on obtient avec (i) et (iii) :

$$\mu(K + t \mathcal{O}(\mu)) \ge \emptyset(\beta + t),$$

ce qui achève la démonstration.

REFERENCES:

- C. BORELL: Invent. Math. 1975, p. 207-215.
- C. BORELL: Gauss-Radon measure.... Math. Scand. 38(76).